spi_bfin5xx.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/io.h>
  15. #include <linux/ioport.h>
  16. #include <linux/irq.h>
  17. #include <linux/errno.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/spi/spi.h>
  22. #include <linux/workqueue.h>
  23. #include <asm/dma.h>
  24. #include <asm/portmux.h>
  25. #include <asm/bfin5xx_spi.h>
  26. /* reserved_mem_dcache_on and cache friends */
  27. #include <asm/cplbinit.h>
  28. #include <asm/cacheflush.h>
  29. #define DRV_NAME "bfin-spi"
  30. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  31. #define DRV_DESC "Blackfin BF5xx on-chip SPI Controller Driver"
  32. #define DRV_VERSION "1.0"
  33. MODULE_AUTHOR(DRV_AUTHOR);
  34. MODULE_DESCRIPTION(DRV_DESC);
  35. MODULE_LICENSE("GPL");
  36. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07) == 0)
  37. #define START_STATE ((void *)0)
  38. #define RUNNING_STATE ((void *)1)
  39. #define DONE_STATE ((void *)2)
  40. #define ERROR_STATE ((void *)-1)
  41. #define QUEUE_RUNNING 0
  42. #define QUEUE_STOPPED 1
  43. struct driver_data {
  44. /* Driver model hookup */
  45. struct platform_device *pdev;
  46. /* SPI framework hookup */
  47. struct spi_master *master;
  48. /* Regs base of SPI controller */
  49. void __iomem *regs_base;
  50. /* Pin request list */
  51. u16 *pin_req;
  52. /* BFIN hookup */
  53. struct bfin5xx_spi_master *master_info;
  54. /* Driver message queue */
  55. struct workqueue_struct *workqueue;
  56. struct work_struct pump_messages;
  57. spinlock_t lock;
  58. struct list_head queue;
  59. int busy;
  60. int run;
  61. /* Message Transfer pump */
  62. struct tasklet_struct pump_transfers;
  63. /* Current message transfer state info */
  64. struct spi_message *cur_msg;
  65. struct spi_transfer *cur_transfer;
  66. struct chip_data *cur_chip;
  67. size_t len_in_bytes;
  68. size_t len;
  69. void *tx;
  70. void *tx_end;
  71. void *rx;
  72. void *rx_end;
  73. /* DMA stuffs */
  74. int dma_channel;
  75. int dma_mapped;
  76. int dma_requested;
  77. dma_addr_t rx_dma;
  78. dma_addr_t tx_dma;
  79. size_t rx_map_len;
  80. size_t tx_map_len;
  81. u8 n_bytes;
  82. int cs_change;
  83. void (*write) (struct driver_data *);
  84. void (*read) (struct driver_data *);
  85. void (*duplex) (struct driver_data *);
  86. };
  87. struct chip_data {
  88. u16 ctl_reg;
  89. u16 baud;
  90. u16 flag;
  91. u8 chip_select_num;
  92. u8 n_bytes;
  93. u8 width; /* 0 or 1 */
  94. u8 enable_dma;
  95. u8 bits_per_word; /* 8 or 16 */
  96. u8 cs_change_per_word;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. void (*write) (struct driver_data *);
  99. void (*read) (struct driver_data *);
  100. void (*duplex) (struct driver_data *);
  101. };
  102. #define DEFINE_SPI_REG(reg, off) \
  103. static inline u16 read_##reg(struct driver_data *drv_data) \
  104. { return bfin_read16(drv_data->regs_base + off); } \
  105. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  106. { bfin_write16(drv_data->regs_base + off, v); }
  107. DEFINE_SPI_REG(CTRL, 0x00)
  108. DEFINE_SPI_REG(FLAG, 0x04)
  109. DEFINE_SPI_REG(STAT, 0x08)
  110. DEFINE_SPI_REG(TDBR, 0x0C)
  111. DEFINE_SPI_REG(RDBR, 0x10)
  112. DEFINE_SPI_REG(BAUD, 0x14)
  113. DEFINE_SPI_REG(SHAW, 0x18)
  114. static void bfin_spi_enable(struct driver_data *drv_data)
  115. {
  116. u16 cr;
  117. cr = read_CTRL(drv_data);
  118. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  119. }
  120. static void bfin_spi_disable(struct driver_data *drv_data)
  121. {
  122. u16 cr;
  123. cr = read_CTRL(drv_data);
  124. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  125. }
  126. /* Caculate the SPI_BAUD register value based on input HZ */
  127. static u16 hz_to_spi_baud(u32 speed_hz)
  128. {
  129. u_long sclk = get_sclk();
  130. u16 spi_baud = (sclk / (2 * speed_hz));
  131. if ((sclk % (2 * speed_hz)) > 0)
  132. spi_baud++;
  133. return spi_baud;
  134. }
  135. static int flush(struct driver_data *drv_data)
  136. {
  137. unsigned long limit = loops_per_jiffy << 1;
  138. /* wait for stop and clear stat */
  139. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  140. cpu_relax();
  141. write_STAT(drv_data, BIT_STAT_CLR);
  142. return limit;
  143. }
  144. /* Chip select operation functions for cs_change flag */
  145. static void cs_active(struct driver_data *drv_data, struct chip_data *chip)
  146. {
  147. u16 flag = read_FLAG(drv_data);
  148. flag |= chip->flag;
  149. flag &= ~(chip->flag << 8);
  150. write_FLAG(drv_data, flag);
  151. }
  152. static void cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  153. {
  154. u16 flag = read_FLAG(drv_data);
  155. flag |= (chip->flag << 8);
  156. write_FLAG(drv_data, flag);
  157. /* Move delay here for consistency */
  158. if (chip->cs_chg_udelay)
  159. udelay(chip->cs_chg_udelay);
  160. }
  161. #define MAX_SPI_SSEL 7
  162. /* stop controller and re-config current chip*/
  163. static void restore_state(struct driver_data *drv_data)
  164. {
  165. struct chip_data *chip = drv_data->cur_chip;
  166. /* Clear status and disable clock */
  167. write_STAT(drv_data, BIT_STAT_CLR);
  168. bfin_spi_disable(drv_data);
  169. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  170. /* Load the registers */
  171. write_CTRL(drv_data, chip->ctl_reg);
  172. write_BAUD(drv_data, chip->baud);
