pageattr.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <asm/e820.h>
  12. #include <asm/processor.h>
  13. #include <asm/tlbflush.h>
  14. #include <asm/sections.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/pgalloc.h>
  17. /*
  18. * The current flushing context - we pass it instead of 5 arguments:
  19. */
  20. struct cpa_data {
  21. unsigned long vaddr;
  22. pgprot_t mask_set;
  23. pgprot_t mask_clr;
  24. int numpages;
  25. int flushtlb;
  26. };
  27. static inline int
  28. within(unsigned long addr, unsigned long start, unsigned long end)
  29. {
  30. return addr >= start && addr < end;
  31. }
  32. /*
  33. * Flushing functions
  34. */
  35. /**
  36. * clflush_cache_range - flush a cache range with clflush
  37. * @addr: virtual start address
  38. * @size: number of bytes to flush
  39. *
  40. * clflush is an unordered instruction which needs fencing with mfence
  41. * to avoid ordering issues.
  42. */
  43. void clflush_cache_range(void *vaddr, unsigned int size)
  44. {
  45. void *vend = vaddr + size - 1;
  46. mb();
  47. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  48. clflush(vaddr);
  49. /*
  50. * Flush any possible final partial cacheline:
  51. */
  52. clflush(vend);
  53. mb();
  54. }
  55. static void __cpa_flush_all(void *arg)
  56. {
  57. unsigned long cache = (unsigned long)arg;
  58. /*
  59. * Flush all to work around Errata in early athlons regarding
  60. * large page flushing.
  61. */
  62. __flush_tlb_all();
  63. if (cache && boot_cpu_data.x86_model >= 4)
  64. wbinvd();
  65. }
  66. static void cpa_flush_all(unsigned long cache)
  67. {
  68. BUG_ON(irqs_disabled());
  69. on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
  70. }
  71. static void __cpa_flush_range(void *arg)
  72. {
  73. /*
  74. * We could optimize that further and do individual per page
  75. * tlb invalidates for a low number of pages. Caveat: we must
  76. * flush the high aliases on 64bit as well.
  77. */
  78. __flush_tlb_all();
  79. }
  80. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  81. {
  82. unsigned int i, level;
  83. unsigned long addr;
  84. BUG_ON(irqs_disabled());
  85. WARN_ON(PAGE_ALIGN(start) != start);
  86. on_each_cpu(__cpa_flush_range, NULL, 1, 1);
  87. if (!cache)
  88. return;
  89. /*
  90. * We only need to flush on one CPU,
  91. * clflush is a MESI-coherent instruction that
  92. * will cause all other CPUs to flush the same
  93. * cachelines:
  94. */
  95. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  96. pte_t *pte = lookup_address(addr, &level);
  97. /*
  98. * Only flush present addresses:
  99. */
  100. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  101. clflush_cache_range((void *) addr, PAGE_SIZE);
  102. }
  103. }
  104. #define HIGH_MAP_START __START_KERNEL_map
  105. #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
  106. /*
  107. * Converts a virtual address to a X86-64 highmap address
  108. */
  109. static unsigned long virt_to_highmap(void *address)
  110. {
  111. #ifdef CONFIG_X86_64
  112. return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
  113. #else
  114. return (unsigned long)address;
  115. #endif
  116. }
  117. /*
  118. * Certain areas of memory on x86 require very specific protection flags,
  119. * for example the BIOS area or kernel text. Callers don't always get this
  120. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  121. * checks and fixes these known static required protection bits.
  122. */
  123. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
  124. {
  125. pgprot_t forbidden = __pgprot(0);
  126. /*
  127. * The BIOS area between 640k and 1Mb needs to be executable for
  128. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  129. */
  130. if (within(__pa(address), BIOS_BEGIN, BIOS_END))
  131. pgprot_val(forbidden) |= _PAGE_NX;
  132. /*
  133. * The kernel text needs to be executable for obvious reasons
  134. * Does not cover __inittext since that is gone later on
  135. */
  136. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  137. pgprot_val(forbidden) |= _PAGE_NX;
  138. /*
  139. * Do the same for the x86-64 high kernel mapping
  140. */
  141. if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
  142. pgprot_val(forbidden) |= _PAGE_NX;
  143. #ifdef CONFIG_DEBUG_RODATA
  144. /* The .rodata section needs to be read-only */
  145. if (within(address, (unsigned long)__start_rodata,
  146. (unsigned long)__end_rodata))
  147. pgprot_val(forbidden) |= _PAGE_RW;
  148. /*
  149. * Do the same for the x86-64 high kernel mapping
  150. */
  151. if (within(address, virt_to_highmap(__start_rodata),
  152. virt_to_highmap(__end_rodata)))
  153. pgprot_val(forbidden) |= _PAGE_RW;
  154. #endif
  155. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  156. return prot;
  157. }
  158. /*
  159. * Lookup the page table entry for a virtual address. Return a pointer
  160. * to the entry and the level of the mapping.
