backref.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 offset = 0;
  37. struct extent_inode_elem *e;
  38. if (!btrfs_file_extent_compression(eb, fi) &&
  39. !btrfs_file_extent_encryption(eb, fi) &&
  40. !btrfs_file_extent_other_encoding(eb, fi)) {
  41. u64 data_offset;
  42. u64 data_len;
  43. data_offset = btrfs_file_extent_offset(eb, fi);
  44. data_len = btrfs_file_extent_num_bytes(eb, fi);
  45. if (extent_item_pos < data_offset ||
  46. extent_item_pos >= data_offset + data_len)
  47. return 1;
  48. offset = extent_item_pos - data_offset;
  49. }
  50. e = kmalloc(sizeof(*e), GFP_NOFS);
  51. if (!e)
  52. return -ENOMEM;
  53. e->next = *eie;
  54. e->inum = key->objectid;
  55. e->offset = key->offset + offset;
  56. *eie = e;
  57. return 0;
  58. }
  59. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  60. u64 extent_item_pos,
  61. struct extent_inode_elem **eie)
  62. {
  63. u64 disk_byte;
  64. struct btrfs_key key;
  65. struct btrfs_file_extent_item *fi;
  66. int slot;
  67. int nritems;
  68. int extent_type;
  69. int ret;
  70. /*
  71. * from the shared data ref, we only have the leaf but we need
  72. * the key. thus, we must look into all items and see that we
  73. * find one (some) with a reference to our extent item.
  74. */
  75. nritems = btrfs_header_nritems(eb);
  76. for (slot = 0; slot < nritems; ++slot) {
  77. btrfs_item_key_to_cpu(eb, &key, slot);
  78. if (key.type != BTRFS_EXTENT_DATA_KEY)
  79. continue;
  80. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  81. extent_type = btrfs_file_extent_type(eb, fi);
  82. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  83. continue;
  84. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  85. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  86. if (disk_byte != wanted_disk_byte)
  87. continue;
  88. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  89. if (ret < 0)
  90. return ret;
  91. }
  92. return 0;
  93. }
  94. /*
  95. * this structure records all encountered refs on the way up to the root
  96. */
  97. struct __prelim_ref {
  98. struct list_head list;
  99. u64 root_id;
  100. struct btrfs_key key_for_search;
  101. int level;
  102. int count;
  103. struct extent_inode_elem *inode_list;
  104. u64 parent;
  105. u64 wanted_disk_byte;
  106. };
  107. /*
  108. * the rules for all callers of this function are:
  109. * - obtaining the parent is the goal
  110. * - if you add a key, you must know that it is a correct key
  111. * - if you cannot add the parent or a correct key, then we will look into the
  112. * block later to set a correct key
  113. *
  114. * delayed refs
  115. * ============
  116. * backref type | shared | indirect | shared | indirect
  117. * information | tree | tree | data | data
  118. * --------------------+--------+----------+--------+----------
  119. * parent logical | y | - | - | -
  120. * key to resolve | - | y | y | y
  121. * tree block logical | - | - | - | -
  122. * root for resolving | y | y | y | y
  123. *
  124. * - column 1: we've the parent -> done
  125. * - column 2, 3, 4: we use the key to find the parent
  126. *
  127. * on disk refs (inline or keyed)
  128. * ==============================
  129. * backref type | shared | indirect | shared | indirect
  130. * information | tree | tree | data | data
  131. * --------------------+--------+----------+--------+----------
  132. * parent logical | y | - | y | -
  133. * key to resolve | - | - | - | y
  134. * tree block logical | y | y | y | y
  135. * root for resolving | - | y | y | y
  136. *
  137. * - column 1, 3: we've the parent -> done
  138. * - column 2: we take the first key from the block to find the parent
  139. * (see __add_missing_keys)
  140. * - column 4: we use the key to find the parent
  141. *
  142. * additional information that's available but not required to find the parent
  143. * block might help in merging entries to gain some speed.