  173. bfin_spi_enable(drv_data);
  174. cs_active(drv_data, chip);
  175. }
  176. /* used to kick off transfer in rx mode */
  177. static unsigned short dummy_read(struct driver_data *drv_data)
  178. {
  179. unsigned short tmp;
  180. tmp = read_RDBR(drv_data);
  181. return tmp;
  182. }
  183. static void null_writer(struct driver_data *drv_data)
  184. {
  185. u8 n_bytes = drv_data->n_bytes;
  186. while (drv_data->tx < drv_data->tx_end) {
  187. write_TDBR(drv_data, 0);
  188. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  189. cpu_relax();
  190. drv_data->tx += n_bytes;
  191. }
  192. }
  193. static void null_reader(struct driver_data *drv_data)
  194. {
  195. u8 n_bytes = drv_data->n_bytes;
  196. dummy_read(drv_data);
  197. while (drv_data->rx < drv_data->rx_end) {
  198. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  199. cpu_relax();
  200. dummy_read(drv_data);
  201. drv_data->rx += n_bytes;
  202. }
  203. }
  204. static void u8_writer(struct driver_data *drv_data)
  205. {
  206. dev_dbg(&drv_data->pdev->dev,
  207. "cr8-s is 0x%x\n", read_STAT(drv_data));
  208. while (drv_data->tx < drv_data->tx_end) {
  209. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  210. while (read_STAT(drv_data) & BIT_STAT_TXS)
  211. cpu_relax();
  212. ++drv_data->tx;
  213. }
  214. /* poll for SPI completion before return */
  215. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  216. cpu_relax();
  217. }
  218. static void u8_cs_chg_writer(struct driver_data *drv_data)
  219. {
  220. struct chip_data *chip = drv_data->cur_chip;
  221. while (drv_data->tx < drv_data->tx_end) {
  222. cs_active(drv_data, chip);
  223. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  224. while (read_STAT(drv_data) & BIT_STAT_TXS)
  225. cpu_relax();
  226. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  227. cpu_relax();
  228. cs_deactive(drv_data, chip);
  229. ++drv_data->tx;
  230. }
  231. }
  232. static void u8_reader(struct driver_data *drv_data)
  233. {
  234. dev_dbg(&drv_data->pdev->dev,
  235. "cr-8 is 0x%x\n", read_STAT(drv_data));
  236. /* poll for SPI completion before start */
  237. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  238. cpu_relax();
  239. /* clear TDBR buffer before read(else it will be shifted out) */
  240. write_TDBR(drv_data, 0xFFFF);
  241. dummy_read(drv_data);
  242. while (drv_data->rx < drv_data->rx_end - 1) {
  243. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  244. cpu_relax();
  245. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  246. ++drv_data->rx;
  247. }
  248. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  249. cpu_relax();
  250. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  251. ++drv_data->rx;
  252. }
  253. static void u8_cs_chg_reader(struct driver_data *drv_data)
  254. {
  255. struct chip_data *chip = drv_data->cur_chip;
  256. while (drv_data->rx < drv_data->rx_end) {
  257. cs_active(drv_data, chip);
  258. read_RDBR(drv_data); /* kick off */
  259. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  260. cpu_relax();
  261. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  262. cpu_relax();
  263. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  264. cs_deactive(drv_data, chip);
  265. ++drv_data->rx;
  266. }
  267. }
  268. static void u8_duplex(struct driver_data *drv_data)
  269. {
  270. /* in duplex mode, clk is triggered by writing of TDBR */
  271. while (drv_data->rx < drv_data->rx_end) {
  272. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  273. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  274. cpu_relax();
  275. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  276. cpu_relax();
  277. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  278. ++drv_data->rx;
  279. ++drv_data->tx;
  280. }
  281. }
  282. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  283. {
  284. struct chip_data *chip = drv_data->cur_chip;
  285. while (drv_data->rx < drv_data->rx_end) {
  286. cs_active(drv_data, chip);
  287. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  288. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  289. cpu_relax();
  290. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  291. cpu_relax();
  292. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  293. cs_deactive(drv_data, chip);
  294. ++drv_data->rx;
  295. ++drv_data->tx;
  296. }
  297. }
  298. static void u16_writer(struct driver_data *drv_data)
  299. {
  300. dev_dbg(&drv_data->pdev->dev,
  301. "cr16 is 0x%x\n", read_STAT(drv_data));
  302. while (drv_data->tx < drv_data->tx_end) {
  303. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  304. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  305. cpu_relax();
  306. drv_data->tx += 2;
  307. }
  308. /* poll for SPI completion before return */
  309. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  310. cpu_relax();
  311. }
  312. static void u16_cs_chg_writer(struct driver_data *drv_data)
  313. {
  314. struct chip_data *chip = drv_data->cur_chip;
  315. while (drv_data->tx < drv_data->tx_end) {
  316. cs_active(drv_data, chip);
  317. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  318. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  319. cpu_relax();
  320. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  321. cpu_relax();
  322. cs_deactive(drv_data, chip);
