mm.h 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. struct mempolicy;
  13. struct anon_vma;
  14. struct file_ra_state;
  15. struct user_struct;
  16. struct writeback_control;
  17. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  18. extern unsigned long max_mapnr;
  19. #endif
  20. extern unsigned long num_physpages;
  21. extern void * high_memory;
  22. extern int page_cluster;
  23. #ifdef CONFIG_SYSCTL
  24. extern int sysctl_legacy_va_layout;
  25. #else
  26. #define sysctl_legacy_va_layout 0
  27. #endif
  28. extern unsigned long mmap_min_addr;
  29. #include <asm/page.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  33. /*
  34. * Linux kernel virtual memory manager primitives.
  35. * The idea being to have a "virtual" mm in the same way
  36. * we have a virtual fs - giving a cleaner interface to the
  37. * mm details, and allowing different kinds of memory mappings
  38. * (from shared memory to executable loading to arbitrary
  39. * mmap() functions).
  40. */
  41. extern struct kmem_cache *vm_area_cachep;
  42. /*
  43. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  44. * disabled, then there's a single shared list of VMAs maintained by the
  45. * system, and mm's subscribe to these individually
  46. */
  47. struct vm_list_struct {
  48. struct vm_list_struct *next;
  49. struct vm_area_struct *vma;
  50. };
  51. #ifndef CONFIG_MMU
  52. extern struct rb_root nommu_vma_tree;
  53. extern struct rw_semaphore nommu_vma_sem;
  54. extern unsigned int kobjsize(const void *objp);
  55. #endif
  56. /*
  57. * vm_flags..
  58. */
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_GROWSUP 0x00000200
  70. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  71. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  72. #define VM_EXECUTABLE 0x00001000
  73. #define VM_LOCKED 0x00002000
  74. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  75. /* Used by sys_madvise() */
  76. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  77. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  78. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  79. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  80. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  81. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  82. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  83. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  84. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  85. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  86. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  87. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  88. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  89. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  90. #endif
  91. #ifdef CONFIG_STACK_GROWSUP
  92. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  93. #else
  94. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  95. #endif
  96. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  97. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  98. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  99. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  100. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  101. /*
  102. * mapping from the currently active vm_flags protection bits (the
  103. * low four bits) to a page protection mask..
  104. */
  105. extern pgprot_t protection_map[16];
  106. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  107. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  108. /*
  109. * vm_fault is filled by the the pagefault handler and passed to the vma's
  110. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  111. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  112. *
  113. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  114. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  115. * mapping support.
  116. */
  117. struct vm_fault {
  118. unsigned int flags; /* FAULT_FLAG_xxx flags */
  119. pgoff_t pgoff; /* Logical page offset based on vma */
  120. void __user *virtual_address; /* Faulting virtual address */
  121. struct page *page; /* ->fault handlers should return a
  122. * page here, unless VM_FAULT_NOPAGE
  123. * is set (which is also implied by
  124. * VM_FAULT_ERROR).
  125. */
  126. };
  127. /*
  128. * These are the virtual MM functions - opening of an area, closing and
  129. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  130. * to the functions called when a no-page or a wp-page exception occurs.
  131. */
  132. struct vm_operations_struct {
  133. void (*open)(struct vm_area_struct * area);
  134. void (*close)(struct vm_area_struct * area);
  135. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  136. struct page *(*nopage)(struct vm_area_struct *area,
  137. unsigned long address, int *type);
  138. unsigned long (*nopfn)(struct vm_area_struct *area,
  139. unsigned long address);
  140. /* notification that a previously read-only page is about to become
  141. * writable, if an error is returned it will cause a SIGBUS */
  142. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  143. #ifdef CONFIG_NUMA
  144. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  145. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  146. unsigned long addr);
  147. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  148. const nodemask_t *to, unsigned long flags);
  149. #endif
  150. };
  151. struct mmu_gather;
  152. struct inode;
  153. #define page_private(page) ((page)->private)
  154. #define set_page_private(page, v) ((page)->private = (v))
  155. /*
  156. * FIXME: take this include out, include page-flags.h in
  157. * files which need it (119 of them)
  158. */
  159. #include <linux/page-flags.h>
  160. #ifdef CONFIG_DEBUG_VM
  161. #define VM_BUG_ON(cond) BUG_ON(cond)
  162. #else
  163. #define VM_BUG_ON(condition) do { } while(0)
  164. #endif
  165. /*
  166. * Methods to modify the page usage count.