  144. */
  145. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  146. struct btrfs_key *key, int level,
  147. u64 parent, u64 wanted_disk_byte, int count)
  148. {
  149. struct __prelim_ref *ref;
  150. /* in case we're adding delayed refs, we're holding the refs spinlock */
  151. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  152. if (!ref)
  153. return -ENOMEM;
  154. ref->root_id = root_id;
  155. if (key)
  156. ref->key_for_search = *key;
  157. else
  158. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  159. ref->inode_list = NULL;
  160. ref->level = level;
  161. ref->count = count;
  162. ref->parent = parent;
  163. ref->wanted_disk_byte = wanted_disk_byte;
  164. list_add_tail(&ref->list, head);
  165. return 0;
  166. }
  167. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  168. struct ulist *parents, int level,
  169. struct btrfs_key *key_for_search, u64 time_seq,
  170. u64 wanted_disk_byte,
  171. const u64 *extent_item_pos)
  172. {
  173. int ret = 0;
  174. int slot;
  175. struct extent_buffer *eb;
  176. struct btrfs_key key;
  177. struct btrfs_file_extent_item *fi;
  178. struct extent_inode_elem *eie = NULL;
  179. u64 disk_byte;
  180. if (level != 0) {
  181. eb = path->nodes[level];
  182. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  183. if (ret < 0)
  184. return ret;
  185. return 0;
  186. }
  187. /*
  188. * We normally enter this function with the path already pointing to
  189. * the first item to check. But sometimes, we may enter it with
  190. * slot==nritems. In that case, go to the next leaf before we continue.
  191. */
  192. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  193. ret = btrfs_next_old_leaf(root, path, time_seq);
  194. while (!ret) {
  195. eb = path->nodes[0];
  196. slot = path->slots[0];
  197. btrfs_item_key_to_cpu(eb, &key, slot);
  198. if (key.objectid != key_for_search->objectid ||
  199. key.type != BTRFS_EXTENT_DATA_KEY)
  200. break;
  201. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  202. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  203. if (disk_byte == wanted_disk_byte) {
  204. eie = NULL;
  205. if (extent_item_pos) {
  206. ret = check_extent_in_eb(&key, eb, fi,
  207. *extent_item_pos,
  208. &eie);
  209. if (ret < 0)
  210. break;
  211. }
  212. if (!ret) {
  213. ret = ulist_add(parents, eb->start,
  214. (uintptr_t)eie, GFP_NOFS);
  215. if (ret < 0)
  216. break;
  217. if (!extent_item_pos) {
  218. ret = btrfs_next_old_leaf(root, path,
  219. time_seq);
  220. continue;
  221. }
  222. }
  223. }
  224. ret = btrfs_next_old_item(root, path, time_seq);
  225. }
  226. if (ret > 0)
  227. ret = 0;
  228. return ret;
  229. }
  230. /*
  231. * resolve an indirect backref in the form (root_id, key, level)
  232. * to a logical address
  233. */
  234. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  235. struct btrfs_path *path, u64 time_seq,
  236. struct __prelim_ref *ref,
  237. struct ulist *parents,
  238. const u64 *extent_item_pos)
  239. {
  240. struct btrfs_root *root;
  241. struct btrfs_key root_key;
  242. struct extent_buffer *eb;
  243. int ret = 0;
  244. int root_level;
  245. int level = ref->level;
  246. root_key.objectid = ref->root_id;
  247. root_key.type = BTRFS_ROOT_ITEM_KEY;
  248. root_key.offset = (u64)-1;
  249. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  250. if (IS_ERR(root)) {
  251. ret = PTR_ERR(root);
  252. goto out;
  253. }
  254. root_level = btrfs_old_root_level(root, time_seq);
  255. if (root_level + 1 == level)
  256. goto out;
  257. path->lowest_level = level;
  258. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  259. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  260. "%d for key (%llu %u %llu)\n",
  261. (unsigned long long)ref->root_id, level, ref->count, ret,
  262. (unsigned long long)ref->key_for_search.objectid,
  263. ref->key_for_search.type,
  264. (unsigned long long)ref->key_for_search.offset);
  265. if (ret < 0)
  266. goto out;
  267. eb = path->nodes[level];
  268. while (!eb) {
  269. if (!level) {
  270. WARN_ON(1);
  271. ret = 1;
  272. goto out;
  273. }
  274. level--;
  275. eb = path->nodes[level];
  276. }
  277. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  278. time_seq, ref->wanted_disk_byte,
  279. extent_item_pos);
  280. out:
  281. path->lowest_level = 0;
  282. btrfs_release_path(path);
  283. return ret;
  284. }
  285. /*
  286. * resolve all indirect backrefs from the list
  287. */
  288. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  289. struct btrfs_path *path, u64 time_seq,
  290. struct list_head *head,
  291. const u64 *extent_item_pos)
  292. {
  293. int err;
  294. int ret = 0;
  295. struct __prelim_ref *ref;
  296. struct __prelim_ref *ref_safe;
  297. struct __prelim_ref *new_ref;
  298. struct ulist *parents;
  299. struct ulist_node *node;
  300. struct ulist_iterator uiter;
  301. parents = ulist_alloc(GFP_NOFS);
  302. if (!parents)
  303. return -ENOMEM;
  304. /*
  305. * _safe allows us to insert directly after the current item without
  306. * iterating over the newly inserted items.