  323. drv_data->tx += 2;
  324. }
  325. }
  326. static void u16_reader(struct driver_data *drv_data)
  327. {
  328. dev_dbg(&drv_data->pdev->dev,
  329. "cr-16 is 0x%x\n", read_STAT(drv_data));
  330. /* poll for SPI completion before start */
  331. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  332. cpu_relax();
  333. /* clear TDBR buffer before read(else it will be shifted out) */
  334. write_TDBR(drv_data, 0xFFFF);
  335. dummy_read(drv_data);
  336. while (drv_data->rx < (drv_data->rx_end - 2)) {
  337. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  338. cpu_relax();
  339. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  340. drv_data->rx += 2;
  341. }
  342. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  343. cpu_relax();
  344. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  345. drv_data->rx += 2;
  346. }
  347. static void u16_cs_chg_reader(struct driver_data *drv_data)
  348. {
  349. struct chip_data *chip = drv_data->cur_chip;
  350. /* poll for SPI completion before start */
  351. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  352. cpu_relax();
  353. /* clear TDBR buffer before read(else it will be shifted out) */
  354. write_TDBR(drv_data, 0xFFFF);
  355. cs_active(drv_data, chip);
  356. dummy_read(drv_data);
  357. while (drv_data->rx < drv_data->rx_end - 2) {
  358. cs_deactive(drv_data, chip);
  359. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  360. cpu_relax();
  361. cs_active(drv_data, chip);
  362. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  363. drv_data->rx += 2;
  364. }
  365. cs_deactive(drv_data, chip);
  366. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  367. cpu_relax();
  368. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  369. drv_data->rx += 2;
  370. }
  371. static void u16_duplex(struct driver_data *drv_data)
  372. {
  373. /* in duplex mode, clk is triggered by writing of TDBR */
  374. while (drv_data->tx < drv_data->tx_end) {
  375. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  376. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  377. cpu_relax();
  378. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  379. cpu_relax();
  380. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  381. drv_data->rx += 2;
  382. drv_data->tx += 2;
  383. }
  384. }
  385. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  386. {
  387. struct chip_data *chip = drv_data->cur_chip;
  388. while (drv_data->tx < drv_data->tx_end) {
  389. cs_active(drv_data, chip);
  390. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  391. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  392. cpu_relax();
  393. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  394. cpu_relax();
  395. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  396. cs_deactive(drv_data, chip);
  397. drv_data->rx += 2;
  398. drv_data->tx += 2;
  399. }
  400. }
  401. /* test if ther is more transfer to be done */
  402. static void *next_transfer(struct driver_data *drv_data)
  403. {
  404. struct spi_message *msg = drv_data->cur_msg;
  405. struct spi_transfer *trans = drv_data->cur_transfer;
  406. /* Move to next transfer */
  407. if (trans->transfer_list.next != &msg->transfers) {
  408. drv_data->cur_transfer =
  409. list_entry(trans->transfer_list.next,
  410. struct spi_transfer, transfer_list);
  411. return RUNNING_STATE;
  412. } else
  413. return DONE_STATE;
  414. }
  415. /*
  416. * caller already set message->status;
  417. * dma and pio irqs are blocked give finished message back
  418. */
  419. static void giveback(struct driver_data *drv_data)
  420. {
  421. struct chip_data *chip = drv_data->cur_chip;
  422. struct spi_transfer *last_transfer;
  423. unsigned long flags;
  424. struct spi_message *msg;
  425. spin_lock_irqsave(&drv_data->lock, flags);
  426. msg = drv_data->cur_msg;
  427. drv_data->cur_msg = NULL;
  428. drv_data->cur_transfer = NULL;
  429. drv_data->cur_chip = NULL;
  430. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  431. spin_unlock_irqrestore(&drv_data->lock, flags);
  432. last_transfer = list_entry(msg->transfers.prev,
  433. struct spi_transfer, transfer_list);
  434. msg->state = NULL;
  435. /* disable chip select signal. And not stop spi in autobuffer mode */
  436. if (drv_data->tx_dma != 0xFFFF) {
  437. cs_deactive(drv_data, chip);
  438. bfin_spi_disable(drv_data);
  439. }
  440. if (!drv_data->cs_change)
  441. cs_deactive(drv_data, chip);
  442. if (msg->complete)
  443. msg->complete(msg->context);
  444. }
  445. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  446. {
  447. struct driver_data *drv_data = dev_id;
  448. struct chip_data *chip = drv_data->cur_chip;
  449. struct spi_message *msg = drv_data->cur_msg;
  450. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  451. clear_dma_irqstat(drv_data->dma_channel);
  452. /* Wait for DMA to complete */
  453. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  454. cpu_relax();
  455. /*
  456. * wait for the last transaction shifted out. HRM states:
  457. * at this point there may still be data in the SPI DMA FIFO waiting
  458. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  459. * register until it goes low for 2 successive reads
  460. */
  461. if (drv_data->tx != NULL) {
  462. while ((read_STAT(drv_data) & TXS) ||
  463. (read_STAT(drv_data) & TXS))