  167. *
  168. * What counts for a page usage:
  169. * - cache mapping (page->mapping)
  170. * - private data (page->private)
  171. * - page mapped in a task's page tables, each mapping
  172. * is counted separately
  173. *
  174. * Also, many kernel routines increase the page count before a critical
  175. * routine so they can be sure the page doesn't go away from under them.
  176. */
  177. /*
  178. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  179. */
  180. static inline int put_page_testzero(struct page *page)
  181. {
  182. VM_BUG_ON(atomic_read(&page->_count) == 0);
  183. return atomic_dec_and_test(&page->_count);
  184. }
  185. /*
  186. * Try to grab a ref unless the page has a refcount of zero, return false if
  187. * that is the case.
  188. */
  189. static inline int get_page_unless_zero(struct page *page)
  190. {
  191. VM_BUG_ON(PageTail(page));
  192. return atomic_inc_not_zero(&page->_count);
  193. }
  194. /* Support for virtually mapped pages */
  195. struct page *vmalloc_to_page(const void *addr);
  196. unsigned long vmalloc_to_pfn(const void *addr);
  197. #ifdef CONFIG_MMU
  198. /* Determine if an address is within the vmalloc range */
  199. static inline int is_vmalloc_addr(const void *x)
  200. {
  201. unsigned long addr = (unsigned long)x;
  202. return addr >= VMALLOC_START && addr < VMALLOC_END;
  203. }
  204. #endif
  205. static inline struct page *compound_head(struct page *page)
  206. {
  207. if (unlikely(PageTail(page)))
  208. return page->first_page;
  209. return page;
  210. }
  211. static inline int page_count(struct page *page)
  212. {
  213. return atomic_read(&compound_head(page)->_count);
  214. }
  215. static inline void get_page(struct page *page)
  216. {
  217. page = compound_head(page);
  218. VM_BUG_ON(atomic_read(&page->_count) == 0);
  219. atomic_inc(&page->_count);
  220. }
  221. static inline struct page *virt_to_head_page(const void *x)
  222. {
  223. struct page *page = virt_to_page(x);
  224. return compound_head(page);
  225. }
  226. /*
  227. * Setup the page count before being freed into the page allocator for
  228. * the first time (boot or memory hotplug)
  229. */
  230. static inline void init_page_count(struct page *page)
  231. {
  232. atomic_set(&page->_count, 1);
  233. }
  234. void put_page(struct page *page);
  235. void put_pages_list(struct list_head *pages);
  236. void split_page(struct page *page, unsigned int order);
  237. /*
  238. * Compound pages have a destructor function. Provide a
  239. * prototype for that function and accessor functions.
  240. * These are _only_ valid on the head of a PG_compound page.
  241. */
  242. typedef void compound_page_dtor(struct page *);
  243. static inline void set_compound_page_dtor(struct page *page,
  244. compound_page_dtor *dtor)
  245. {
  246. page[1].lru.next = (void *)dtor;
  247. }
  248. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  249. {
  250. return (compound_page_dtor *)page[1].lru.next;
  251. }
  252. static inline int compound_order(struct page *page)
  253. {
  254. if (!PageHead(page))
  255. return 0;
  256. return (unsigned long)page[1].lru.prev;
  257. }
  258. static inline void set_compound_order(struct page *page, unsigned long order)
  259. {
  260. page[1].lru.prev = (void *)order;
  261. }
  262. /*
  263. * Multiple processes may "see" the same page. E.g. for untouched
  264. * mappings of /dev/null, all processes see the same page full of
  265. * zeroes, and text pages of executables and shared libraries have
  266. * only one copy in memory, at most, normally.
  267. *
  268. * For the non-reserved pages, page_count(page) denotes a reference count.
  269. * page_count() == 0 means the page is free. page->lru is then used for
  270. * freelist management in the buddy allocator.
  271. * page_count() > 0 means the page has been allocated.
  272. *
  273. * Pages are allocated by the slab allocator in order to provide memory
  274. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  275. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  276. * unless a particular usage is carefully commented. (the responsibility of
  277. * freeing the kmalloc memory is the caller's, of course).
  278. *
  279. * A page may be used by anyone else who does a __get_free_page().
  280. * In this case, page_count still tracks the references, and should only
  281. * be used through the normal accessor functions. The top bits of page->flags
  282. * and page->virtual store page management information, but all other fields
  283. * are unused and could be used privately, carefully. The management of this
  284. * page is the responsibility of the one who allocated it, and those who have
  285. * subsequently been given references to it.
