paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. unsigned max_level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  66. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  67. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. struct x86_exception fault;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  78. pt_element_t __user *ptep_user, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. int npages;
  82. pt_element_t ret;
  83. pt_element_t *table;
  84. struct page *page;
  85. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  86. /* Check if the user is doing something meaningless. */
  87. if (unlikely(npages != 1))
  88. return -EFAULT;
  89. table = kmap_atomic(page);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static bool FNAME(is_last_gpte)(struct guest_walker *walker,
  96. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  97. pt_element_t gpte)
  98. {
  99. if (walker->level == PT_PAGE_TABLE_LEVEL)
  100. return true;
  101. if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
  102. (PTTYPE == 64 || is_pse(vcpu)))
  103. return true;
  104. if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
  105. (mmu->root_level == PT64_ROOT_LEVEL))
  106. return true;
  107. return false;
  108. }
  109. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  110. struct kvm_mmu *mmu,
  111. struct guest_walker *walker,
  112. int write_fault)
  113. {
  114. unsigned level, index;
  115. pt_element_t pte, orig_pte;
  116. pt_element_t __user *ptep_user;
  117. gfn_t table_gfn;
  118. int ret;
  119. for (level = walker->max_level; level >= walker->level; --level) {
  120. pte = orig_pte = walker->ptes[level - 1];
  121. table_gfn = walker->table_gfn[level - 1];
  122. ptep_user = walker->ptep_user[level - 1];
  123. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  124. if (!(pte & PT_ACCESSED_MASK)) {
  125. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  126. pte |= PT_ACCESSED_MASK;
  127. }
  128. if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
  129. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  130. pte |= PT_DIRTY_MASK;
  131. }
  132. if (pte == orig_pte)
  133. continue;
  134. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  135. if (ret)
  136. return ret;
  137. mark_page_dirty(vcpu->kvm, table_gfn);
  138. walker->ptes[level] = pte;
  139. }
  140. return 0;
  141. }
  142. /*
  143. * Fetch a guest pte for a guest virtual address
  144. */
  145. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  146. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  147. gva_t addr, u32 access)
  148. {
  149. int ret;
  150. pt_element_t pte;
  151. pt_element_t __user *uninitialized_var(ptep_user);
  152. gfn_t table_gfn;
  153. unsigned index, pt_access, uninitialized_var(pte_access);
  154. gpa_t pte_gpa;
  155. bool eperm, last_gpte;
  156. int offset;
  157. const int write_fault = access & PFERR_WRITE_MASK;
  158. const int user_fault = access & PFERR_USER_MASK;
  159. const int fetch_fault = access & PFERR_FETCH_MASK;
  160. u16 errcode = 0;
  161. trace_kvm_mmu_pagetable_walk(addr, access);
  162. retry_walk:
  163. eperm = false;
  164. walker->level = mmu->root_level;
  165. pte = mmu->get_cr3(vcpu);
  166. #if PTTYPE == 64
  167. if (walker->level == PT32E_ROOT_LEVEL) {
  168. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  169. trace_kvm_mmu_paging_element(pte, walker->level);
  170. if (!is_present_gpte(pte))
  171. goto error;
  172. --walker->level;
  173. }
  174. #endif
  175. walker->max_level = walker->level;
  176. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  177. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  178. pt_access = ACC_ALL;
  179. for (;;) {
  180. gfn_t real_gfn;
  181. unsigned long host_addr;
  182. index = PT_INDEX(addr, walker->level);
  183. table_gfn = gpte_to_gfn(pte);
  184. offset = index * sizeof(pt_element_t);
  185. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  186. walker->table_gfn[walker->level - 1] = table_gfn;
  187. walker->pte_gpa[walker->level - 1] = pte_gpa;
  188. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  189. PFERR_USER_MASK|PFERR_WRITE_MASK);
  190. if (unlikely(real_gfn == UNMAPPED_GVA))