  464. cpu_relax();
  465. }
  466. while (!(read_STAT(drv_data) & SPIF))
  467. cpu_relax();
  468. msg->actual_length += drv_data->len_in_bytes;
  469. if (drv_data->cs_change)
  470. cs_deactive(drv_data, chip);
  471. /* Move to next transfer */
  472. msg->state = next_transfer(drv_data);
  473. /* Schedule transfer tasklet */
  474. tasklet_schedule(&drv_data->pump_transfers);
  475. /* free the irq handler before next transfer */
  476. dev_dbg(&drv_data->pdev->dev,
  477. "disable dma channel irq%d\n",
  478. drv_data->dma_channel);
  479. dma_disable_irq(drv_data->dma_channel);
  480. return IRQ_HANDLED;
  481. }
  482. static void pump_transfers(unsigned long data)
  483. {
  484. struct driver_data *drv_data = (struct driver_data *)data;
  485. struct spi_message *message = NULL;
  486. struct spi_transfer *transfer = NULL;
  487. struct spi_transfer *previous = NULL;
  488. struct chip_data *chip = NULL;
  489. u8 width;
  490. u16 cr, dma_width, dma_config;
  491. u32 tranf_success = 1;
  492. u8 full_duplex = 0;
  493. /* Get current state information */
  494. message = drv_data->cur_msg;
  495. transfer = drv_data->cur_transfer;
  496. chip = drv_data->cur_chip;
  497. /*
  498. * if msg is error or done, report it back using complete() callback
  499. */
  500. /* Handle for abort */
  501. if (message->state == ERROR_STATE) {
  502. message->status = -EIO;
  503. giveback(drv_data);
  504. return;
  505. }
  506. /* Handle end of message */
  507. if (message->state == DONE_STATE) {
  508. message->status = 0;
  509. giveback(drv_data);
  510. return;
  511. }
  512. /* Delay if requested at end of transfer */
  513. if (message->state == RUNNING_STATE) {
  514. previous = list_entry(transfer->transfer_list.prev,
  515. struct spi_transfer, transfer_list);
  516. if (previous->delay_usecs)
  517. udelay(previous->delay_usecs);
  518. }
  519. /* Setup the transfer state based on the type of transfer */
  520. if (flush(drv_data) == 0) {
  521. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  522. message->status = -EIO;
  523. giveback(drv_data);
  524. return;
  525. }
  526. if (transfer->tx_buf != NULL) {
  527. drv_data->tx = (void *)transfer->tx_buf;
  528. drv_data->tx_end = drv_data->tx + transfer->len;
  529. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  530. transfer->tx_buf, drv_data->tx_end);
  531. } else {
  532. drv_data->tx = NULL;
  533. }
  534. if (transfer->rx_buf != NULL) {
  535. full_duplex = transfer->tx_buf != NULL;
  536. drv_data->rx = transfer->rx_buf;
  537. drv_data->rx_end = drv_data->rx + transfer->len;
  538. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  539. transfer->rx_buf, drv_data->rx_end);
  540. } else {
  541. drv_data->rx = NULL;
  542. }
  543. drv_data->rx_dma = transfer->rx_dma;
  544. drv_data->tx_dma = transfer->tx_dma;
  545. drv_data->len_in_bytes = transfer->len;
  546. drv_data->cs_change = transfer->cs_change;
  547. /* Bits per word setup */
  548. switch (transfer->bits_per_word) {
  549. case 8:
  550. drv_data->n_bytes = 1;
  551. width = CFG_SPI_WORDSIZE8;
  552. drv_data->read = chip->cs_change_per_word ?
  553. u8_cs_chg_reader : u8_reader;
  554. drv_data->write = chip->cs_change_per_word ?
  555. u8_cs_chg_writer : u8_writer;
  556. drv_data->duplex = chip->cs_change_per_word ?
  557. u8_cs_chg_duplex : u8_duplex;
  558. break;
  559. case 16:
  560. drv_data->n_bytes = 2;
  561. width = CFG_SPI_WORDSIZE16;
  562. drv_data->read = chip->cs_change_per_word ?
  563. u16_cs_chg_reader : u16_reader;
  564. drv_data->write = chip->cs_change_per_word ?
  565. u16_cs_chg_writer : u16_writer;
  566. drv_data->duplex = chip->cs_change_per_word ?
  567. u16_cs_chg_duplex : u16_duplex;
  568. break;
  569. default:
  570. /* No change, the same as default setting */
  571. drv_data->n_bytes = chip->n_bytes;
  572. width = chip->width;
  573. drv_data->write = drv_data->tx ? chip->write : null_writer;
  574. drv_data->read = drv_data->rx ? chip->read : null_reader;
  575. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  576. break;
  577. }
  578. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  579. cr |= (width << 8);
  580. write_CTRL(drv_data, cr);
  581. if (width == CFG_SPI_WORDSIZE16) {
  582. drv_data->len = (transfer->len) >> 1;
  583. } else {
  584. drv_data->len = transfer->len;
  585. }
  586. dev_dbg(&drv_data->pdev->dev,
  587. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  588. drv_data->write, chip->write, null_writer);
  589. /* speed and width has been set on per message */
  590. message->state = RUNNING_STATE;
  591. dma_config = 0;
  592. /* Speed setup (surely valid because already checked) */
  593. if (transfer->speed_hz)
  594. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  595. else
  596. write_BAUD(drv_data, chip->baud);
  597. write_STAT(drv_data, BIT_STAT_CLR);
  598. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  599. cs_active(drv_data, chip);
  600. dev_dbg(&drv_data->pdev->dev,
  601. "now pumping a transfer: width is %d, len is %d\n",
  602. width, transfer->len);
  603. /*
  604. * Try to map dma buffer and do a dma transfer. If successful use,
  605. * different way to r/w according to the enable_dma settings and if
  606. * we are not doing a full duplex transfer (since the hardware does
  607. * not support full duplex DMA transfers).
