vmx.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <asm/io.h>
  25. #include <asm/desc.h>
  26. #include "segment_descriptor.h"
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  82. {
  83. int i;
  84. for (i = 0; i < vcpu->nmsrs; ++i)
  85. if (vcpu->guest_msrs[i].index == msr)
  86. return &vcpu->guest_msrs[i];
  87. return NULL;
  88. }
  89. static void vmcs_clear(struct vmcs *vmcs)
  90. {
  91. u64 phys_addr = __pa(vmcs);
  92. u8 error;
  93. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  94. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  95. : "cc", "memory");
  96. if (error)
  97. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  98. vmcs, phys_addr);
  99. }
  100. static void __vcpu_clear(void *arg)
  101. {
  102. struct kvm_vcpu *vcpu = arg;
  103. int cpu = raw_smp_processor_id();
  104. if (vcpu->cpu == cpu)
  105. vmcs_clear(vcpu->vmcs);
  106. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  107. per_cpu(current_vmcs, cpu) = NULL;
  108. }
  109. static void vcpu_clear(struct kvm_vcpu *vcpu)
  110. {
  111. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  112. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  113. else
  114. __vcpu_clear(vcpu);
  115. vcpu->launched = 0;
  116. }
  117. static unsigned long vmcs_readl(unsigned long field)
  118. {
  119. unsigned long value;
  120. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  121. : "=a"(value) : "d"(field) : "cc");
  122. return value;
  123. }
  124. static u16 vmcs_read16(unsigned long field)
  125. {
  126. return vmcs_readl(field);
  127. }
  128. static u32 vmcs_read32(unsigned long field)
  129. {
  130. return vmcs_readl(field);
  131. }
  132. static u64 vmcs_read64(unsigned long field)
  133. {
  134. #ifdef CONFIG_X86_64
  135. return vmcs_readl(field);
  136. #else
  137. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  138. #endif
  139. }
  140. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  141. {
  142. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  143. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  144. dump_stack();
  145. }
  146. static void vmcs_writel(unsigned long field, unsigned long value)
  147. {
  148. u8 error;
  149. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  150. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  151. if (unlikely(error))
  152. vmwrite_error(field, value);
  153. }
  154. static void vmcs_write16(unsigned long field, u16 value)
  155. {
  156. vmcs_writel(field, value);
  157. }
  158. static void vmcs_write32(unsigned long field, u32 value)
  159. {
  160. vmcs_writel(field, value);
  161. }
  162. static void vmcs_write64(unsigned long field, u64 value)
  163. {
  164. #ifdef CONFIG_X86_64
  165. vmcs_writel(field, value);
  166. #else
  167. vmcs_writel(field, value);
  168. asm volatile ("");
  169. vmcs_writel(field+1, value >> 32);
  170. #endif
  171. }
  172. /*
  173. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  174. * vcpu mutex is already taken.
  175. */
  176. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  177. {
  178. u64 phys_addr = __pa(vcpu->vmcs);
  179. int cpu;
  180. cpu = get_cpu();
  181. if (vcpu->cpu != cpu)
  182. vcpu_clear(vcpu);
  183. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  184. u8 error;
  185. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  186. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  187. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  188. : "cc");
  189. if (error)
  190. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  191. vcpu->vmcs, phys_addr);
  192. }
  193. if (vcpu->cpu != cpu) {
  194. struct descriptor_table dt;
  195. unsigned long sysenter_esp;
  196. vcpu->cpu = cpu;
  197. /*
  198. * Linux uses per-cpu TSS and GDT, so set these when switching
  199. * processors.
  200. */
  201. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  202. get_gdt(&dt);
  203. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  204. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  205. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  206. }
  207. return vcpu;
  208. }
  209. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  210. {
  211. put_cpu();
  212. }
  213. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  214. {
  215. return vmcs_readl(GUEST_RFLAGS);
  216. }
  217. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  218. {
  219. vmcs_writel(GUEST_RFLAGS, rflags);
  220. }
  221. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  222. {
  223. unsigned long rip;
  224. u32 interruptibility;
  225. rip = vmcs_readl(GUEST_RIP);
  226. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  227. vmcs_writel(GUEST_RIP, rip);
  228. /*
  229. * We emulated an instruction, so temporary interrupt blocking
  230. * should be removed, if set.
  231. */
  232. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  233. if (interruptibility & 3)
  234. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  235. interruptibility & ~3);
  236. vcpu->interrupt_window_open = 1;
  237. }
  238. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  239. {
  240. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  241. vmcs_readl(GUEST_RIP));
  242. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  243. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  244. GP_VECTOR |
  245. INTR_TYPE_EXCEPTION |
  246. INTR_INFO_DELIEVER_CODE_MASK |
  247. INTR_INFO_VALID_MASK);
  248. }
  249. /*
  250. * reads and returns guest's timestamp counter "register"
  251. * guest_tsc = host_tsc + tsc_offset -- 21.3
  252. */
  253. static u64 guest_read_tsc(void)
  254. {
  255. u64 host_tsc, tsc_offset;
  256. rdtscll(host_tsc);
  257. tsc_offset = vmcs_read64(TSC_OFFSET);
  258. return host_tsc + tsc_offset;
  259. }
  260. /*
  261. * writes 'guest_tsc' into guest's timestamp counter "register"
  262. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  263. */
  264. static void guest_write_tsc(u64 guest_tsc)
  265. {
  266. u64 host_tsc;
  267. rdtscll(host_tsc);
  268. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  269. }
  270. static void reload_tss(void)
  271. {
  272. #ifndef CONFIG_X86_64
  273. /*
  274. * VT restores TR but not its size. Useless.
  275. */
  276. struct descriptor_table gdt;
  277. struct segment_descriptor *descs;
  278. get_gdt(&gdt);
  279. descs = (void *)gdt.base;
  280. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  281. load_TR_desc();
  282. #endif
  283. }
  284. /*
  285. * Reads an msr value (of 'msr_index') into 'pdata'.
  286. * Returns 0 on success, non-0 otherwise.
  287. * Assumes vcpu_load() was already called.