  191. goto error;
  192. real_gfn = gpa_to_gfn(real_gfn);
  193. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  194. if (unlikely(kvm_is_error_hva(host_addr)))
  195. goto error;
  196. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  197. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  198. goto error;
  199. walker->ptep_user[walker->level - 1] = ptep_user;
  200. trace_kvm_mmu_paging_element(pte, walker->level);
  201. if (unlikely(!is_present_gpte(pte)))
  202. goto error;
  203. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  204. walker->level))) {
  205. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  206. goto error;
  207. }
  208. if (!check_write_user_access(vcpu, write_fault, user_fault,
  209. pte))
  210. eperm = true;
  211. #if PTTYPE == 64
  212. if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
  213. eperm = true;
  214. #endif
  215. last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
  216. if (last_gpte) {
  217. pte_access = pt_access & gpte_access(vcpu, pte);
  218. /* check if the kernel is fetching from user page */
  219. if (unlikely(pte_access & PT_USER_MASK) &&
  220. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  221. if (fetch_fault && !user_fault)
  222. eperm = true;
  223. }
  224. walker->ptes[walker->level - 1] = pte;
  225. if (last_gpte) {
  226. int lvl = walker->level;
  227. gpa_t real_gpa;
  228. gfn_t gfn;
  229. u32 ac;
  230. gfn = gpte_to_gfn_lvl(pte, lvl);
  231. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  232. if (PTTYPE == 32 &&
  233. walker->level == PT_DIRECTORY_LEVEL &&
  234. is_cpuid_PSE36())
  235. gfn += pse36_gfn_delta(pte);
  236. ac = write_fault | fetch_fault | user_fault;
  237. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  238. ac);
  239. if (real_gpa == UNMAPPED_GVA)
  240. return 0;
  241. walker->gfn = real_gpa >> PAGE_SHIFT;
  242. break;
  243. }
  244. pt_access &= gpte_access(vcpu, pte);
  245. --walker->level;
  246. }
  247. if (unlikely(eperm)) {
  248. errcode |= PFERR_PRESENT_MASK;
  249. goto error;
  250. }
  251. if (!write_fault)
  252. protect_clean_gpte(&pte_access, pte);
  253. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  254. if (unlikely(ret < 0))
  255. goto error;
  256. else if (ret)
  257. goto retry_walk;
  258. walker->pt_access = pt_access;
  259. walker->pte_access = pte_access;
  260. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  261. __func__, (u64)pte, pte_access, pt_access);
  262. return 1;
  263. error:
  264. errcode |= write_fault | user_fault;
  265. if (fetch_fault && (mmu->nx ||
  266. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  267. errcode |= PFERR_FETCH_MASK;
  268. walker->fault.vector = PF_VECTOR;
  269. walker->fault.error_code_valid = true;
  270. walker->fault.error_code = errcode;
  271. walker->fault.address = addr;
  272. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  273. trace_kvm_mmu_walker_error(walker->fault.error_code);
  274. return 0;
  275. }
  276. static int FNAME(walk_addr)(struct guest_walker *walker,
  277. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  278. {
  279. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  280. access);
  281. }
  282. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  283. struct kvm_vcpu *vcpu, gva_t addr,
  284. u32 access)
  285. {
  286. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  287. addr, access);
  288. }
  289. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  290. struct kvm_mmu_page *sp, u64 *spte,
  291. pt_element_t gpte)
  292. {
  293. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  294. goto no_present;
  295. if (!is_present_gpte(gpte))
  296. goto no_present;
  297. if (!(gpte & PT_ACCESSED_MASK))
  298. goto no_present;
  299. return false;
  300. no_present:
  301. drop_spte(vcpu->kvm, spte);
  302. return true;
  303. }
  304. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  305. u64 *spte, const void *pte)
  306. {
  307. pt_element_t gpte;
  308. unsigned pte_access;
  309. pfn_t pfn;
  310. gpte = *(const pt_element_t *)pte;
  311. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  312. return;