  286. *
  287. * The other pages (we may call them "pagecache pages") are completely
  288. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  289. * The following discussion applies only to them.
  290. *
  291. * A pagecache page contains an opaque `private' member, which belongs to the
  292. * page's address_space. Usually, this is the address of a circular list of
  293. * the page's disk buffers. PG_private must be set to tell the VM to call
  294. * into the filesystem to release these pages.
  295. *
  296. * A page may belong to an inode's memory mapping. In this case, page->mapping
  297. * is the pointer to the inode, and page->index is the file offset of the page,
  298. * in units of PAGE_CACHE_SIZE.
  299. *
  300. * If pagecache pages are not associated with an inode, they are said to be
  301. * anonymous pages. These may become associated with the swapcache, and in that
  302. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  303. *
  304. * In either case (swapcache or inode backed), the pagecache itself holds one
  305. * reference to the page. Setting PG_private should also increment the
  306. * refcount. The each user mapping also has a reference to the page.
  307. *
  308. * The pagecache pages are stored in a per-mapping radix tree, which is
  309. * rooted at mapping->page_tree, and indexed by offset.
  310. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  311. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  312. *
  313. * All pagecache pages may be subject to I/O:
  314. * - inode pages may need to be read from disk,
  315. * - inode pages which have been modified and are MAP_SHARED may need
  316. * to be written back to the inode on disk,
  317. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  318. * modified may need to be swapped out to swap space and (later) to be read
  319. * back into memory.
  320. */
  321. /*
  322. * The zone field is never updated after free_area_init_core()
  323. * sets it, so none of the operations on it need to be atomic.
  324. */
  325. /*
  326. * page->flags layout:
  327. *
  328. * There are three possibilities for how page->flags get
  329. * laid out. The first is for the normal case, without
  330. * sparsemem. The second is for sparsemem when there is
  331. * plenty of space for node and section. The last is when
  332. * we have run out of space and have to fall back to an
  333. * alternate (slower) way of determining the node.
  334. *
  335. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  336. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  337. * no space for node: | SECTION | ZONE | ... | FLAGS |
  338. */
  339. #ifdef CONFIG_SPARSEMEM
  340. #define SECTIONS_WIDTH SECTIONS_SHIFT
  341. #else
  342. #define SECTIONS_WIDTH 0
  343. #endif
  344. #define ZONES_WIDTH ZONES_SHIFT
  345. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  346. #define NODES_WIDTH NODES_SHIFT
  347. #else
  348. #define NODES_WIDTH 0
  349. #endif
  350. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  351. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  352. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  353. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  354. /*
  355. * We are going to use the flags for the page to node mapping if its in
  356. * there. This includes the case where there is no node, so it is implicit.
  357. */
  358. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  359. #define NODE_NOT_IN_PAGE_FLAGS
  360. #endif
  361. #ifndef PFN_SECTION_SHIFT
  362. #define PFN_SECTION_SHIFT 0
  363. #endif
  364. /*
  365. * Define the bit shifts to access each section. For non-existant
  366. * sections we define the shift as 0; that plus a 0 mask ensures
  367. * the compiler will optimise away reference to them.
  368. */
  369. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  370. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  371. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  372. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  373. #ifdef NODE_NOT_IN_PAGEFLAGS
  374. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  375. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  376. SECTIONS_PGOFF : ZONES_PGOFF)
  377. #else
  378. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  379. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  380. NODES_PGOFF : ZONES_PGOFF)
  381. #endif
  382. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  383. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  384. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  385. #endif
  386. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  387. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  388. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  389. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  390. static inline enum zone_type page_zonenum(struct page *page)
  391. {
  392. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  393. }
  394. /*
  395. * The identification function is only used by the buddy allocator for
  396. * determining if two pages could be buddies. We are not really
  397. * identifying a zone since we could be using a the section number
  398. * id if we have not node id available in page flags.
  399. * We guarantee only that it will return the same value for two
  400. * combinable pages in a zone.