  288. */
  289. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  290. {
  291. u64 data;
  292. struct vmx_msr_entry *msr;
  293. if (!pdata) {
  294. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  295. return -EINVAL;
  296. }
  297. switch (msr_index) {
  298. #ifdef CONFIG_X86_64
  299. case MSR_FS_BASE:
  300. data = vmcs_readl(GUEST_FS_BASE);
  301. break;
  302. case MSR_GS_BASE:
  303. data = vmcs_readl(GUEST_GS_BASE);
  304. break;
  305. case MSR_EFER:
  306. return kvm_get_msr_common(vcpu, msr_index, pdata);
  307. #endif
  308. case MSR_IA32_TIME_STAMP_COUNTER:
  309. data = guest_read_tsc();
  310. break;
  311. case MSR_IA32_SYSENTER_CS:
  312. data = vmcs_read32(GUEST_SYSENTER_CS);
  313. break;
  314. case MSR_IA32_SYSENTER_EIP:
  315. data = vmcs_read32(GUEST_SYSENTER_EIP);
  316. break;
  317. case MSR_IA32_SYSENTER_ESP:
  318. data = vmcs_read32(GUEST_SYSENTER_ESP);
  319. break;
  320. default:
  321. msr = find_msr_entry(vcpu, msr_index);
  322. if (msr) {
  323. data = msr->data;
  324. break;
  325. }
  326. return kvm_get_msr_common(vcpu, msr_index, pdata);
  327. }
  328. *pdata = data;
  329. return 0;
  330. }
  331. /*
  332. * Writes msr value into into the appropriate "register".
  333. * Returns 0 on success, non-0 otherwise.
  334. * Assumes vcpu_load() was already called.
  335. */
  336. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  337. {
  338. struct vmx_msr_entry *msr;
  339. switch (msr_index) {
  340. #ifdef CONFIG_X86_64
  341. case MSR_EFER:
  342. return kvm_set_msr_common(vcpu, msr_index, data);
  343. case MSR_FS_BASE:
  344. vmcs_writel(GUEST_FS_BASE, data);
  345. break;
  346. case MSR_GS_BASE:
  347. vmcs_writel(GUEST_GS_BASE, data);
  348. break;
  349. #endif
  350. case MSR_IA32_SYSENTER_CS:
  351. vmcs_write32(GUEST_SYSENTER_CS, data);
  352. break;
  353. case MSR_IA32_SYSENTER_EIP:
  354. vmcs_write32(GUEST_SYSENTER_EIP, data);
  355. break;
  356. case MSR_IA32_SYSENTER_ESP:
  357. vmcs_write32(GUEST_SYSENTER_ESP, data);
  358. break;
  359. case MSR_IA32_TIME_STAMP_COUNTER: {
  360. guest_write_tsc(data);
  361. break;
  362. }
  363. default:
  364. msr = find_msr_entry(vcpu, msr_index);
  365. if (msr) {
  366. msr->data = data;
  367. break;
  368. }
  369. return kvm_set_msr_common(vcpu, msr_index, data);
  370. msr->data = data;
  371. break;
  372. }
  373. return 0;
  374. }
  375. /*
  376. * Sync the rsp and rip registers into the vcpu structure. This allows
  377. * registers to be accessed by indexing vcpu->regs.
  378. */
  379. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  380. {
  381. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  382. vcpu->rip = vmcs_readl(GUEST_RIP);
  383. }
  384. /*
  385. * Syncs rsp and rip back into the vmcs. Should be called after possible
  386. * modification.
  387. */
  388. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  389. {
  390. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  391. vmcs_writel(GUEST_RIP, vcpu->rip);
  392. }
  393. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  394. {
  395. unsigned long dr7 = 0x400;
  396. u32 exception_bitmap;
  397. int old_singlestep;
  398. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  399. old_singlestep = vcpu->guest_debug.singlestep;
  400. vcpu->guest_debug.enabled = dbg->enabled;
  401. if (vcpu->guest_debug.enabled) {
  402. int i;
  403. dr7 |= 0x200; /* exact */
  404. for (i = 0; i < 4; ++i) {
  405. if (!dbg->breakpoints[i].enabled)
  406. continue;
  407. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  408. dr7 |= 2 << (i*2); /* global enable */
  409. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  410. }
  411. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  412. vcpu->guest_debug.singlestep = dbg->singlestep;
  413. } else {
  414. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  415. vcpu->guest_debug.singlestep = 0;
  416. }
  417. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  418. unsigned long flags;
  419. flags = vmcs_readl(GUEST_RFLAGS);
  420. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  421. vmcs_writel(GUEST_RFLAGS, flags);
  422. }
  423. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  424. vmcs_writel(GUEST_DR7, dr7);
  425. return 0;
  426. }
  427. static __init int cpu_has_kvm_support(void)
  428. {
  429. unsigned long ecx = cpuid_ecx(1);
  430. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  431. }
  432. static __init int vmx_disabled_by_bios(void)
  433. {
  434. u64 msr;
  435. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  436. return (msr & 5) == 1; /* locked but not enabled */
  437. }
  438. static __init void hardware_enable(void *garbage)
  439. {
  440. int cpu = raw_smp_processor_id();
  441. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  442. u64 old;
  443. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  444. if ((old & 5) != 5)
  445. /* enable and lock */
  446. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  447. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  448. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  449. : "memory", "cc");
  450. }
  451. static void hardware_disable(void *garbage)
  452. {
  453. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  454. }
  455. static __init void setup_vmcs_descriptor(void)
  456. {
  457. u32 vmx_msr_low, vmx_msr_high;
  458. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  459. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  460. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  461. vmcs_descriptor.revision_id = vmx_msr_low;
  462. }
  463. static struct vmcs *alloc_vmcs_cpu(int cpu)
  464. {
  465. int node = cpu_to_node(cpu);
  466. struct page *pages;
  467. struct vmcs *vmcs;
  468. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  469. if (!pages)
  470. return NULL;
  471. vmcs = page_address(pages);
  472. memset(vmcs, 0, vmcs_descriptor.size);
  473. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  474. return vmcs;
  475. }
  476. static struct vmcs *alloc_vmcs(void)
  477. {
  478. return alloc_vmcs_cpu(raw_smp_processor_id());
  479. }
  480. static void free_vmcs(struct vmcs *vmcs)
  481. {
  482. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  483. }
  484. static __exit void free_kvm_area(void)
  485. {
  486. int cpu;
  487. for_each_online_cpu(cpu)
  488. free_vmcs(per_cpu(vmxarea, cpu));
  489. }
  490. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  491. static __init int alloc_kvm_area(void)
  492. {
  493. int cpu;
  494. for_each_online_cpu(cpu) {
  495. struct vmcs *vmcs;
  496. vmcs = alloc_vmcs_cpu(cpu);
  497. if (!vmcs) {
  498. free_kvm_area();
  499. return -ENOMEM;
  500. }
  501. per_cpu(vmxarea, cpu) = vmcs;
  502. }
  503. return 0;
  504. }
  505. static __init int hardware_setup(void)
  506. {
  507. setup_vmcs_descriptor();
  508. return alloc_kvm_area();
  509. }
  510. static __exit void hardware_unsetup(void)
  511. {
  512. free_kvm_area();
  513. }
  514. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  515. {
  516. if (vcpu->rmode.active)
  517. vmcs_write32(EXCEPTION_BITMAP, ~0);
  518. else
  519. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  520. }
  521. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  522. {
  523. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  524. if (vmcs_readl(sf->base) == save->base) {
  525. vmcs_write16(sf->selector, save->selector);
  526. vmcs_writel(sf->base, save->base);
  527. vmcs_write32(sf->limit, save->limit);
  528. vmcs_write32(sf->ar_bytes, save->ar);
  529. } else {
  530. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  531. << AR_DPL_SHIFT;
  532. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  533. }
  534. }
  535. static void enter_pmode(struct kvm_vcpu *vcpu)
  536. {
  537. unsigned long flags;
  538. vcpu->rmode.active = 0;
  539. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  540. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  541. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  542. flags = vmcs_readl(GUEST_RFLAGS);