  313. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  314. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  315. protect_clean_gpte(&pte_access, gpte);
  316. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  317. if (mmu_invalid_pfn(pfn))
  318. return;
  319. /*
  320. * we call mmu_set_spte() with host_writable = true because that
  321. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  322. */
  323. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  324. NULL, PT_PAGE_TABLE_LEVEL,
  325. gpte_to_gfn(gpte), pfn, true, true);
  326. }
  327. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  328. struct guest_walker *gw, int level)
  329. {
  330. pt_element_t curr_pte;
  331. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  332. u64 mask;
  333. int r, index;
  334. if (level == PT_PAGE_TABLE_LEVEL) {
  335. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  336. base_gpa = pte_gpa & ~mask;
  337. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  338. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  339. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  340. curr_pte = gw->prefetch_ptes[index];
  341. } else
  342. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  343. &curr_pte, sizeof(curr_pte));
  344. return r || curr_pte != gw->ptes[level - 1];
  345. }
  346. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  347. u64 *sptep)
  348. {
  349. struct kvm_mmu_page *sp;
  350. pt_element_t *gptep = gw->prefetch_ptes;
  351. u64 *spte;
  352. int i;
  353. sp = page_header(__pa(sptep));
  354. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  355. return;
  356. if (sp->role.direct)
  357. return __direct_pte_prefetch(vcpu, sp, sptep);
  358. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  359. spte = sp->spt + i;
  360. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  361. pt_element_t gpte;
  362. unsigned pte_access;
  363. gfn_t gfn;
  364. pfn_t pfn;
  365. if (spte == sptep)
  366. continue;
  367. if (is_shadow_present_pte(*spte))
  368. continue;
  369. gpte = gptep[i];
  370. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  371. continue;
  372. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  373. protect_clean_gpte(&pte_access, gpte);
  374. gfn = gpte_to_gfn(gpte);
  375. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  376. pte_access & ACC_WRITE_MASK);
  377. if (mmu_invalid_pfn(pfn))
  378. break;
  379. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  380. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  381. pfn, true, true);
  382. }
  383. }
  384. /*
  385. * Fetch a shadow pte for a specific level in the paging hierarchy.
  386. */
  387. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  388. struct guest_walker *gw,
  389. int user_fault, int write_fault, int hlevel,
  390. int *emulate, pfn_t pfn, bool map_writable,
  391. bool prefault)
  392. {
  393. unsigned access = gw->pt_access;
  394. struct kvm_mmu_page *sp = NULL;
  395. int top_level;
  396. unsigned direct_access;
  397. struct kvm_shadow_walk_iterator it;
  398. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  399. return NULL;
  400. direct_access = gw->pte_access;
  401. top_level = vcpu->arch.mmu.root_level;
  402. if (top_level == PT32E_ROOT_LEVEL)
  403. top_level = PT32_ROOT_LEVEL;
  404. /*
  405. * Verify that the top-level gpte is still there. Since the page
  406. * is a root page, it is either write protected (and cannot be
  407. * changed from now on) or it is invalid (in which case, we don't
  408. * really care if it changes underneath us after this point).
  409. */
  410. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  411. goto out_gpte_changed;
  412. for (shadow_walk_init(&it, vcpu, addr);
  413. shadow_walk_okay(&it) && it.level > gw->level;
  414. shadow_walk_next(&it)) {
  415. gfn_t table_gfn;
  416. clear_sp_write_flooding_count(it.sptep);
  417. drop_large_spte(vcpu, it.sptep);
  418. sp = NULL;
  419. if (!is_shadow_present_pte(*it.sptep)) {
  420. table_gfn = gw->table_gfn[it.level - 2];
  421. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  422. false, access, it.sptep);
  423. }
  424. /*
  425. * Verify that the gpte in the page we've just write
  426. * protected is still there.