  161. *
  162. * Note: We return pud and pmd either when the entry is marked large
  163. * or when the present bit is not set. Otherwise we would return a
  164. * pointer to a nonexisting mapping.
  165. */
  166. pte_t *lookup_address(unsigned long address, int *level)
  167. {
  168. pgd_t *pgd = pgd_offset_k(address);
  169. pud_t *pud;
  170. pmd_t *pmd;
  171. *level = PG_LEVEL_NONE;
  172. if (pgd_none(*pgd))
  173. return NULL;
  174. pud = pud_offset(pgd, address);
  175. if (pud_none(*pud))
  176. return NULL;
  177. *level = PG_LEVEL_1G;
  178. if (pud_large(*pud) || !pud_present(*pud))
  179. return (pte_t *)pud;
  180. pmd = pmd_offset(pud, address);
  181. if (pmd_none(*pmd))
  182. return NULL;
  183. *level = PG_LEVEL_2M;
  184. if (pmd_large(*pmd) || !pmd_present(*pmd))
  185. return (pte_t *)pmd;
  186. *level = PG_LEVEL_4K;
  187. return pte_offset_kernel(pmd, address);
  188. }
  189. /*
  190. * Set the new pmd in all the pgds we know about:
  191. */
  192. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  193. {
  194. /* change init_mm */
  195. set_pte_atomic(kpte, pte);
  196. #ifdef CONFIG_X86_32
  197. if (!SHARED_KERNEL_PMD) {
  198. struct page *page;
  199. list_for_each_entry(page, &pgd_list, lru) {
  200. pgd_t *pgd;
  201. pud_t *pud;
  202. pmd_t *pmd;
  203. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  204. pud = pud_offset(pgd, address);
  205. pmd = pmd_offset(pud, address);
  206. set_pte_atomic((pte_t *)pmd, pte);
  207. }
  208. }
  209. #endif
  210. }
  211. static int
  212. try_preserve_large_page(pte_t *kpte, unsigned long address,
  213. struct cpa_data *cpa)
  214. {
  215. unsigned long nextpage_addr, numpages, pmask, psize, flags;
  216. pte_t new_pte, old_pte, *tmp;
  217. pgprot_t old_prot, new_prot;
  218. int level, do_split = 1;
  219. /*
  220. * An Athlon 64 X2 showed hard hangs if we tried to preserve
  221. * largepages and changed the PSE entry from RW to RO.
  222. *
  223. * As AMD CPUs have a long series of erratas in this area,
  224. * (and none of the known ones seem to explain this hang),
  225. * disable this code until the hang can be debugged:
  226. */
  227. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
  228. return 1;
  229. spin_lock_irqsave(&pgd_lock, flags);
  230. /*
  231. * Check for races, another CPU might have split this page
  232. * up already:
  233. */
  234. tmp = lookup_address(address, &level);
  235. if (tmp != kpte)
  236. goto out_unlock;
  237. switch (level) {
  238. case PG_LEVEL_2M:
  239. psize = PMD_PAGE_SIZE;
  240. pmask = PMD_PAGE_MASK;
  241. break;
  242. #ifdef CONFIG_X86_64
  243. case PG_LEVEL_1G:
  244. psize = PMD_PAGE_SIZE;
  245. pmask = PMD_PAGE_MASK;
  246. break;
  247. #endif
  248. default:
  249. do_split = -EINVAL;
  250. goto out_unlock;
  251. }
  252. /*
  253. * Calculate the number of pages, which fit into this large
  254. * page starting at address:
  255. */
  256. nextpage_addr = (address + psize) & pmask;
  257. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  258. if (numpages < cpa->numpages)
  259. cpa->numpages = numpages;
  260. /*
  261. * We are safe now. Check whether the new pgprot is the same:
  262. */
  263. old_pte = *kpte;
  264. old_prot = new_prot = pte_pgprot(old_pte);
  265. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  266. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  267. new_prot = static_protections(new_prot, address);
  268. /*
  269. * If there are no changes, return. maxpages has been updated
  270. * above:
  271. */
  272. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  273. do_split = 0;
  274. goto out_unlock;
  275. }
  276. /*
  277. * We need to change the attributes. Check, whether we can
  278. * change the large page in one go. We request a split, when
  279. * the address is not aligned and the number of pages is
  280. * smaller than the number of pages in the large page. Note
  281. * that we limited the number of possible pages already to
  282. * the number of pages in the large page.