  543. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  544. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  545. vmcs_writel(GUEST_RFLAGS, flags);
  546. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  547. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  548. update_exception_bitmap(vcpu);
  549. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  550. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  551. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  552. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  553. vmcs_write16(GUEST_SS_SELECTOR, 0);
  554. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  555. vmcs_write16(GUEST_CS_SELECTOR,
  556. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  557. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  558. }
  559. static int rmode_tss_base(struct kvm* kvm)
  560. {
  561. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  562. return base_gfn << PAGE_SHIFT;
  563. }
  564. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  565. {
  566. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  567. save->selector = vmcs_read16(sf->selector);
  568. save->base = vmcs_readl(sf->base);
  569. save->limit = vmcs_read32(sf->limit);
  570. save->ar = vmcs_read32(sf->ar_bytes);
  571. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  572. vmcs_write32(sf->limit, 0xffff);
  573. vmcs_write32(sf->ar_bytes, 0xf3);
  574. }
  575. static void enter_rmode(struct kvm_vcpu *vcpu)
  576. {
  577. unsigned long flags;
  578. vcpu->rmode.active = 1;
  579. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  580. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  581. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  582. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  583. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  584. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  585. flags = vmcs_readl(GUEST_RFLAGS);
  586. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  587. flags |= IOPL_MASK | X86_EFLAGS_VM;
  588. vmcs_writel(GUEST_RFLAGS, flags);
  589. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  590. update_exception_bitmap(vcpu);
  591. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  592. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  593. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  594. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  595. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  596. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  597. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  598. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  599. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  600. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  601. }
  602. #ifdef CONFIG_X86_64
  603. static void enter_lmode(struct kvm_vcpu *vcpu)
  604. {
  605. u32 guest_tr_ar;
  606. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  607. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  608. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  609. __FUNCTION__);
  610. vmcs_write32(GUEST_TR_AR_BYTES,
  611. (guest_tr_ar & ~AR_TYPE_MASK)
  612. | AR_TYPE_BUSY_64_TSS);
  613. }
  614. vcpu->shadow_efer |= EFER_LMA;
  615. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  616. vmcs_write32(VM_ENTRY_CONTROLS,
  617. vmcs_read32(VM_ENTRY_CONTROLS)
  618. | VM_ENTRY_CONTROLS_IA32E_MASK);
  619. }
  620. static void exit_lmode(struct kvm_vcpu *vcpu)
  621. {
  622. vcpu->shadow_efer &= ~EFER_LMA;
  623. vmcs_write32(VM_ENTRY_CONTROLS,
  624. vmcs_read32(VM_ENTRY_CONTROLS)
  625. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  626. }
  627. #endif
  628. static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  629. {
  630. vcpu->cr0 &= KVM_GUEST_CR0_MASK;
  631. vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
  632. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  633. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  634. }
  635. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  636. {
  637. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  638. enter_pmode(vcpu);
  639. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  640. enter_rmode(vcpu);
  641. #ifdef CONFIG_X86_64
  642. if (vcpu->shadow_efer & EFER_LME) {
  643. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  644. enter_lmode(vcpu);
  645. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  646. exit_lmode(vcpu);
  647. }
  648. #endif
  649. vmcs_writel(CR0_READ_SHADOW, cr0);
  650. vmcs_writel(GUEST_CR0,
  651. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  652. vcpu->cr0 = cr0;
  653. }
  654. /*
  655. * Used when restoring the VM to avoid corrupting segment registers
  656. */
  657. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  658. {
  659. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  660. update_exception_bitmap(vcpu);
  661. vmcs_writel(CR0_READ_SHADOW, cr0);
  662. vmcs_writel(GUEST_CR0,
  663. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  664. vcpu->cr0 = cr0;
  665. }
  666. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  667. {
  668. vmcs_writel(GUEST_CR3, cr3);
  669. }
  670. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  671. {
  672. vmcs_writel(CR4_READ_SHADOW, cr4);
  673. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  674. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  675. vcpu->cr4 = cr4;
  676. }
  677. #ifdef CONFIG_X86_64
  678. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  679. {
  680. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  681. vcpu->shadow_efer = efer;
  682. if (efer & EFER_LMA) {
  683. vmcs_write32(VM_ENTRY_CONTROLS,
  684. vmcs_read32(VM_ENTRY_CONTROLS) |
  685. VM_ENTRY_CONTROLS_IA32E_MASK);
  686. msr->data = efer;
  687. } else {
  688. vmcs_write32(VM_ENTRY_CONTROLS,
  689. vmcs_read32(VM_ENTRY_CONTROLS) &
  690. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  691. msr->data = efer & ~EFER_LME;
  692. }
  693. }
  694. #endif
  695. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  696. {
  697. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  698. return vmcs_readl(sf->base);
  699. }
  700. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  701. struct kvm_segment *var, int seg)
  702. {
  703. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  704. u32 ar;
  705. var->base = vmcs_readl(sf->base);
  706. var->limit = vmcs_read32(sf->limit);
  707. var->selector = vmcs_read16(sf->selector);
  708. ar = vmcs_read32(sf->ar_bytes);
  709. if (ar & AR_UNUSABLE_MASK)
  710. ar = 0;
  711. var->type = ar & 15;
  712. var->s = (ar >> 4) & 1;
  713. var->dpl = (ar >> 5) & 3;
  714. var->present = (ar >> 7) & 1;
  715. var->avl = (ar >> 12) & 1;
  716. var->l = (ar >> 13) & 1;
  717. var->db = (ar >> 14) & 1;
  718. var->g = (ar >> 15) & 1;
  719. var->unusable = (ar >> 16) & 1;
  720. }
  721. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  722. struct kvm_segment *var, int seg)
  723. {
  724. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  725. u32 ar;
  726. vmcs_writel(sf->base, var->base);
  727. vmcs_write32(sf->limit, var->limit);
  728. vmcs_write16(sf->selector, var->selector);
  729. if (var->unusable)
  730. ar = 1 << 16;
  731. else {
  732. ar = var->type & 15;
  733. ar |= (var->s & 1) << 4;
  734. ar |= (var->dpl & 3) << 5;
  735. ar |= (var->present & 1) << 7;
  736. ar |= (var->avl & 1) << 12;
  737. ar |= (var->l & 1) << 13;
  738. ar |= (var->db & 1) << 14;
  739. ar |= (var->g & 1) << 15;
  740. }
  741. if (ar == 0) /* a 0 value means unusable */
  742. ar = AR_UNUSABLE_MASK;
  743. vmcs_write32(sf->ar_bytes, ar);
  744. }
  745. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  746. {
  747. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  748. *db = (ar >> 14) & 1;
  749. *l = (ar >> 13) & 1;
  750. }
  751. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  752. {
  753. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  754. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  755. }
  756. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  757. {