  427. */
  428. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  429. goto out_gpte_changed;
  430. if (sp)
  431. link_shadow_page(it.sptep, sp);
  432. }
  433. for (;
  434. shadow_walk_okay(&it) && it.level > hlevel;
  435. shadow_walk_next(&it)) {
  436. gfn_t direct_gfn;
  437. clear_sp_write_flooding_count(it.sptep);
  438. validate_direct_spte(vcpu, it.sptep, direct_access);
  439. drop_large_spte(vcpu, it.sptep);
  440. if (is_shadow_present_pte(*it.sptep))
  441. continue;
  442. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  443. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  444. true, direct_access, it.sptep);
  445. link_shadow_page(it.sptep, sp);
  446. }
  447. clear_sp_write_flooding_count(it.sptep);
  448. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  449. user_fault, write_fault, emulate, it.level,
  450. gw->gfn, pfn, prefault, map_writable);
  451. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  452. return it.sptep;
  453. out_gpte_changed:
  454. if (sp)
  455. kvm_mmu_put_page(sp, it.sptep);
  456. kvm_release_pfn_clean(pfn);
  457. return NULL;
  458. }
  459. /*
  460. * Page fault handler. There are several causes for a page fault:
  461. * - there is no shadow pte for the guest pte
  462. * - write access through a shadow pte marked read only so that we can set
  463. * the dirty bit
  464. * - write access to a shadow pte marked read only so we can update the page
  465. * dirty bitmap, when userspace requests it
  466. * - mmio access; in this case we will never install a present shadow pte
  467. * - normal guest page fault due to the guest pte marked not present, not
  468. * writable, or not executable
  469. *
  470. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  471. * a negative value on error.
  472. */
  473. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  474. bool prefault)
  475. {
  476. int write_fault = error_code & PFERR_WRITE_MASK;
  477. int user_fault = error_code & PFERR_USER_MASK;
  478. struct guest_walker walker;
  479. u64 *sptep;
  480. int emulate = 0;
  481. int r;
  482. pfn_t pfn;
  483. int level = PT_PAGE_TABLE_LEVEL;
  484. int force_pt_level;
  485. unsigned long mmu_seq;
  486. bool map_writable;
  487. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  488. if (unlikely(error_code & PFERR_RSVD_MASK))
  489. return handle_mmio_page_fault(vcpu, addr, error_code,
  490. mmu_is_nested(vcpu));
  491. r = mmu_topup_memory_caches(vcpu);
  492. if (r)
  493. return r;
  494. /*
  495. * Look up the guest pte for the faulting address.
  496. */
  497. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  498. /*
  499. * The page is not mapped by the guest. Let the guest handle it.
  500. */
  501. if (!r) {
  502. pgprintk("%s: guest page fault\n", __func__);
  503. if (!prefault)
  504. inject_page_fault(vcpu, &walker.fault);
  505. return 0;
  506. }
  507. if (walker.level >= PT_DIRECTORY_LEVEL)
  508. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  509. else
  510. force_pt_level = 1;
  511. if (!force_pt_level) {
  512. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  513. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  514. }
  515. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  516. smp_rmb();
  517. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  518. &map_writable))
  519. return 0;
  520. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  521. walker.gfn, pfn, walker.pte_access, &r))
  522. return r;
  523. spin_lock(&vcpu->kvm->mmu_lock);
  524. if (mmu_notifier_retry(vcpu, mmu_seq))
  525. goto out_unlock;
  526. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  527. kvm_mmu_free_some_pages(vcpu);
  528. if (!force_pt_level)
  529. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  530. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  531. level, &emulate, pfn, map_writable, prefault);
  532. (void)sptep;
  533. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  534. sptep, *sptep, emulate);
  535. ++vcpu->stat.pf_fixed;
  536. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  537. spin_unlock(&vcpu->kvm->mmu_lock);
  538. return emulate;
  539. out_unlock:
  540. spin_unlock(&vcpu->kvm->mmu_lock);
  541. kvm_release_pfn_clean(pfn);
  542. return 0;
  543. }
  544. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  545. {
  546. int offset = 0;
  547. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  548. if (PTTYPE == 32)
  549. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  550. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  551. }
  552. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  553. {
  554. struct kvm_shadow_walk_iterator iterator;
  555. struct kvm_mmu_page *sp;
  556. int level;
  557. u64 *sptep;
  558. vcpu_clear_mmio_info(vcpu, gva);
  559. /*
  560. * No need to check return value here, rmap_can_add() can
  561. * help us to skip pte prefetch later.