  401. */
  402. static inline int page_zone_id(struct page *page)
  403. {
  404. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  405. }
  406. static inline int zone_to_nid(struct zone *zone)
  407. {
  408. #ifdef CONFIG_NUMA
  409. return zone->node;
  410. #else
  411. return 0;
  412. #endif
  413. }
  414. #ifdef NODE_NOT_IN_PAGE_FLAGS
  415. extern int page_to_nid(struct page *page);
  416. #else
  417. static inline int page_to_nid(struct page *page)
  418. {
  419. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  420. }
  421. #endif
  422. static inline struct zone *page_zone(struct page *page)
  423. {
  424. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  425. }
  426. static inline unsigned long page_to_section(struct page *page)
  427. {
  428. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  429. }
  430. static inline void set_page_zone(struct page *page, enum zone_type zone)
  431. {
  432. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  433. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  434. }
  435. static inline void set_page_node(struct page *page, unsigned long node)
  436. {
  437. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  438. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  439. }
  440. static inline void set_page_section(struct page *page, unsigned long section)
  441. {
  442. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  443. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  444. }
  445. static inline void set_page_links(struct page *page, enum zone_type zone,
  446. unsigned long node, unsigned long pfn)
  447. {
  448. set_page_zone(page, zone);
  449. set_page_node(page, node);
  450. set_page_section(page, pfn_to_section_nr(pfn));
  451. }
  452. /*
  453. * If a hint addr is less than mmap_min_addr change hint to be as
  454. * low as possible but still greater than mmap_min_addr
  455. */
  456. static inline unsigned long round_hint_to_min(unsigned long hint)
  457. {
  458. #ifdef CONFIG_SECURITY
  459. hint &= PAGE_MASK;
  460. if (((void *)hint != NULL) &&
  461. (hint < mmap_min_addr))
  462. return PAGE_ALIGN(mmap_min_addr);
  463. #endif
  464. return hint;
  465. }
  466. /*
  467. * Some inline functions in vmstat.h depend on page_zone()
  468. */
  469. #include <linux/vmstat.h>
  470. static __always_inline void *lowmem_page_address(struct page *page)
  471. {
  472. return __va(page_to_pfn(page) << PAGE_SHIFT);
  473. }
  474. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  475. #define HASHED_PAGE_VIRTUAL
  476. #endif
  477. #if defined(WANT_PAGE_VIRTUAL)
  478. #define page_address(page) ((page)->virtual)
  479. #define set_page_address(page, address) \
  480. do { \
  481. (page)->virtual = (address); \
  482. } while(0)
  483. #define page_address_init() do { } while(0)
  484. #endif
  485. #if defined(HASHED_PAGE_VIRTUAL)
  486. void *page_address(struct page *page);
  487. void set_page_address(struct page *page, void *virtual);
  488. void page_address_init(void);
  489. #endif
  490. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  491. #define page_address(page) lowmem_page_address(page)
  492. #define set_page_address(page, address) do { } while(0)
  493. #define page_address_init() do { } while(0)
  494. #endif
  495. /*
  496. * On an anonymous page mapped into a user virtual memory area,
  497. * page->mapping points to its anon_vma, not to a struct address_space;
  498. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  499. *
  500. * Please note that, confusingly, "page_mapping" refers to the inode
  501. * address_space which maps the page from disk; whereas "page_mapped"
  502. * refers to user virtual address space into which the page is mapped.
  503. */
  504. #define PAGE_MAPPING_ANON 1
  505. extern struct address_space swapper_space;
  506. static inline struct address_space *page_mapping(struct page *page)
  507. {
  508. struct address_space *mapping = page->mapping;
  509. VM_BUG_ON(PageSlab(page));
  510. if (unlikely(PageSwapCache(page)))
  511. mapping = &swapper_space;
  512. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  513. mapping = NULL;
  514. return mapping;
  515. }
  516. static inline int PageAnon(struct page *page)
  517. {
  518. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  519. }
  520. /*
  521. * Return the pagecache index of the passed page. Regular pagecache pages
  522. * use ->index whereas swapcache pages use ->private
  523. */
  524. static inline pgoff_t page_index(struct page *page)
  525. {
  526. if (unlikely(PageSwapCache(page)))
  527. return page_private(page);
  528. return page->index;
  529. }
  530. /*
  531. * The atomic page->_mapcount, like _count, starts from -1:
  532. * so that transitions both from it and to it can be tracked,
  533. * using atomic_inc_and_test and atomic_add_negative(-1).
  534. */
  535. static inline void reset_page_mapcount(struct page *page)
  536. {
  537. atomic_set(&(page)->_mapcount, -1);
  538. }
  539. static inline int page_mapcount(struct page *page)
  540. {
  541. return atomic_read(&(page)->_mapcount) + 1;
  542. }
  543. /*
  544. * Return true if this page is mapped into pagetables.