  758. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  759. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  760. }
  761. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  762. {
  763. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  764. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  765. }
  766. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  767. {
  768. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  769. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  770. }
  771. static int init_rmode_tss(struct kvm* kvm)
  772. {
  773. struct page *p1, *p2, *p3;
  774. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  775. char *page;
  776. p1 = _gfn_to_page(kvm, fn++);
  777. p2 = _gfn_to_page(kvm, fn++);
  778. p3 = _gfn_to_page(kvm, fn);
  779. if (!p1 || !p2 || !p3) {
  780. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  781. return 0;
  782. }
  783. page = kmap_atomic(p1, KM_USER0);
  784. memset(page, 0, PAGE_SIZE);
  785. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  786. kunmap_atomic(page, KM_USER0);
  787. page = kmap_atomic(p2, KM_USER0);
  788. memset(page, 0, PAGE_SIZE);
  789. kunmap_atomic(page, KM_USER0);
  790. page = kmap_atomic(p3, KM_USER0);
  791. memset(page, 0, PAGE_SIZE);
  792. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  793. kunmap_atomic(page, KM_USER0);
  794. return 1;
  795. }
  796. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  797. {
  798. u32 msr_high, msr_low;
  799. rdmsr(msr, msr_low, msr_high);
  800. val &= msr_high;
  801. val |= msr_low;
  802. vmcs_write32(vmcs_field, val);
  803. }
  804. static void seg_setup(int seg)
  805. {
  806. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  807. vmcs_write16(sf->selector, 0);
  808. vmcs_writel(sf->base, 0);
  809. vmcs_write32(sf->limit, 0xffff);
  810. vmcs_write32(sf->ar_bytes, 0x93);
  811. }
  812. /*
  813. * Sets up the vmcs for emulated real mode.
  814. */
  815. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  816. {
  817. u32 host_sysenter_cs;
  818. u32 junk;
  819. unsigned long a;
  820. struct descriptor_table dt;
  821. int i;
  822. int ret = 0;
  823. int nr_good_msrs;
  824. extern asmlinkage void kvm_vmx_return(void);
  825. if (!init_rmode_tss(vcpu->kvm)) {
  826. ret = -ENOMEM;
  827. goto out;
  828. }
  829. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  830. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  831. vcpu->cr8 = 0;
  832. vcpu->apic_base = 0xfee00000 |
  833. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  834. MSR_IA32_APICBASE_ENABLE;
  835. fx_init(vcpu);
  836. /*
  837. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  838. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  839. */
  840. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  841. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  842. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  843. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  844. seg_setup(VCPU_SREG_DS);
  845. seg_setup(VCPU_SREG_ES);
  846. seg_setup(VCPU_SREG_FS);
  847. seg_setup(VCPU_SREG_GS);
  848. seg_setup(VCPU_SREG_SS);
  849. vmcs_write16(GUEST_TR_SELECTOR, 0);
  850. vmcs_writel(GUEST_TR_BASE, 0);
  851. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  852. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  853. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  854. vmcs_writel(GUEST_LDTR_BASE, 0);
  855. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  856. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  857. vmcs_write32(GUEST_SYSENTER_CS, 0);
  858. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  859. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  860. vmcs_writel(GUEST_RFLAGS, 0x02);
  861. vmcs_writel(GUEST_RIP, 0xfff0);
  862. vmcs_writel(GUEST_RSP, 0);
  863. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  864. vmcs_writel(GUEST_DR7, 0x400);
  865. vmcs_writel(GUEST_GDTR_BASE, 0);
  866. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  867. vmcs_writel(GUEST_IDTR_BASE, 0);
  868. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  869. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  870. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  871. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  872. /* I/O */
  873. vmcs_write64(IO_BITMAP_A, 0);
  874. vmcs_write64(IO_BITMAP_B, 0);
  875. guest_write_tsc(0);
  876. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  877. /* Special registers */
  878. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  879. /* Control */
  880. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  881. PIN_BASED_VM_EXEC_CONTROL,
  882. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  883. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  884. );
  885. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  886. CPU_BASED_VM_EXEC_CONTROL,
  887. CPU_BASED_HLT_EXITING /* 20.6.2 */
  888. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  889. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  890. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  891. | CPU_BASED_MOV_DR_EXITING
  892. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  893. );
  894. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  895. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  896. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  897. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  898. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  899. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  900. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  901. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  902. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  903. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  904. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  905. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  906. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  907. #ifdef CONFIG_X86_64
  908. rdmsrl(MSR_FS_BASE, a);
  909. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  910. rdmsrl(MSR_GS_BASE, a);
  911. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  912. #else
  913. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  914. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  915. #endif
  916. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  917. get_idt(&dt);
  918. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  919. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  920. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  921. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  922. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  923. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  924. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  925. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  926. for (i = 0; i < NR_VMX_MSR; ++i) {
  927. u32 index = vmx_msr_index[i];
  928. u32 data_low, data_high;
  929. u64 data;
  930. int j = vcpu->nmsrs;
  931. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  932. continue;
  933. if (wrmsr_safe(index, data_low, data_high) < 0)
  934. continue;
  935. data = data_low | ((u64)data_high << 32);
  936. vcpu->host_msrs[j].index = index;
  937. vcpu->host_msrs[j].reserved = 0;
  938. vcpu->host_msrs[j].data = data;
  939. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  940. ++vcpu->nmsrs;
  941. }
  942. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  943. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  944. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  945. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  946. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  947. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  948. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  949. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  950. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  951. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  952. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  953. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  954. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  955. /* 22.2.1, 20.8.1 */