  562. */
  563. mmu_topup_memory_caches(vcpu);
  564. spin_lock(&vcpu->kvm->mmu_lock);
  565. for_each_shadow_entry(vcpu, gva, iterator) {
  566. level = iterator.level;
  567. sptep = iterator.sptep;
  568. sp = page_header(__pa(sptep));
  569. if (is_last_spte(*sptep, level)) {
  570. pt_element_t gpte;
  571. gpa_t pte_gpa;
  572. if (!sp->unsync)
  573. break;
  574. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  575. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  576. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  577. kvm_flush_remote_tlbs(vcpu->kvm);
  578. if (!rmap_can_add(vcpu))
  579. break;
  580. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  581. sizeof(pt_element_t)))
  582. break;
  583. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  584. }
  585. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  586. break;
  587. }
  588. spin_unlock(&vcpu->kvm->mmu_lock);
  589. }
  590. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  591. struct x86_exception *exception)
  592. {
  593. struct guest_walker walker;
  594. gpa_t gpa = UNMAPPED_GVA;
  595. int r;
  596. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  597. if (r) {
  598. gpa = gfn_to_gpa(walker.gfn);
  599. gpa |= vaddr & ~PAGE_MASK;
  600. } else if (exception)
  601. *exception = walker.fault;
  602. return gpa;
  603. }
  604. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  605. u32 access,
  606. struct x86_exception *exception)
  607. {
  608. struct guest_walker walker;
  609. gpa_t gpa = UNMAPPED_GVA;
  610. int r;
  611. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  612. if (r) {
  613. gpa = gfn_to_gpa(walker.gfn);
  614. gpa |= vaddr & ~PAGE_MASK;
  615. } else if (exception)
  616. *exception = walker.fault;
  617. return gpa;
  618. }
  619. /*
  620. * Using the cached information from sp->gfns is safe because:
  621. * - The spte has a reference to the struct page, so the pfn for a given gfn
  622. * can't change unless all sptes pointing to it are nuked first.
  623. *
  624. * Note:
  625. * We should flush all tlbs if spte is dropped even though guest is
  626. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  627. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  628. * used by guest then tlbs are not flushed, so guest is allowed to access the
  629. * freed pages.
  630. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  631. */
  632. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  633. {
  634. int i, nr_present = 0;
  635. bool host_writable;
  636. gpa_t first_pte_gpa;
  637. /* direct kvm_mmu_page can not be unsync. */
  638. BUG_ON(sp->role.direct);
  639. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  640. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  641. unsigned pte_access;
  642. pt_element_t gpte;
  643. gpa_t pte_gpa;
  644. gfn_t gfn;
  645. if (!sp->spt[i])
  646. continue;
  647. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  648. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  649. sizeof(pt_element_t)))
  650. return -EINVAL;
  651. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  652. vcpu->kvm->tlbs_dirty++;
  653. continue;
  654. }
  655. gfn = gpte_to_gfn(gpte);
  656. pte_access = sp->role.access;
  657. pte_access &= gpte_access(vcpu, gpte);
  658. protect_clean_gpte(&pte_access, gpte);
  659. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  660. continue;
  661. if (gfn != sp->gfns[i]) {
  662. drop_spte(vcpu->kvm, &sp->spt[i]);
  663. vcpu->kvm->tlbs_dirty++;
  664. continue;
  665. }
  666. nr_present++;
  667. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  668. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  669. PT_PAGE_TABLE_LEVEL, gfn,
  670. spte_to_pfn(sp->spt[i]), true, false,
  671. host_writable);
  672. }
  673. return !nr_present;
  674. }
  675. #undef pt_element_t
  676. #undef guest_walker
  677. #undef FNAME
  678. #undef PT_BASE_ADDR_MASK
  679. #undef PT_INDEX
  680. #undef PT_LVL_ADDR_MASK
  681. #undef PT_LVL_OFFSET_MASK
  682. #undef PT_LEVEL_BITS
  683. #undef PT_MAX_FULL_LEVELS
  684. #undef gpte_to_gfn
  685. #undef gpte_to_gfn_lvl
  686. #undef CMPXCHG