  545. */
  546. static inline int page_mapped(struct page *page)
  547. {
  548. return atomic_read(&(page)->_mapcount) >= 0;
  549. }
  550. /*
  551. * Error return values for the *_nopage functions
  552. */
  553. #define NOPAGE_SIGBUS (NULL)
  554. #define NOPAGE_OOM ((struct page *) (-1))
  555. /*
  556. * Error return values for the *_nopfn functions
  557. */
  558. #define NOPFN_SIGBUS ((unsigned long) -1)
  559. #define NOPFN_OOM ((unsigned long) -2)
  560. #define NOPFN_REFAULT ((unsigned long) -3)
  561. /*
  562. * Different kinds of faults, as returned by handle_mm_fault().
  563. * Used to decide whether a process gets delivered SIGBUS or
  564. * just gets major/minor fault counters bumped up.
  565. */
  566. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  567. #define VM_FAULT_OOM 0x0001
  568. #define VM_FAULT_SIGBUS 0x0002
  569. #define VM_FAULT_MAJOR 0x0004
  570. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  571. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  572. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  573. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  574. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  575. extern void show_free_areas(void);
  576. #ifdef CONFIG_SHMEM
  577. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  578. #else
  579. static inline int shmem_lock(struct file *file, int lock,
  580. struct user_struct *user)
  581. {
  582. return 0;
  583. }
  584. #endif
  585. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  586. int shmem_zero_setup(struct vm_area_struct *);
  587. #ifndef CONFIG_MMU
  588. extern unsigned long shmem_get_unmapped_area(struct file *file,
  589. unsigned long addr,
  590. unsigned long len,
  591. unsigned long pgoff,
  592. unsigned long flags);
  593. #endif
  594. extern int can_do_mlock(void);
  595. extern int user_shm_lock(size_t, struct user_struct *);
  596. extern void user_shm_unlock(size_t, struct user_struct *);
  597. /*
  598. * Parameter block passed down to zap_pte_range in exceptional cases.
  599. */
  600. struct zap_details {
  601. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  602. struct address_space *check_mapping; /* Check page->mapping if set */
  603. pgoff_t first_index; /* Lowest page->index to unmap */
  604. pgoff_t last_index; /* Highest page->index to unmap */
  605. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  606. unsigned long truncate_count; /* Compare vm_truncate_count */
  607. };
  608. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  609. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  610. unsigned long size, struct zap_details *);
  611. unsigned long unmap_vmas(struct mmu_gather **tlb,
  612. struct vm_area_struct *start_vma, unsigned long start_addr,
  613. unsigned long end_addr, unsigned long *nr_accounted,
  614. struct zap_details *);
  615. /**
  616. * mm_walk - callbacks for walk_page_range
  617. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  618. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  619. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  620. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  621. * @pte_hole: if set, called for each hole at all levels
  622. *
  623. * (see walk_page_range for more details)
  624. */
  625. struct mm_walk {
  626. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
  627. int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
  628. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
  629. int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
  630. int (*pte_hole)(unsigned long, unsigned long, void *);
  631. };
  632. int walk_page_range(const struct mm_struct *, unsigned long addr,
  633. unsigned long end, const struct mm_walk *walk,
  634. void *private);
  635. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  636. unsigned long end, unsigned long floor, unsigned long ceiling);
  637. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  638. unsigned long floor, unsigned long ceiling);
  639. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  640. struct vm_area_struct *vma);
  641. void unmap_mapping_range(struct address_space *mapping,
  642. loff_t const holebegin, loff_t const holelen, int even_cows);
  643. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  644. loff_t const holebegin, loff_t const holelen)
  645. {
  646. unmap_mapping_range(mapping, holebegin, holelen, 0);
  647. }
  648. extern int vmtruncate(struct inode * inode, loff_t offset);
  649. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  650. #ifdef CONFIG_MMU
  651. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  652. unsigned long address, int write_access);
  653. #else
  654. static inline int handle_mm_fault(struct mm_struct *mm,
  655. struct vm_area_struct *vma, unsigned long address,
  656. int write_access)
  657. {
  658. /* should never happen if there's no MMU */
  659. BUG();
  660. return VM_FAULT_SIGBUS;
  661. }
  662. #endif
  663. extern int make_pages_present(unsigned long addr, unsigned long end);
  664. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  665. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  666. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  667. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  668. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  669. extern void do_invalidatepage(struct page *page, unsigned long offset);
  670. int __set_page_dirty_nobuffers(struct page *page);
  671. int __set_page_dirty_no_writeback(struct page *page);
  672. int redirty_page_for_writepage(struct writeback_control *wbc,
  673. struct page *page);
  674. int set_page_dirty(struct page *page);
  675. int set_page_dirty_lock(struct page *page);
  676. int clear_page_dirty_for_io(struct page *page);
  677. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  678. unsigned long old_addr, struct vm_area_struct *new_vma,
  679. unsigned long new_addr, unsigned long len);
  680. extern unsigned long do_mremap(unsigned long addr,
  681. unsigned long old_len, unsigned long new_len,
  682. unsigned long flags, unsigned long new_addr);
  683. extern int mprotect_fixup(struct vm_area_struct *vma,
  684. struct vm_area_struct **pprev, unsigned long start,
  685. unsigned long end, unsigned long newflags);
  686. /*
  687. * A callback you can register to apply pressure to ageable caches.