  283. */
  284. if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
  285. /*
  286. * The address is aligned and the number of pages
  287. * covers the full page.
  288. */
  289. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  290. __set_pmd_pte(kpte, address, new_pte);
  291. cpa->flushtlb = 1;
  292. do_split = 0;
  293. }
  294. out_unlock:
  295. spin_unlock_irqrestore(&pgd_lock, flags);
  296. return do_split;
  297. }
  298. static int split_large_page(pte_t *kpte, unsigned long address)
  299. {
  300. unsigned long flags, pfn, pfninc = 1;
  301. gfp_t gfp_flags = GFP_KERNEL;
  302. unsigned int i, level;
  303. pte_t *pbase, *tmp;
  304. pgprot_t ref_prot;
  305. struct page *base;
  306. #ifdef CONFIG_DEBUG_PAGEALLOC
  307. gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
  308. #endif
  309. base = alloc_pages(gfp_flags, 0);
  310. if (!base)
  311. return -ENOMEM;
  312. spin_lock_irqsave(&pgd_lock, flags);
  313. /*
  314. * Check for races, another CPU might have split this page
  315. * up for us already:
  316. */
  317. tmp = lookup_address(address, &level);
  318. if (tmp != kpte)
  319. goto out_unlock;
  320. pbase = (pte_t *)page_address(base);
  321. #ifdef CONFIG_X86_32
  322. paravirt_alloc_pt(&init_mm, page_to_pfn(base));
  323. #endif
  324. ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  325. #ifdef CONFIG_X86_64
  326. if (level == PG_LEVEL_1G) {
  327. pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
  328. pgprot_val(ref_prot) |= _PAGE_PSE;
  329. }
  330. #endif
  331. /*
  332. * Get the target pfn from the original entry:
  333. */
  334. pfn = pte_pfn(*kpte);
  335. for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
  336. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  337. /*
  338. * Install the new, split up pagetable. Important details here:
  339. *
  340. * On Intel the NX bit of all levels must be cleared to make a
  341. * page executable. See section 4.13.2 of Intel 64 and IA-32
  342. * Architectures Software Developer's Manual).
  343. *
  344. * Mark the entry present. The current mapping might be
  345. * set to not present, which we preserved above.
  346. */
  347. ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
  348. pgprot_val(ref_prot) |= _PAGE_PRESENT;
  349. __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
  350. base = NULL;
  351. out_unlock:
  352. spin_unlock_irqrestore(&pgd_lock, flags);
  353. if (base)
  354. __free_pages(base, 0);
  355. return 0;
  356. }
  357. static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
  358. {
  359. int level, do_split, err;
  360. struct page *kpte_page;
  361. pte_t *kpte;
  362. repeat:
  363. kpte = lookup_address(address, &level);
  364. if (!kpte)
  365. return -EINVAL;
  366. kpte_page = virt_to_page(kpte);
  367. BUG_ON(PageLRU(kpte_page));
  368. BUG_ON(PageCompound(kpte_page));
  369. if (level == PG_LEVEL_4K) {
  370. pte_t new_pte, old_pte = *kpte;
  371. pgprot_t new_prot = pte_pgprot(old_pte);
  372. if(!pte_val(old_pte)) {
  373. printk(KERN_WARNING "CPA: called for zero pte. "
  374. "vaddr = %lx cpa->vaddr = %lx\n", address,
  375. cpa->vaddr);
  376. WARN_ON(1);
  377. return -EINVAL;
  378. }
  379. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  380. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  381. new_prot = static_protections(new_prot, address);
  382. /*
  383. * We need to keep the pfn from the existing PTE,
  384. * after all we're only going to change it's attributes
  385. * not the memory it points to
  386. */
  387. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  388. /*
  389. * Do we really change anything ?
  390. */
  391. if (pte_val(old_pte) != pte_val(new_pte)) {
  392. set_pte_atomic(kpte, new_pte);
  393. cpa->flushtlb = 1;
  394. }
  395. cpa->numpages = 1;
  396. return 0;
  397. }
  398. /*
  399. * Check, whether we can keep the large page intact
  400. * and just change the pte:
  401. */
  402. do_split = try_preserve_large_page(kpte, address, cpa);
  403. /*
  404. * When the range fits into the existing large page,
  405. * return. cp->numpages and cpa->tlbflush have been updated in
  406. * try_large_page:
  407. */
  408. if (do_split <= 0)
  409. return do_split;
  410. /*
  411. * We have to split the large page:
  412. */
  413. err = split_large_page(kpte, address);
  414. if (!err) {
  415. cpa->flushtlb = 1;
  416. goto repeat;
  417. }
  418. return err;
  419. }
  420. /**
  421. * change_page_attr_addr - Change page table attributes in linear mapping
  422. * @address: Virtual address in linear mapping.