  608. */
  609. if (!full_duplex && drv_data->cur_chip->enable_dma
  610. && drv_data->len > 6) {
  611. disable_dma(drv_data->dma_channel);
  612. clear_dma_irqstat(drv_data->dma_channel);
  613. bfin_spi_disable(drv_data);
  614. /* config dma channel */
  615. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  616. if (width == CFG_SPI_WORDSIZE16) {
  617. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  618. set_dma_x_modify(drv_data->dma_channel, 2);
  619. dma_width = WDSIZE_16;
  620. } else {
  621. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  622. set_dma_x_modify(drv_data->dma_channel, 1);
  623. dma_width = WDSIZE_8;
  624. }
  625. /* poll for SPI completion before start */
  626. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  627. cpu_relax();
  628. /* dirty hack for autobuffer DMA mode */
  629. if (drv_data->tx_dma == 0xFFFF) {
  630. dev_dbg(&drv_data->pdev->dev,
  631. "doing autobuffer DMA out.\n");
  632. /* no irq in autobuffer mode */
  633. dma_config =
  634. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  635. set_dma_config(drv_data->dma_channel, dma_config);
  636. set_dma_start_addr(drv_data->dma_channel,
  637. (unsigned long)drv_data->tx);
  638. enable_dma(drv_data->dma_channel);
  639. /* start SPI transfer */
  640. write_CTRL(drv_data,
  641. (cr | CFG_SPI_DMAWRITE | BIT_CTL_ENABLE));
  642. /* just return here, there can only be one transfer
  643. * in this mode
  644. */
  645. message->status = 0;
  646. giveback(drv_data);
  647. return;
  648. }
  649. /* In dma mode, rx or tx must be NULL in one transfer */
  650. if (drv_data->rx != NULL) {
  651. /* set transfer mode, and enable SPI */
  652. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  653. /* invalidate caches, if needed */
  654. if (bfin_addr_dcachable((unsigned long) drv_data->rx))
  655. invalidate_dcache_range((unsigned long) drv_data->rx,
  656. (unsigned long) (drv_data->rx +
  657. drv_data->len));
  658. /* clear tx reg soformer data is not shifted out */
  659. write_TDBR(drv_data, 0xFFFF);
  660. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  661. /* start dma */
  662. dma_enable_irq(drv_data->dma_channel);
  663. dma_config = (WNR | RESTART | dma_width | DI_EN);
  664. set_dma_config(drv_data->dma_channel, dma_config);
  665. set_dma_start_addr(drv_data->dma_channel,
  666. (unsigned long)drv_data->rx);
  667. enable_dma(drv_data->dma_channel);
  668. /* start SPI transfer */
  669. write_CTRL(drv_data,
  670. (cr | CFG_SPI_DMAREAD | BIT_CTL_ENABLE));
  671. } else if (drv_data->tx != NULL) {
  672. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  673. /* flush caches, if needed */
  674. if (bfin_addr_dcachable((unsigned long) drv_data->tx))
  675. flush_dcache_range((unsigned long) drv_data->tx,
  676. (unsigned long) (drv_data->tx +
  677. drv_data->len));
  678. /* start dma */
  679. dma_enable_irq(drv_data->dma_channel);
  680. dma_config = (RESTART | dma_width | DI_EN);
  681. set_dma_config(drv_data->dma_channel, dma_config);
  682. set_dma_start_addr(drv_data->dma_channel,
  683. (unsigned long)drv_data->tx);
  684. enable_dma(drv_data->dma_channel);
  685. /* start SPI transfer */
  686. write_CTRL(drv_data,
  687. (cr | CFG_SPI_DMAWRITE | BIT_CTL_ENABLE));
  688. }
  689. } else {
  690. /* IO mode write then read */
  691. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  692. if (full_duplex) {
  693. /* full duplex mode */
  694. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  695. (drv_data->rx_end - drv_data->rx));
  696. dev_dbg(&drv_data->pdev->dev,
  697. "IO duplex: cr is 0x%x\n", cr);
  698. /* set SPI transfer mode */
  699. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  700. drv_data->duplex(drv_data);
  701. if (drv_data->tx != drv_data->tx_end)
  702. tranf_success = 0;
  703. } else if (drv_data->tx != NULL) {
  704. /* write only half duplex */
  705. dev_dbg(&drv_data->pdev->dev,
  706. "IO write: cr is 0x%x\n", cr);
  707. /* set SPI transfer mode */
  708. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  709. drv_data->write(drv_data);
  710. if (drv_data->tx != drv_data->tx_end)
  711. tranf_success = 0;
  712. } else if (drv_data->rx != NULL) {
  713. /* read only half duplex */
  714. dev_dbg(&drv_data->pdev->dev,
  715. "IO read: cr is 0x%x\n", cr);
  716. /* set SPI transfer mode */
  717. write_CTRL(drv_data, (cr | CFG_SPI_READ));
  718. drv_data->read(drv_data);
  719. if (drv_data->rx != drv_data->rx_end)
  720. tranf_success = 0;
  721. }
  722. if (!tranf_success) {
  723. dev_dbg(&drv_data->pdev->dev,
  724. "IO write error!\n");
  725. message->state = ERROR_STATE;
  726. } else {
  727. /* Update total byte transfered */
  728. message->actual_length += drv_data->len;
  729. /* Move to next transfer of this msg */
  730. message->state = next_transfer(drv_data);
  731. }
  732. /* Schedule next transfer tasklet */
  733. tasklet_schedule(&drv_data->pump_transfers);
  734. }
  735. }
  736. /* pop a msg from queue and kick off real transfer */
  737. static void pump_messages(struct work_struct *work)
  738. {
  739. struct driver_data *drv_data;
  740. unsigned long flags;
  741. drv_data = container_of(work, struct driver_data, pump_messages);
  742. /* Lock queue and check for queue work */
  743. spin_lock_irqsave(&drv_data->lock, flags);
  744. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  745. /* pumper kicked off but no work to do */
  746. drv_data->busy = 0;
  747. spin_unlock_irqrestore(&drv_data->lock, flags);
  748. return;
  749. }
  750. /* Make sure we are not already running a message */
  751. if (drv_data->cur_msg) {
  752. spin_unlock_irqrestore(&drv_data->lock, flags);
  753. return;
  754. }
  755. /* Extract head of queue */