  688. *
  689. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  690. * look through the least-recently-used 'nr_to_scan' entries and
  691. * attempt to free them up. It should return the number of objects
  692. * which remain in the cache. If it returns -1, it means it cannot do
  693. * any scanning at this time (eg. there is a risk of deadlock).
  694. *
  695. * The 'gfpmask' refers to the allocation we are currently trying to
  696. * fulfil.
  697. *
  698. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  699. * querying the cache size, so a fastpath for that case is appropriate.
  700. */
  701. struct shrinker {
  702. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  703. int seeks; /* seeks to recreate an obj */
  704. /* These are for internal use */
  705. struct list_head list;
  706. long nr; /* objs pending delete */
  707. };
  708. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  709. extern void register_shrinker(struct shrinker *);
  710. extern void unregister_shrinker(struct shrinker *);
  711. int vma_wants_writenotify(struct vm_area_struct *vma);
  712. extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
  713. #ifdef __PAGETABLE_PUD_FOLDED
  714. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  715. unsigned long address)
  716. {
  717. return 0;
  718. }
  719. #else
  720. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  721. #endif
  722. #ifdef __PAGETABLE_PMD_FOLDED
  723. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  724. unsigned long address)
  725. {
  726. return 0;
  727. }
  728. #else
  729. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  730. #endif
  731. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  732. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  733. /*
  734. * The following ifdef needed to get the 4level-fixup.h header to work.
  735. * Remove it when 4level-fixup.h has been removed.
  736. */
  737. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  738. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  739. {
  740. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  741. NULL: pud_offset(pgd, address);
  742. }
  743. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  744. {
  745. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  746. NULL: pmd_offset(pud, address);
  747. }
  748. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  749. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  750. /*
  751. * We tuck a spinlock to guard each pagetable page into its struct page,
  752. * at page->private, with BUILD_BUG_ON to make sure that this will not
  753. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  754. * When freeing, reset page->mapping so free_pages_check won't complain.
  755. */
  756. #define __pte_lockptr(page) &((page)->ptl)
  757. #define pte_lock_init(_page) do { \
  758. spin_lock_init(__pte_lockptr(_page)); \
  759. } while (0)
  760. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  761. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  762. #else
  763. /*
  764. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  765. */
  766. #define pte_lock_init(page) do {} while (0)
  767. #define pte_lock_deinit(page) do {} while (0)
  768. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  769. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  770. static inline void pgtable_page_ctor(struct page *page)
  771. {
  772. pte_lock_init(page);
  773. inc_zone_page_state(page, NR_PAGETABLE);
  774. }
  775. static inline void pgtable_page_dtor(struct page *page)
  776. {
  777. pte_lock_deinit(page);
  778. dec_zone_page_state(page, NR_PAGETABLE);
  779. }
  780. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  781. ({ \
  782. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  783. pte_t *__pte = pte_offset_map(pmd, address); \
  784. *(ptlp) = __ptl; \
  785. spin_lock(__ptl); \
  786. __pte; \
  787. })
  788. #define pte_unmap_unlock(pte, ptl) do { \
  789. spin_unlock(ptl); \
  790. pte_unmap(pte); \
  791. } while (0)
  792. #define pte_alloc_map(mm, pmd, address) \
  793. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  794. NULL: pte_offset_map(pmd, address))
  795. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  796. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  797. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  798. #define pte_alloc_kernel(pmd, address) \
  799. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  800. NULL: pte_offset_kernel(pmd, address))
  801. extern void free_area_init(unsigned long * zones_size);
  802. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  803. unsigned long * zones_size, unsigned long zone_start_pfn,
  804. unsigned long *zholes_size);
  805. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  806. /*
  807. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  808. * zones, allocate the backing mem_map and account for memory holes in a more
  809. * architecture independent manner. This is a substitute for creating the
  810. * zone_sizes[] and zholes_size[] arrays and passing them to
  811. * free_area_init_node()
  812. *
  813. * An architecture is expected to register range of page frames backed by
  814. * physical memory with add_active_range() before calling
  815. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  816. * usage, an architecture is expected to do something like
  817. *
  818. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  819. * max_highmem_pfn};
  820. * for_each_valid_physical_page_range()
  821. * add_active_range(node_id, start_pfn, end_pfn)
  822. * free_area_init_nodes(max_zone_pfns);
  823. *
  824. * If the architecture guarantees that there are no holes in the ranges
  825. * registered with add_active_range(), free_bootmem_active_regions()
  826. * will call free_bootmem_node() for each registered physical page range.