  956. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  957. VM_ENTRY_CONTROLS, 0);
  958. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  959. #ifdef CONFIG_X86_64
  960. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  961. vmcs_writel(TPR_THRESHOLD, 0);
  962. #endif
  963. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  964. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  965. vcpu->cr0 = 0x60000010;
  966. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  967. vmx_set_cr4(vcpu, 0);
  968. #ifdef CONFIG_X86_64
  969. vmx_set_efer(vcpu, 0);
  970. #endif
  971. return 0;
  972. out:
  973. return ret;
  974. }
  975. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  976. {
  977. u16 ent[2];
  978. u16 cs;
  979. u16 ip;
  980. unsigned long flags;
  981. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  982. u16 sp = vmcs_readl(GUEST_RSP);
  983. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  984. if (sp > ss_limit || sp - 6 > sp) {
  985. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  986. __FUNCTION__,
  987. vmcs_readl(GUEST_RSP),
  988. vmcs_readl(GUEST_SS_BASE),
  989. vmcs_read32(GUEST_SS_LIMIT));
  990. return;
  991. }
  992. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  993. sizeof(ent)) {
  994. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  995. return;
  996. }
  997. flags = vmcs_readl(GUEST_RFLAGS);
  998. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  999. ip = vmcs_readl(GUEST_RIP);
  1000. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1001. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1002. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1003. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1004. return;
  1005. }
  1006. vmcs_writel(GUEST_RFLAGS, flags &
  1007. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1008. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1009. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1010. vmcs_writel(GUEST_RIP, ent[0]);
  1011. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1012. }
  1013. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1014. {
  1015. int word_index = __ffs(vcpu->irq_summary);
  1016. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1017. int irq = word_index * BITS_PER_LONG + bit_index;
  1018. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1019. if (!vcpu->irq_pending[word_index])
  1020. clear_bit(word_index, &vcpu->irq_summary);
  1021. if (vcpu->rmode.active) {
  1022. inject_rmode_irq(vcpu, irq);
  1023. return;
  1024. }
  1025. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1026. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1027. }
  1028. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1029. struct kvm_run *kvm_run)
  1030. {
  1031. u32 cpu_based_vm_exec_control;
  1032. vcpu->interrupt_window_open =
  1033. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1034. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1035. if (vcpu->interrupt_window_open &&
  1036. vcpu->irq_summary &&
  1037. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1038. /*
  1039. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1040. */
  1041. kvm_do_inject_irq(vcpu);
  1042. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1043. if (!vcpu->interrupt_window_open &&
  1044. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1045. /*
  1046. * Interrupts blocked. Wait for unblock.
  1047. */
  1048. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1049. else
  1050. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1051. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1052. }
  1053. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1054. {
  1055. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1056. set_debugreg(dbg->bp[0], 0);
  1057. set_debugreg(dbg->bp[1], 1);
  1058. set_debugreg(dbg->bp[2], 2);
  1059. set_debugreg(dbg->bp[3], 3);
  1060. if (dbg->singlestep) {
  1061. unsigned long flags;
  1062. flags = vmcs_readl(GUEST_RFLAGS);
  1063. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1064. vmcs_writel(GUEST_RFLAGS, flags);
  1065. }
  1066. }
  1067. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1068. int vec, u32 err_code)
  1069. {
  1070. if (!vcpu->rmode.active)
  1071. return 0;
  1072. if (vec == GP_VECTOR && err_code == 0)
  1073. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1074. return 1;
  1075. return 0;
  1076. }
  1077. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1078. {
  1079. u32 intr_info, error_code;
  1080. unsigned long cr2, rip;
  1081. u32 vect_info;
  1082. enum emulation_result er;
  1083. int r;
  1084. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1085. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1086. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1087. !is_page_fault(intr_info)) {
  1088. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1089. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1090. }
  1091. if (is_external_interrupt(vect_info)) {
  1092. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1093. set_bit(irq, vcpu->irq_pending);
  1094. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1095. }
  1096. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1097. asm ("int $2");
  1098. return 1;
  1099. }
  1100. error_code = 0;
  1101. rip = vmcs_readl(GUEST_RIP);
  1102. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1103. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1104. if (is_page_fault(intr_info)) {
  1105. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1106. spin_lock(&vcpu->kvm->lock);
  1107. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1108. if (r < 0) {
  1109. spin_unlock(&vcpu->kvm->lock);
  1110. return r;
  1111. }
  1112. if (!r) {
  1113. spin_unlock(&vcpu->kvm->lock);
  1114. return 1;
  1115. }
  1116. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1117. spin_unlock(&vcpu->kvm->lock);
  1118. switch (er) {
  1119. case EMULATE_DONE:
  1120. return 1;
  1121. case EMULATE_DO_MMIO:
  1122. ++kvm_stat.mmio_exits;
  1123. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1124. return 0;
  1125. case EMULATE_FAIL:
  1126. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1127. break;
  1128. default:
  1129. BUG();
  1130. }
  1131. }
  1132. if (vcpu->rmode.active &&
  1133. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1134. error_code))
  1135. return 1;
  1136. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1137. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1138. return 0;
  1139. }
  1140. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1141. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1142. kvm_run->ex.error_code = error_code;
  1143. return 0;
  1144. }
  1145. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1146. struct kvm_run *kvm_run)
  1147. {
  1148. ++kvm_stat.irq_exits;
  1149. return 1;
  1150. }
  1151. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1152. {
  1153. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1154. return 0;
  1155. }
  1156. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1157. {
  1158. u64 inst;
  1159. gva_t rip;
  1160. int countr_size;
  1161. int i, n;
  1162. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1163. countr_size = 2;
  1164. } else {
  1165. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1166. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1167. (cs_ar & AR_DB_MASK) ? 4: 2;
  1168. }
  1169. rip = vmcs_readl(GUEST_RIP);
  1170. if (countr_size != 8)
  1171. rip += vmcs_readl(GUEST_CS_BASE);
  1172. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1173. for (i = 0; i < n; i++) {
  1174. switch (((u8*)&inst)[i]) {
  1175. case 0xf0:
  1176. case 0xf2:
  1177. case 0xf3:
  1178. case 0x2e:
  1179. case 0x36:
  1180. case 0x3e:
  1181. case 0x26:
  1182. case 0x64:
  1183. case 0x65:
  1184. case 0x66:
  1185. break;
  1186. case 0x67:
  1187. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1188. default:
  1189. goto done;
  1190. }
  1191. }
  1192. return 0;
  1193. done:
  1194. countr_size *= 8;
  1195. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1196. return 1;
  1197. }
  1198. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1199. {
  1200. u64 exit_qualification;
  1201. ++kvm_stat.io_exits;
  1202. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1203. kvm_run->exit_reason = KVM_EXIT_IO;
  1204. if (exit_qualification & 8)
  1205. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1206. else
  1207. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1208. kvm_run->io.size = (exit_qualification & 7) + 1;
  1209. kvm_run->io.string = (exit_qualification & 16) != 0;
  1210. kvm_run->io.string_down
  1211. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1212. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1213. kvm_run->io.port = exit_qualification >> 16;
  1214. if (kvm_run->io.string) {
  1215. if (!get_io_count(vcpu, &kvm_run->io.count))
  1216. return 1;
  1217. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1218. } else
  1219. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1220. return 0;
  1221. }
  1222. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1223. {
  1224. u64 exit_qualification;
  1225. int cr;
  1226. int reg;
  1227. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1228. cr = exit_qualification & 15;
  1229. reg = (exit_qualification >> 8) & 15;
  1230. switch ((exit_qualification >> 4) & 3) {
  1231. case 0: /* mov to cr */
  1232. switch (cr) {
  1233. case 0:
  1234. vcpu_load_rsp_rip(vcpu);
  1235. set_cr0(vcpu, vcpu->regs[reg]);
  1236. skip_emulated_instruction(vcpu);
  1237. return 1;
  1238. case 3:
  1239. vcpu_load_rsp_rip(vcpu);
  1240. set_cr3(vcpu, vcpu->regs[reg]);
  1241. skip_emulated_instruction(vcpu);
  1242. return 1;
  1243. case 4:
  1244. vcpu_load_rsp_rip(vcpu);
  1245. set_cr4(vcpu, vcpu->regs[reg]);
  1246. skip_emulated_instruction(vcpu);
  1247. return 1;
  1248. case 8:
  1249. vcpu_load_rsp_rip(vcpu);
  1250. set_cr8(vcpu, vcpu->regs[reg]);
  1251. skip_emulated_instruction(vcpu);
  1252. return 1;
  1253. };
  1254. break;
  1255. case 1: /*mov from cr*/
  1256. switch (cr) {
  1257. case 3:
  1258. vcpu_load_rsp_rip(vcpu);
  1259. vcpu->regs[reg] = vcpu->cr3;
  1260. vcpu_put_rsp_rip(vcpu);
  1261. skip_emulated_instruction(vcpu);
  1262. return 1;
  1263. case 8:
  1264. printk(KERN_DEBUG "handle_cr: read CR8 "
  1265. "cpu erratum AA15\n");
  1266. vcpu_load_rsp_rip(vcpu);
  1267. vcpu->regs[reg] = vcpu->cr8;
  1268. vcpu_put_rsp_rip(vcpu);
  1269. skip_emulated_instruction(vcpu);
  1270. return 1;
  1271. }
  1272. break;
  1273. case 3: /* lmsw */
  1274. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1275. skip_emulated_instruction(vcpu);
  1276. return 1;
  1277. default:
  1278. break;
  1279. }
  1280. kvm_run->exit_reason = 0;
  1281. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1282. (int)(exit_qualification >> 4) & 3, cr);
  1283. return 0;
  1284. }
  1285. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1286. {
  1287. u64 exit_qualification;
  1288. unsigned long val;
  1289. int dr, reg;
  1290. /*
  1291. * FIXME: this code assumes the host is debugging the guest.
  1292. * need to deal with guest debugging itself too.
  1293. */
  1294. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1295. dr = exit_qualification & 7;
  1296. reg = (exit_qualification >> 8) & 15;
  1297. vcpu_load_rsp_rip(vcpu);
  1298. if (exit_qualification & 16) {
  1299. /* mov from dr */
  1300. switch (dr) {
  1301. case 6:
  1302. val = 0xffff0ff0;
  1303. break;
  1304. case 7:
  1305. val = 0x400;
  1306. break;
  1307. default:
  1308. val = 0;
  1309. }
  1310. vcpu->regs[reg] = val;
  1311. } else {
  1312. /* mov to dr */
  1313. }
  1314. vcpu_put_rsp_rip(vcpu);
  1315. skip_emulated_instruction(vcpu);
  1316. return 1;
  1317. }
  1318. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1319. {
  1320. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1321. return 0;
  1322. }
  1323. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1324. {
  1325. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1326. u64 data;
  1327. if (vmx_get_msr(vcpu, ecx, &data)) {
  1328. vmx_inject_gp(vcpu, 0);
  1329. return 1;
  1330. }
  1331. /* FIXME: handling of bits 32:63 of rax, rdx */
  1332. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1333. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1334. skip_emulated_instruction(vcpu);
  1335. return 1;
  1336. }
  1337. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1338. {
  1339. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1340. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1341. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1342. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1343. vmx_inject_gp(vcpu, 0);
  1344. return 1;
  1345. }
  1346. skip_emulated_instruction(vcpu);
  1347. return 1;
  1348. }
  1349. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1350. struct kvm_run *kvm_run)
  1351. {
  1352. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1353. kvm_run->cr8 = vcpu->cr8;
  1354. kvm_run->apic_base = vcpu->apic_base;
  1355. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1356. vcpu->irq_summary == 0);
  1357. }
  1358. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1359. struct kvm_run *kvm_run)
  1360. {
  1361. /*
  1362. * If the user space waits to inject interrupts, exit as soon as
  1363. * possible
  1364. */
  1365. if (kvm_run->request_interrupt_window &&
  1366. !vcpu->irq_summary) {
  1367. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1368. ++kvm_stat.irq_window_exits;
  1369. return 0;
  1370. }
  1371. return 1;
  1372. }
  1373. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1374. {
  1375. skip_emulated_instruction(vcpu);
  1376. if (vcpu->irq_summary)
  1377. return 1;
  1378. kvm_run->exit_reason = KVM_EXIT_HLT;
  1379. ++kvm_stat.halt_exits;
  1380. return 0;
  1381. }
  1382. /*
  1383. * The exit handlers return 1 if the exit was handled fully and guest execution
  1384. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1385. * to be done to userspace and return 0.
  1386. */
  1387. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1388. struct kvm_run *kvm_run) = {
  1389. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1390. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1391. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1392. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1393. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1394. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1395. [EXIT_REASON_CPUID] = handle_cpuid,
  1396. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1397. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1398. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1399. [EXIT_REASON_HLT] = handle_halt,
  1400. };
  1401. static const int kvm_vmx_max_exit_handlers =
  1402. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1403. /*
  1404. * The guest has exited. See if we can fix it or if we need userspace
  1405. * assistance.
  1406. */
  1407. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1408. {
  1409. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1410. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1411. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1412. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1413. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1414. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1415. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1416. if (exit_reason < kvm_vmx_max_exit_handlers
  1417. && kvm_vmx_exit_handlers[exit_reason])
  1418. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1419. else {
  1420. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1421. kvm_run->hw.hardware_exit_reason = exit_reason;
  1422. }
  1423. return 0;
  1424. }
  1425. /*
  1426. * Check if userspace requested an interrupt window, and that the
  1427. * interrupt window is open.