  423. * @prot: New page table attribute (PAGE_*)
  424. *
  425. * Change page attributes of a page in the direct mapping. This is a variant
  426. * of change_page_attr() that also works on memory holes that do not have
  427. * mem_map entry (pfn_valid() is false).
  428. *
  429. * See change_page_attr() documentation for more details.
  430. *
  431. * Modules and drivers should use the set_memory_* APIs instead.
  432. */
  433. static int change_page_attr_addr(struct cpa_data *cpa)
  434. {
  435. int err;
  436. unsigned long address = cpa->vaddr;
  437. #ifdef CONFIG_X86_64
  438. unsigned long phys_addr = __pa(address);
  439. /*
  440. * If we are inside the high mapped kernel range, then we
  441. * fixup the low mapping first. __va() returns the virtual
  442. * address in the linear mapping:
  443. */
  444. if (within(address, HIGH_MAP_START, HIGH_MAP_END))
  445. address = (unsigned long) __va(phys_addr);
  446. #endif
  447. err = __change_page_attr(address, cpa);
  448. if (err)
  449. return err;
  450. #ifdef CONFIG_X86_64
  451. /*
  452. * If the physical address is inside the kernel map, we need
  453. * to touch the high mapped kernel as well:
  454. */
  455. if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
  456. /*
  457. * Calc the high mapping address. See __phys_addr()
  458. * for the non obvious details.
  459. *
  460. * Note that NX and other required permissions are
  461. * checked in static_protections().
  462. */
  463. address = phys_addr + HIGH_MAP_START - phys_base;
  464. /*
  465. * Our high aliases are imprecise, because we check
  466. * everything between 0 and KERNEL_TEXT_SIZE, so do
  467. * not propagate lookup failures back to users:
  468. */
  469. __change_page_attr(address, cpa);
  470. }
  471. #endif
  472. return err;
  473. }
  474. static int __change_page_attr_set_clr(struct cpa_data *cpa)
  475. {
  476. int ret, numpages = cpa->numpages;
  477. while (numpages) {
  478. /*
  479. * Store the remaining nr of pages for the large page
  480. * preservation check.
  481. */
  482. cpa->numpages = numpages;
  483. ret = change_page_attr_addr(cpa);
  484. if (ret)
  485. return ret;
  486. /*
  487. * Adjust the number of pages with the result of the
  488. * CPA operation. Either a large page has been
  489. * preserved or a single page update happened.
  490. */
  491. BUG_ON(cpa->numpages > numpages);
  492. numpages -= cpa->numpages;
  493. cpa->vaddr += cpa->numpages * PAGE_SIZE;
  494. }
  495. return 0;
  496. }
  497. static inline int cache_attr(pgprot_t attr)
  498. {
  499. return pgprot_val(attr) &
  500. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  501. }
  502. static int change_page_attr_set_clr(unsigned long addr, int numpages,
  503. pgprot_t mask_set, pgprot_t mask_clr)
  504. {
  505. struct cpa_data cpa;
  506. int ret, cache;
  507. /*
  508. * Check, if we are requested to change a not supported
  509. * feature:
  510. */
  511. mask_set = canon_pgprot(mask_set);
  512. mask_clr = canon_pgprot(mask_clr);
  513. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
  514. return 0;
  515. cpa.vaddr = addr;
  516. cpa.numpages = numpages;
  517. cpa.mask_set = mask_set;
  518. cpa.mask_clr = mask_clr;
  519. cpa.flushtlb = 0;
  520. ret = __change_page_attr_set_clr(&cpa);
  521. /*
  522. * Check whether we really changed something:
  523. */
  524. if (!cpa.flushtlb)
  525. return ret;
  526. /*
  527. * No need to flush, when we did not set any of the caching
  528. * attributes:
  529. */
  530. cache = cache_attr(mask_set);
  531. /*
  532. * On success we use clflush, when the CPU supports it to
  533. * avoid the wbindv. If the CPU does not support it and in the
  534. * error case we fall back to cpa_flush_all (which uses
  535. * wbindv):
  536. */
  537. if (!ret && cpu_has_clflush)
  538. cpa_flush_range(addr, numpages, cache);
  539. else
  540. cpa_flush_all(cache);
  541. return ret;
  542. }
  543. static inline int change_page_attr_set(unsigned long addr, int numpages,
  544. pgprot_t mask)
  545. {
  546. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
  547. }
  548. static inline int change_page_attr_clear(unsigned long addr, int numpages,