  756. drv_data->cur_msg = list_entry(drv_data->queue.next,
  757. struct spi_message, queue);
  758. /* Setup the SSP using the per chip configuration */
  759. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  760. restore_state(drv_data);
  761. list_del_init(&drv_data->cur_msg->queue);
  762. /* Initial message state */
  763. drv_data->cur_msg->state = START_STATE;
  764. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  765. struct spi_transfer, transfer_list);
  766. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  767. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  768. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  769. drv_data->cur_chip->ctl_reg);
  770. dev_dbg(&drv_data->pdev->dev,
  771. "the first transfer len is %d\n",
  772. drv_data->cur_transfer->len);
  773. /* Mark as busy and launch transfers */
  774. tasklet_schedule(&drv_data->pump_transfers);
  775. drv_data->busy = 1;
  776. spin_unlock_irqrestore(&drv_data->lock, flags);
  777. }
  778. /*
  779. * got a msg to transfer, queue it in drv_data->queue.
  780. * And kick off message pumper
  781. */
  782. static int transfer(struct spi_device *spi, struct spi_message *msg)
  783. {
  784. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  785. unsigned long flags;
  786. spin_lock_irqsave(&drv_data->lock, flags);
  787. if (drv_data->run == QUEUE_STOPPED) {
  788. spin_unlock_irqrestore(&drv_data->lock, flags);
  789. return -ESHUTDOWN;
  790. }
  791. msg->actual_length = 0;
  792. msg->status = -EINPROGRESS;
  793. msg->state = START_STATE;
  794. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  795. list_add_tail(&msg->queue, &drv_data->queue);
  796. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  797. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  798. spin_unlock_irqrestore(&drv_data->lock, flags);
  799. return 0;
  800. }
  801. #define MAX_SPI_SSEL 7
  802. static u16 ssel[3][MAX_SPI_SSEL] = {
  803. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  804. P_SPI0_SSEL4, P_SPI0_SSEL5,
  805. P_SPI0_SSEL6, P_SPI0_SSEL7},
  806. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  807. P_SPI1_SSEL4, P_SPI1_SSEL5,
  808. P_SPI1_SSEL6, P_SPI1_SSEL7},
  809. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  810. P_SPI2_SSEL4, P_SPI2_SSEL5,
  811. P_SPI2_SSEL6, P_SPI2_SSEL7},
  812. };
  813. /* first setup for new devices */
  814. static int setup(struct spi_device *spi)
  815. {
  816. struct bfin5xx_spi_chip *chip_info = NULL;
  817. struct chip_data *chip;
  818. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  819. u8 spi_flg;
  820. /* Abort device setup if requested features are not supported */
  821. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  822. dev_err(&spi->dev, "requested mode not fully supported\n");
  823. return -EINVAL;
  824. }
  825. /* Zero (the default) here means 8 bits */
  826. if (!spi->bits_per_word)
  827. spi->bits_per_word = 8;
  828. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  829. return -EINVAL;
  830. /* Only alloc (or use chip_info) on first setup */
  831. chip = spi_get_ctldata(spi);
  832. if (chip == NULL) {
  833. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  834. if (!chip)
  835. return -ENOMEM;
  836. chip->enable_dma = 0;
  837. chip_info = spi->controller_data;
  838. }
  839. /* chip_info isn't always needed */
  840. if (chip_info) {
  841. /* Make sure people stop trying to set fields via ctl_reg
  842. * when they should actually be using common SPI framework.
  843. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  844. * Not sure if a user actually needs/uses any of these,
  845. * but let's assume (for now) they do.
  846. */
  847. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  848. dev_err(&spi->dev, "do not set bits in ctl_reg "
  849. "that the SPI framework manages\n");
  850. return -EINVAL;
  851. }
  852. chip->enable_dma = chip_info->enable_dma != 0
  853. && drv_data->master_info->enable_dma;
  854. chip->ctl_reg = chip_info->ctl_reg;
  855. chip->bits_per_word = chip_info->bits_per_word;
  856. chip->cs_change_per_word = chip_info->cs_change_per_word;
  857. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  858. }
  859. /* translate common spi framework into our register */
  860. if (spi->mode & SPI_CPOL)
  861. chip->ctl_reg |= CPOL;
  862. if (spi->mode & SPI_CPHA)
  863. chip->ctl_reg |= CPHA;
  864. if (spi->mode & SPI_LSB_FIRST)
  865. chip->ctl_reg |= LSBF;
  866. /* we dont support running in slave mode (yet?) */
  867. chip->ctl_reg |= MSTR;
  868. /*
  869. * if any one SPI chip is registered and wants DMA, request the
  870. * DMA channel for it
  871. */
  872. if (chip->enable_dma && !drv_data->dma_requested) {
  873. /* register dma irq handler */
  874. if (request_dma(drv_data->dma_channel, "BF53x_SPI_DMA") < 0) {
  875. dev_dbg(&spi->dev,
  876. "Unable to request BlackFin SPI DMA channel\n");
  877. return -ENODEV;
  878. }
  879. if (set_dma_callback(drv_data->dma_channel,
  880. (void *)dma_irq_handler, drv_data) < 0) {
  881. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  882. return -EPERM;
  883. }
  884. dma_disable_irq(drv_data->dma_channel);
  885. drv_data->dma_requested = 1;
  886. }
  887. /*
  888. * Notice: for blackfin, the speed_hz is the value of register
  889. * SPI_BAUD, not the real baudrate
  890. */
  891. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  892. spi_flg = ~(1 << (spi->chip_select));
  893. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  894. chip->chip_select_num = spi->chip_select;
  895. switch (chip->bits_per_word) {
  896. case 8:
  897. chip->n_bytes = 1;
  898. chip->width = CFG_SPI_WORDSIZE8;
  899. chip->read = chip->cs_change_per_word ?