  827. * Similarly sparse_memory_present_with_active_regions() calls
  828. * memory_present() for each range when SPARSEMEM is enabled.
  829. *
  830. * See mm/page_alloc.c for more information on each function exposed by
  831. * CONFIG_ARCH_POPULATES_NODE_MAP
  832. */
  833. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  834. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  835. unsigned long end_pfn);
  836. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  837. unsigned long new_end_pfn);
  838. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  839. unsigned long end_pfn);
  840. extern void remove_all_active_ranges(void);
  841. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  842. unsigned long end_pfn);
  843. extern void get_pfn_range_for_nid(unsigned int nid,
  844. unsigned long *start_pfn, unsigned long *end_pfn);
  845. extern unsigned long find_min_pfn_with_active_regions(void);
  846. extern unsigned long find_max_pfn_with_active_regions(void);
  847. extern void free_bootmem_with_active_regions(int nid,
  848. unsigned long max_low_pfn);
  849. extern void sparse_memory_present_with_active_regions(int nid);
  850. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  851. extern int early_pfn_to_nid(unsigned long pfn);
  852. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  853. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  854. extern void set_dma_reserve(unsigned long new_dma_reserve);
  855. extern void memmap_init_zone(unsigned long, int, unsigned long,
  856. unsigned long, enum memmap_context);
  857. extern void setup_per_zone_pages_min(void);
  858. extern void mem_init(void);
  859. extern void show_mem(void);
  860. extern void si_meminfo(struct sysinfo * val);
  861. extern void si_meminfo_node(struct sysinfo *val, int nid);
  862. #ifdef CONFIG_NUMA
  863. extern void setup_per_cpu_pageset(void);
  864. #else
  865. static inline void setup_per_cpu_pageset(void) {}
  866. #endif
  867. /* prio_tree.c */
  868. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  869. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  870. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  871. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  872. struct prio_tree_iter *iter);
  873. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  874. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  875. (vma = vma_prio_tree_next(vma, iter)); )
  876. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  877. struct list_head *list)
  878. {
  879. vma->shared.vm_set.parent = NULL;
  880. list_add_tail(&vma->shared.vm_set.list, list);
  881. }
  882. /* mmap.c */
  883. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  884. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  885. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  886. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  887. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  888. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  889. struct mempolicy *);
  890. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  891. extern int split_vma(struct mm_struct *,
  892. struct vm_area_struct *, unsigned long addr, int new_below);
  893. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  894. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  895. struct rb_node **, struct rb_node *);
  896. extern void unlink_file_vma(struct vm_area_struct *);
  897. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  898. unsigned long addr, unsigned long len, pgoff_t pgoff);
  899. extern void exit_mmap(struct mm_struct *);
  900. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  901. extern int install_special_mapping(struct mm_struct *mm,
  902. unsigned long addr, unsigned long len,
  903. unsigned long flags, struct page **pages);
  904. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  905. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  906. unsigned long len, unsigned long prot,
  907. unsigned long flag, unsigned long pgoff);
  908. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  909. unsigned long len, unsigned long flags,
  910. unsigned int vm_flags, unsigned long pgoff,
  911. int accountable);
  912. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  913. unsigned long len, unsigned long prot,
  914. unsigned long flag, unsigned long offset)
  915. {
  916. unsigned long ret = -EINVAL;
  917. if ((offset + PAGE_ALIGN(len)) < offset)
  918. goto out;
  919. if (!(offset & ~PAGE_MASK))
  920. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  921. out:
  922. return ret;
  923. }
  924. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  925. extern unsigned long do_brk(unsigned long, unsigned long);
  926. /* filemap.c */
  927. extern unsigned long page_unuse(struct page *);
  928. extern void truncate_inode_pages(struct address_space *, loff_t);
  929. extern void truncate_inode_pages_range(struct address_space *,
  930. loff_t lstart, loff_t lend);
  931. /* generic vm_area_ops exported for stackable file systems */
  932. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  933. /* mm/page-writeback.c */
  934. int write_one_page(struct page *page, int wait);