  549. pgprot_t mask)
  550. {
  551. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
  552. }
  553. int set_memory_uc(unsigned long addr, int numpages)
  554. {
  555. return change_page_attr_set(addr, numpages,
  556. __pgprot(_PAGE_PCD | _PAGE_PWT));
  557. }
  558. EXPORT_SYMBOL(set_memory_uc);
  559. int set_memory_wb(unsigned long addr, int numpages)
  560. {
  561. return change_page_attr_clear(addr, numpages,
  562. __pgprot(_PAGE_PCD | _PAGE_PWT));
  563. }
  564. EXPORT_SYMBOL(set_memory_wb);
  565. int set_memory_x(unsigned long addr, int numpages)
  566. {
  567. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
  568. }
  569. EXPORT_SYMBOL(set_memory_x);
  570. int set_memory_nx(unsigned long addr, int numpages)
  571. {
  572. return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
  573. }
  574. EXPORT_SYMBOL(set_memory_nx);
  575. int set_memory_ro(unsigned long addr, int numpages)
  576. {
  577. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
  578. }
  579. int set_memory_rw(unsigned long addr, int numpages)
  580. {
  581. return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
  582. }
  583. int set_memory_np(unsigned long addr, int numpages)
  584. {
  585. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
  586. }
  587. int set_pages_uc(struct page *page, int numpages)
  588. {
  589. unsigned long addr = (unsigned long)page_address(page);
  590. return set_memory_uc(addr, numpages);
  591. }
  592. EXPORT_SYMBOL(set_pages_uc);
  593. int set_pages_wb(struct page *page, int numpages)
  594. {
  595. unsigned long addr = (unsigned long)page_address(page);
  596. return set_memory_wb(addr, numpages);
  597. }
  598. EXPORT_SYMBOL(set_pages_wb);
  599. int set_pages_x(struct page *page, int numpages)
  600. {
  601. unsigned long addr = (unsigned long)page_address(page);
  602. return set_memory_x(addr, numpages);
  603. }
  604. EXPORT_SYMBOL(set_pages_x);
  605. int set_pages_nx(struct page *page, int numpages)
  606. {
  607. unsigned long addr = (unsigned long)page_address(page);
  608. return set_memory_nx(addr, numpages);
  609. }
  610. EXPORT_SYMBOL(set_pages_nx);
  611. int set_pages_ro(struct page *page, int numpages)
  612. {
  613. unsigned long addr = (unsigned long)page_address(page);
  614. return set_memory_ro(addr, numpages);
  615. }
  616. int set_pages_rw(struct page *page, int numpages)
  617. {
  618. unsigned long addr = (unsigned long)page_address(page);
  619. return set_memory_rw(addr, numpages);
  620. }
  621. #ifdef CONFIG_DEBUG_PAGEALLOC
  622. static int __set_pages_p(struct page *page, int numpages)
  623. {
  624. struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
  625. .numpages = numpages,
  626. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  627. .mask_clr = __pgprot(0)};
  628. return __change_page_attr_set_clr(&cpa);
  629. }
  630. static int __set_pages_np(struct page *page, int numpages)
  631. {
  632. struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
  633. .numpages = numpages,
  634. .mask_set = __pgprot(0),
  635. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
  636. return __change_page_attr_set_clr(&cpa);
  637. }
  638. void kernel_map_pages(struct page *page, int numpages, int enable)
  639. {
  640. if (PageHighMem(page))
  641. return;
  642. if (!enable) {
  643. debug_check_no_locks_freed(page_address(page),
  644. numpages * PAGE_SIZE);
  645. }
  646. /*
  647. * If page allocator is not up yet then do not call c_p_a():
  648. */
  649. if (!debug_pagealloc_enabled)
  650. return;
  651. /*
  652. * The return value is ignored - the calls cannot fail,
  653. * large pages are disabled at boot time:
  654. */
  655. if (enable)
  656. __set_pages_p(page, numpages);
  657. else
  658. __set_pages_np(page, numpages);
  659. /*
  660. * We should perform an IPI and flush all tlbs,
  661. * but that can deadlock->flush only current cpu:
  662. */
  663. __flush_tlb_all();
  664. }
  665. #endif
  666. /*
  667. * The testcases use internal knowledge of the implementation that shouldn't
  668. * be exposed to the rest of the kernel. Include these directly here.
  669. */
  670. #ifdef CONFIG_CPA_DEBUG
  671. #include "pageattr-test.c"
  672. #endif