  900. u8_cs_chg_reader : u8_reader;
  901. chip->write = chip->cs_change_per_word ?
  902. u8_cs_chg_writer : u8_writer;
  903. chip->duplex = chip->cs_change_per_word ?
  904. u8_cs_chg_duplex : u8_duplex;
  905. break;
  906. case 16:
  907. chip->n_bytes = 2;
  908. chip->width = CFG_SPI_WORDSIZE16;
  909. chip->read = chip->cs_change_per_word ?
  910. u16_cs_chg_reader : u16_reader;
  911. chip->write = chip->cs_change_per_word ?
  912. u16_cs_chg_writer : u16_writer;
  913. chip->duplex = chip->cs_change_per_word ?
  914. u16_cs_chg_duplex : u16_duplex;
  915. break;
  916. default:
  917. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  918. chip->bits_per_word);
  919. kfree(chip);
  920. return -ENODEV;
  921. }
  922. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  923. spi->modalias, chip->width, chip->enable_dma);
  924. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  925. chip->ctl_reg, chip->flag);
  926. spi_set_ctldata(spi, chip);
  927. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  928. if ((chip->chip_select_num > 0)
  929. && (chip->chip_select_num <= spi->master->num_chipselect))
  930. peripheral_request(ssel[spi->master->bus_num]
  931. [chip->chip_select_num-1], spi->modalias);
  932. cs_deactive(drv_data, chip);
  933. return 0;
  934. }
  935. /*
  936. * callback for spi framework.
  937. * clean driver specific data
  938. */
  939. static void cleanup(struct spi_device *spi)
  940. {
  941. struct chip_data *chip = spi_get_ctldata(spi);
  942. if ((chip->chip_select_num > 0)
  943. && (chip->chip_select_num <= spi->master->num_chipselect))
  944. peripheral_free(ssel[spi->master->bus_num]
  945. [chip->chip_select_num-1]);
  946. kfree(chip);
  947. }
  948. static inline int init_queue(struct driver_data *drv_data)
  949. {
  950. INIT_LIST_HEAD(&drv_data->queue);
  951. spin_lock_init(&drv_data->lock);
  952. drv_data->run = QUEUE_STOPPED;
  953. drv_data->busy = 0;
  954. /* init transfer tasklet */
  955. tasklet_init(&drv_data->pump_transfers,
  956. pump_transfers, (unsigned long)drv_data);
  957. /* init messages workqueue */
  958. INIT_WORK(&drv_data->pump_messages, pump_messages);
  959. drv_data->workqueue = create_singlethread_workqueue(
  960. dev_name(drv_data->master->dev.parent));
  961. if (drv_data->workqueue == NULL)
  962. return -EBUSY;
  963. return 0;
  964. }
  965. static inline int start_queue(struct driver_data *drv_data)
  966. {
  967. unsigned long flags;
  968. spin_lock_irqsave(&drv_data->lock, flags);
  969. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  970. spin_unlock_irqrestore(&drv_data->lock, flags);
  971. return -EBUSY;
  972. }
  973. drv_data->run = QUEUE_RUNNING;
  974. drv_data->cur_msg = NULL;
  975. drv_data->cur_transfer = NULL;
  976. drv_data->cur_chip = NULL;
  977. spin_unlock_irqrestore(&drv_data->lock, flags);
  978. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  979. return 0;
  980. }
  981. static inline int stop_queue(struct driver_data *drv_data)
  982. {
  983. unsigned long flags;
  984. unsigned limit = 500;
  985. int status = 0;
  986. spin_lock_irqsave(&drv_data->lock, flags);
  987. /*
  988. * This is a bit lame, but is optimized for the common execution path.