  935. /* readahead.c */
  936. #define VM_MAX_READAHEAD 128 /* kbytes */
  937. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  938. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  939. pgoff_t offset, unsigned long nr_to_read);
  940. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  941. pgoff_t offset, unsigned long nr_to_read);
  942. void page_cache_sync_readahead(struct address_space *mapping,
  943. struct file_ra_state *ra,
  944. struct file *filp,
  945. pgoff_t offset,
  946. unsigned long size);
  947. void page_cache_async_readahead(struct address_space *mapping,
  948. struct file_ra_state *ra,
  949. struct file *filp,
  950. struct page *pg,
  951. pgoff_t offset,
  952. unsigned long size);
  953. unsigned long max_sane_readahead(unsigned long nr);
  954. /* Do stack extension */
  955. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  956. #ifdef CONFIG_IA64
  957. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  958. #endif
  959. extern int expand_stack_downwards(struct vm_area_struct *vma,
  960. unsigned long address);
  961. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  962. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  963. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  964. struct vm_area_struct **pprev);
  965. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  966. NULL if none. Assume start_addr < end_addr. */
  967. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  968. {
  969. struct vm_area_struct * vma = find_vma(mm,start_addr);
  970. if (vma && end_addr <= vma->vm_start)
  971. vma = NULL;
  972. return vma;
  973. }
  974. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  975. {
  976. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  977. }
  978. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  979. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  980. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  981. unsigned long pfn, unsigned long size, pgprot_t);
  982. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  983. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  984. unsigned long pfn);
  985. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  986. unsigned int foll_flags);
  987. #define FOLL_WRITE 0x01 /* check pte is writable */
  988. #define FOLL_TOUCH 0x02 /* mark page accessed */
  989. #define FOLL_GET 0x04 /* do get_page on page */
  990. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  991. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  992. void *data);
  993. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  994. unsigned long size, pte_fn_t fn, void *data);
  995. #ifdef CONFIG_PROC_FS
  996. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  997. #else
  998. static inline void vm_stat_account(struct mm_struct *mm,
  999. unsigned long flags, struct file *file, long pages)
  1000. {
  1001. }
  1002. #endif /* CONFIG_PROC_FS */
  1003. #ifdef CONFIG_DEBUG_PAGEALLOC
  1004. extern int debug_pagealloc_enabled;
  1005. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1006. static inline void enable_debug_pagealloc(void)
  1007. {
  1008. debug_pagealloc_enabled = 1;
  1009. }
  1010. #ifdef CONFIG_HIBERNATION
  1011. extern bool kernel_page_present(struct page *page);
  1012. #endif /* CONFIG_HIBERNATION */
  1013. #else
  1014. static inline void
  1015. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1016. static inline void enable_debug_pagealloc(void)
  1017. {
  1018. }
  1019. #ifdef CONFIG_HIBERNATION
  1020. static inline bool kernel_page_present(struct page *page) { return true; }
  1021. #endif /* CONFIG_HIBERNATION */
  1022. #endif
  1023. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1024. #ifdef __HAVE_ARCH_GATE_AREA
  1025. int in_gate_area_no_task(unsigned long addr);
  1026. int in_gate_area(struct task_struct *task, unsigned long addr);
  1027. #else
  1028. int in_gate_area_no_task(unsigned long addr);
  1029. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1030. #endif /* __HAVE_ARCH_GATE_AREA */
  1031. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  1032. void __user *, size_t *, loff_t *);
  1033. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1034. unsigned long lru_pages);
  1035. void drop_pagecache(void);
  1036. void drop_slab(void);
  1037. #ifndef CONFIG_MMU
  1038. #define randomize_va_space 0
  1039. #else
  1040. extern int randomize_va_space;
  1041. #endif
  1042. const char * arch_vma_name(struct vm_area_struct *vma);
  1043. void print_vma_addr(char *prefix, unsigned long rip);
  1044. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1045. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1046. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1047. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1048. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1049. void *vmemmap_alloc_block(unsigned long size, int node);
  1050. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1051. int vmemmap_populate_basepages(struct page *start_page,
  1052. unsigned long pages, int node);
  1053. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1054. #endif /* __KERNEL__ */
  1055. #endif /* _LINUX_MM_H */