  1428. *
  1429. * No need to exit to userspace if we already have an interrupt queued.
  1430. */
  1431. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1432. struct kvm_run *kvm_run)
  1433. {
  1434. return (!vcpu->irq_summary &&
  1435. kvm_run->request_interrupt_window &&
  1436. vcpu->interrupt_window_open &&
  1437. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1438. }
  1439. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1440. {
  1441. u8 fail;
  1442. u16 fs_sel, gs_sel, ldt_sel;
  1443. int fs_gs_ldt_reload_needed;
  1444. int r;
  1445. again:
  1446. /*
  1447. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1448. * allow segment selectors with cpl > 0 or ti == 1.
  1449. */
  1450. fs_sel = read_fs();
  1451. gs_sel = read_gs();
  1452. ldt_sel = read_ldt();
  1453. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1454. if (!fs_gs_ldt_reload_needed) {
  1455. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1456. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1457. } else {
  1458. vmcs_write16(HOST_FS_SELECTOR, 0);
  1459. vmcs_write16(HOST_GS_SELECTOR, 0);
  1460. }
  1461. #ifdef CONFIG_X86_64
  1462. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1463. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1464. #else
  1465. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1466. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1467. #endif
  1468. if (!vcpu->mmio_read_completed)
  1469. do_interrupt_requests(vcpu, kvm_run);
  1470. if (vcpu->guest_debug.enabled)
  1471. kvm_guest_debug_pre(vcpu);
  1472. fx_save(vcpu->host_fx_image);
  1473. fx_restore(vcpu->guest_fx_image);
  1474. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1475. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1476. asm (
  1477. /* Store host registers */
  1478. "pushf \n\t"
  1479. #ifdef CONFIG_X86_64
  1480. "push %%rax; push %%rbx; push %%rdx;"
  1481. "push %%rsi; push %%rdi; push %%rbp;"
  1482. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1483. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1484. "push %%rcx \n\t"
  1485. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1486. #else
  1487. "pusha; push %%ecx \n\t"
  1488. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1489. #endif
  1490. /* Check if vmlaunch of vmresume is needed */
  1491. "cmp $0, %1 \n\t"
  1492. /* Load guest registers. Don't clobber flags. */
  1493. #ifdef CONFIG_X86_64
  1494. "mov %c[cr2](%3), %%rax \n\t"
  1495. "mov %%rax, %%cr2 \n\t"
  1496. "mov %c[rax](%3), %%rax \n\t"
  1497. "mov %c[rbx](%3), %%rbx \n\t"
  1498. "mov %c[rdx](%3), %%rdx \n\t"
  1499. "mov %c[rsi](%3), %%rsi \n\t"
  1500. "mov %c[rdi](%3), %%rdi \n\t"
  1501. "mov %c[rbp](%3), %%rbp \n\t"
  1502. "mov %c[r8](%3), %%r8 \n\t"
  1503. "mov %c[r9](%3), %%r9 \n\t"
  1504. "mov %c[r10](%3), %%r10 \n\t"
  1505. "mov %c[r11](%3), %%r11 \n\t"
  1506. "mov %c[r12](%3), %%r12 \n\t"
  1507. "mov %c[r13](%3), %%r13 \n\t"
  1508. "mov %c[r14](%3), %%r14 \n\t"
  1509. "mov %c[r15](%3), %%r15 \n\t"
  1510. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1511. #else
  1512. "mov %c[cr2](%3), %%eax \n\t"
  1513. "mov %%eax, %%cr2 \n\t"
  1514. "mov %c[rax](%3), %%eax \n\t"
  1515. "mov %c[rbx](%3), %%ebx \n\t"
  1516. "mov %c[rdx](%3), %%edx \n\t"
  1517. "mov %c[rsi](%3), %%esi \n\t"
  1518. "mov %c[rdi](%3), %%edi \n\t"
  1519. "mov %c[rbp](%3), %%ebp \n\t"
  1520. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1521. #endif
  1522. /* Enter guest mode */
  1523. "jne launched \n\t"
  1524. ASM_VMX_VMLAUNCH "\n\t"
  1525. "jmp kvm_vmx_return \n\t"
  1526. "launched: " ASM_VMX_VMRESUME "\n\t"
  1527. ".globl kvm_vmx_return \n\t"
  1528. "kvm_vmx_return: "
  1529. /* Save guest registers, load host registers, keep flags */
  1530. #ifdef CONFIG_X86_64
  1531. "xchg %3, (%%rsp) \n\t"
  1532. "mov %%rax, %c[rax](%3) \n\t"
  1533. "mov %%rbx, %c[rbx](%3) \n\t"
  1534. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1535. "mov %%rdx, %c[rdx](%3) \n\t"
  1536. "mov %%rsi, %c[rsi](%3) \n\t"
  1537. "mov %%rdi, %c[rdi](%3) \n\t"
  1538. "mov %%rbp, %c[rbp](%3) \n\t"
  1539. "mov %%r8, %c[r8](%3) \n\t"
  1540. "mov %%r9, %c[r9](%3) \n\t"
  1541. "mov %%r10, %c[r10](%3) \n\t"
  1542. "mov %%r11, %c[r11](%3) \n\t"
  1543. "mov %%r12, %c[r12](%3) \n\t"
  1544. "mov %%r13, %c[r13](%3) \n\t"
  1545. "mov %%r14, %c[r14](%3) \n\t"
  1546. "mov %%r15, %c[r15](%3) \n\t"
  1547. "mov %%cr2, %%rax \n\t"
  1548. "mov %%rax, %c[cr2](%3) \n\t"
  1549. "mov (%%rsp), %3 \n\t"
  1550. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1551. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1552. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1553. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1554. #else
  1555. "xchg %3, (%%esp) \n\t"
  1556. "mov %%eax, %c[rax](%3) \n\t"
  1557. "mov %%ebx, %c[rbx](%3) \n\t"
  1558. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1559. "mov %%edx, %c[rdx](%3) \n\t"
  1560. "mov %%esi, %c[rsi](%3) \n\t"
  1561. "mov %%edi, %c[rdi](%3) \n\t"
  1562. "mov %%ebp, %c[rbp](%3) \n\t"
  1563. "mov %%cr2, %%eax \n\t"
  1564. "mov %%eax, %c[cr2](%3) \n\t"
  1565. "mov (%%esp), %3 \n\t"
  1566. "pop %%ecx; popa \n\t"
  1567. #endif
  1568. "setbe %0 \n\t"
  1569. "popf \n\t"
  1570. : "=q" (fail)
  1571. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1572. "c"(vcpu),
  1573. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1574. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1575. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1576. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1577. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1578. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1579. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1580. #ifdef CONFIG_X86_64
  1581. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1582. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1583. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1584. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1585. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1586. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1587. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1588. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1589. #endif
  1590. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1591. : "cc", "memory" );
  1592. ++kvm_stat.exits;
  1593. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1594. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1595. fx_save(vcpu->guest_fx_image);
  1596. fx_restore(vcpu->host_fx_image);
  1597. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1598. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1599. /*
  1600. * Profile KVM exit RIPs:
  1601. */
  1602. if (unlikely(prof_on == KVM_PROFILING))
  1603. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1604. kvm_run->exit_type = 0;
  1605. if (fail) {
  1606. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1607. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1608. r = 0;
  1609. } else {
  1610. if (fs_gs_ldt_reload_needed) {
  1611. load_ldt(ldt_sel);
  1612. load_fs(fs_sel);
  1613. /*
  1614. * If we have to reload gs, we must take care to
  1615. * preserve our gs base.