  989. * A wait_queue on the drv_data->busy could be used, but then the common
  990. * execution path (pump_messages) would be required to call wake_up or
  991. * friends on every SPI message. Do this instead
  992. */
  993. drv_data->run = QUEUE_STOPPED;
  994. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  995. spin_unlock_irqrestore(&drv_data->lock, flags);
  996. msleep(10);
  997. spin_lock_irqsave(&drv_data->lock, flags);
  998. }
  999. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1000. status = -EBUSY;
  1001. spin_unlock_irqrestore(&drv_data->lock, flags);
  1002. return status;
  1003. }
  1004. static inline int destroy_queue(struct driver_data *drv_data)
  1005. {
  1006. int status;
  1007. status = stop_queue(drv_data);
  1008. if (status != 0)
  1009. return status;
  1010. destroy_workqueue(drv_data->workqueue);
  1011. return 0;
  1012. }
  1013. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1014. {
  1015. struct device *dev = &pdev->dev;
  1016. struct bfin5xx_spi_master *platform_info;
  1017. struct spi_master *master;
  1018. struct driver_data *drv_data = 0;
  1019. struct resource *res;
  1020. int status = 0;
  1021. platform_info = dev->platform_data;
  1022. /* Allocate master with space for drv_data */
  1023. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1024. if (!master) {
  1025. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1026. return -ENOMEM;
  1027. }
  1028. drv_data = spi_master_get_devdata(master);
  1029. drv_data->master = master;
  1030. drv_data->master_info = platform_info;
  1031. drv_data->pdev = pdev;
  1032. drv_data->pin_req = platform_info->pin_req;
  1033. master->bus_num = pdev->id;
  1034. master->num_chipselect = platform_info->num_chipselect;
  1035. master->cleanup = cleanup;
  1036. master->setup = setup;
  1037. master->transfer = transfer;
  1038. /* Find and map our resources */
  1039. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1040. if (res == NULL) {
  1041. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1042. status = -ENOENT;
  1043. goto out_error_get_res;
  1044. }
  1045. drv_data->regs_base = ioremap(res->start, (res->end - res->start + 1));
  1046. if (drv_data->regs_base == NULL) {
  1047. dev_err(dev, "Cannot map IO\n");
  1048. status = -ENXIO;
  1049. goto out_error_ioremap;
  1050. }
  1051. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1052. if (drv_data->dma_channel < 0) {
  1053. dev_err(dev, "No DMA channel specified\n");
  1054. status = -ENOENT;
  1055. goto out_error_no_dma_ch;
  1056. }
  1057. /* Initial and start queue */
  1058. status = init_queue(drv_data);
  1059. if (status != 0) {
  1060. dev_err(dev, "problem initializing queue\n");
  1061. goto out_error_queue_alloc;
  1062. }
  1063. status = start_queue(drv_data);
  1064. if (status != 0) {
  1065. dev_err(dev, "problem starting queue\n");
  1066. goto out_error_queue_alloc;
  1067. }
  1068. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1069. if (status != 0) {
  1070. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1071. goto out_error_queue_alloc;
  1072. }
  1073. /* Register with the SPI framework */
  1074. platform_set_drvdata(pdev, drv_data);
  1075. status = spi_register_master(master);
  1076. if (status != 0) {
  1077. dev_err(dev, "problem registering spi master\n");
  1078. goto out_error_queue_alloc;
  1079. }
  1080. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1081. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1082. drv_data->dma_channel);
  1083. return status;
  1084. out_error_queue_alloc:
  1085. destroy_queue(drv_data);
  1086. out_error_no_dma_ch:
  1087. iounmap((void *) drv_data->regs_base);
  1088. out_error_ioremap:
  1089. out_error_get_res:
  1090. spi_master_put(master);
  1091. return status;
  1092. }
  1093. /* stop hardware and remove the driver */
  1094. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1095. {
  1096. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1097. int status = 0;
  1098. if (!drv_data)
  1099. return 0;
  1100. /* Remove the queue */
  1101. status = destroy_queue(drv_data);
  1102. if (status != 0)
  1103. return status;
  1104. /* Disable the SSP at the peripheral and SOC level */
  1105. bfin_spi_disable(drv_data);
  1106. /* Release DMA */
  1107. if (drv_data->master_info->enable_dma) {
  1108. if (dma_channel_active(drv_data->dma_channel))
  1109. free_dma(drv_data->dma_channel);
  1110. }
  1111. /* Disconnect from the SPI framework */
  1112. spi_unregister_master(drv_data->master);
  1113. peripheral_free_list(drv_data->pin_req);
  1114. /* Prevent double remove */
  1115. platform_set_drvdata(pdev, NULL);
  1116. return 0;
  1117. }
  1118. #ifdef CONFIG_PM
  1119. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1120. {
  1121. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1122. int status = 0;
  1123. status = stop_queue(drv_data);
  1124. if (status != 0)
  1125. return status;
  1126. /* stop hardware */
  1127. bfin_spi_disable(drv_data);
  1128. return 0;
  1129. }
  1130. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1131. {
  1132. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1133. int status = 0;
  1134. /* Enable the SPI interface */
  1135. bfin_spi_enable(drv_data);
  1136. /* Start the queue running */
  1137. status = start_queue(drv_data);
  1138. if (status != 0) {
  1139. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1140. return status;
  1141. }
  1142. return 0;
  1143. }
  1144. #else
  1145. #define bfin5xx_spi_suspend NULL
  1146. #define bfin5xx_spi_resume NULL
  1147. #endif /* CONFIG_PM */
  1148. MODULE_ALIAS("platform:bfin-spi");
  1149. static struct platform_driver bfin5xx_spi_driver = {
  1150. .driver = {
  1151. .name = DRV_NAME,
  1152. .owner = THIS_MODULE,
  1153. },
  1154. .suspend = bfin5xx_spi_suspend,
  1155. .resume = bfin5xx_spi_resume,
  1156. .remove = __devexit_p(bfin5xx_spi_remove),
  1157. };
  1158. static int __init bfin5xx_spi_init(void)
  1159. {
  1160. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1161. }
  1162. module_init(bfin5xx_spi_init);
  1163. static void __exit bfin5xx_spi_exit(void)
  1164. {
  1165. platform_driver_unregister(&bfin5xx_spi_driver);
  1166. }
  1167. module_exit(bfin5xx_spi_exit);