  1616. */
  1617. local_irq_disable();
  1618. load_gs(gs_sel);
  1619. #ifdef CONFIG_X86_64
  1620. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1621. #endif
  1622. local_irq_enable();
  1623. reload_tss();
  1624. }
  1625. vcpu->launched = 1;
  1626. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1627. r = kvm_handle_exit(kvm_run, vcpu);
  1628. if (r > 0) {
  1629. /* Give scheduler a change to reschedule. */
  1630. if (signal_pending(current)) {
  1631. ++kvm_stat.signal_exits;
  1632. post_kvm_run_save(vcpu, kvm_run);
  1633. return -EINTR;
  1634. }
  1635. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1636. ++kvm_stat.request_irq_exits;
  1637. post_kvm_run_save(vcpu, kvm_run);
  1638. return -EINTR;
  1639. }
  1640. kvm_resched(vcpu);
  1641. goto again;
  1642. }
  1643. }
  1644. post_kvm_run_save(vcpu, kvm_run);
  1645. return r;
  1646. }
  1647. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1648. {
  1649. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1650. }
  1651. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1652. unsigned long addr,
  1653. u32 err_code)
  1654. {
  1655. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1656. ++kvm_stat.pf_guest;
  1657. if (is_page_fault(vect_info)) {
  1658. printk(KERN_DEBUG "inject_page_fault: "
  1659. "double fault 0x%lx @ 0x%lx\n",
  1660. addr, vmcs_readl(GUEST_RIP));
  1661. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1662. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1663. DF_VECTOR |
  1664. INTR_TYPE_EXCEPTION |
  1665. INTR_INFO_DELIEVER_CODE_MASK |
  1666. INTR_INFO_VALID_MASK);
  1667. return;
  1668. }
  1669. vcpu->cr2 = addr;
  1670. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1671. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1672. PF_VECTOR |
  1673. INTR_TYPE_EXCEPTION |
  1674. INTR_INFO_DELIEVER_CODE_MASK |
  1675. INTR_INFO_VALID_MASK);
  1676. }
  1677. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1678. {
  1679. if (vcpu->vmcs) {
  1680. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1681. free_vmcs(vcpu->vmcs);
  1682. vcpu->vmcs = NULL;
  1683. }
  1684. }
  1685. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1686. {
  1687. vmx_free_vmcs(vcpu);
  1688. }
  1689. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1690. {
  1691. struct vmcs *vmcs;
  1692. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1693. if (!vcpu->guest_msrs)
  1694. return -ENOMEM;
  1695. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1696. if (!vcpu->host_msrs)
  1697. goto out_free_guest_msrs;
  1698. vmcs = alloc_vmcs();
  1699. if (!vmcs)
  1700. goto out_free_msrs;
  1701. vmcs_clear(vmcs);
  1702. vcpu->vmcs = vmcs;
  1703. vcpu->launched = 0;
  1704. return 0;
  1705. out_free_msrs:
  1706. kfree(vcpu->host_msrs);
  1707. vcpu->host_msrs = NULL;
  1708. out_free_guest_msrs:
  1709. kfree(vcpu->guest_msrs);
  1710. vcpu->guest_msrs = NULL;
  1711. return -ENOMEM;
  1712. }
  1713. static struct kvm_arch_ops vmx_arch_ops = {
  1714. .cpu_has_kvm_support = cpu_has_kvm_support,
  1715. .disabled_by_bios = vmx_disabled_by_bios,
  1716. .hardware_setup = hardware_setup,
  1717. .hardware_unsetup = hardware_unsetup,
  1718. .hardware_enable = hardware_enable,
  1719. .hardware_disable = hardware_disable,
  1720. .vcpu_create = vmx_create_vcpu,
  1721. .vcpu_free = vmx_free_vcpu,
  1722. .vcpu_load = vmx_vcpu_load,
  1723. .vcpu_put = vmx_vcpu_put,
  1724. .set_guest_debug = set_guest_debug,
  1725. .get_msr = vmx_get_msr,
  1726. .set_msr = vmx_set_msr,
  1727. .get_segment_base = vmx_get_segment_base,
  1728. .get_segment = vmx_get_segment,
  1729. .set_segment = vmx_set_segment,
  1730. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1731. .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
  1732. .set_cr0 = vmx_set_cr0,
  1733. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1734. .set_cr3 = vmx_set_cr3,
  1735. .set_cr4 = vmx_set_cr4,
  1736. #ifdef CONFIG_X86_64
  1737. .set_efer = vmx_set_efer,
  1738. #endif
  1739. .get_idt = vmx_get_idt,
  1740. .set_idt = vmx_set_idt,
  1741. .get_gdt = vmx_get_gdt,
  1742. .set_gdt = vmx_set_gdt,
  1743. .cache_regs = vcpu_load_rsp_rip,
  1744. .decache_regs = vcpu_put_rsp_rip,
  1745. .get_rflags = vmx_get_rflags,
  1746. .set_rflags = vmx_set_rflags,
  1747. .tlb_flush = vmx_flush_tlb,
  1748. .inject_page_fault = vmx_inject_page_fault,
  1749. .inject_gp = vmx_inject_gp,
  1750. .run = vmx_vcpu_run,
  1751. .skip_emulated_instruction = skip_emulated_instruction,
  1752. .vcpu_setup = vmx_vcpu_setup,
  1753. };
  1754. static int __init vmx_init(void)
  1755. {
  1756. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1757. }
  1758. static void __exit vmx_exit(void)
  1759. {
  1760. kvm_exit_arch();
  1761. }
  1762. module_init(vmx_init)
  1763. module_exit(vmx_exit)