  307. * we're also allowed to re-assign ref during iteration.
  308. */
  309. list_for_each_entry_safe(ref, ref_safe, head, list) {
  310. if (ref->parent) /* already direct */
  311. continue;
  312. if (ref->count == 0)
  313. continue;
  314. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  315. parents, extent_item_pos);
  316. if (err == -ENOMEM)
  317. goto out;
  318. if (err)
  319. continue;
  320. /* we put the first parent into the ref at hand */
  321. ULIST_ITER_INIT(&uiter);
  322. node = ulist_next(parents, &uiter);
  323. ref->parent = node ? node->val : 0;
  324. ref->inode_list = node ?
  325. (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
  326. /* additional parents require new refs being added here */
  327. while ((node = ulist_next(parents, &uiter))) {
  328. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  329. if (!new_ref) {
  330. ret = -ENOMEM;
  331. goto out;
  332. }
  333. memcpy(new_ref, ref, sizeof(*ref));
  334. new_ref->parent = node->val;
  335. new_ref->inode_list = (struct extent_inode_elem *)
  336. (uintptr_t)node->aux;
  337. list_add(&new_ref->list, &ref->list);
  338. }
  339. ulist_reinit(parents);
  340. }
  341. out:
  342. ulist_free(parents);
  343. return ret;
  344. }
  345. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  346. struct __prelim_ref *ref2)
  347. {
  348. if (ref1->level != ref2->level)
  349. return 0;
  350. if (ref1->root_id != ref2->root_id)
  351. return 0;
  352. if (ref1->key_for_search.type != ref2->key_for_search.type)
  353. return 0;
  354. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  355. return 0;
  356. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  357. return 0;
  358. if (ref1->parent != ref2->parent)
  359. return 0;
  360. return 1;
  361. }
  362. /*
  363. * read tree blocks and add keys where required.
  364. */
  365. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  366. struct list_head *head)
  367. {
  368. struct list_head *pos;
  369. struct extent_buffer *eb;
  370. list_for_each(pos, head) {
  371. struct __prelim_ref *ref;
  372. ref = list_entry(pos, struct __prelim_ref, list);
  373. if (ref->parent)
  374. continue;
  375. if (ref->key_for_search.type)
  376. continue;
  377. BUG_ON(!ref->wanted_disk_byte);
  378. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  379. fs_info->tree_root->leafsize, 0);
  380. if (!eb || !extent_buffer_uptodate(eb)) {
  381. free_extent_buffer(eb);
  382. return -EIO;
  383. }
  384. btrfs_tree_read_lock(eb);
  385. if (btrfs_header_level(eb) == 0)
  386. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  387. else
  388. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  389. btrfs_tree_read_unlock(eb);
  390. free_extent_buffer(eb);
  391. }
  392. return 0;
  393. }
  394. /*
  395. * merge two lists of backrefs and adjust counts accordingly
  396. *
  397. * mode = 1: merge identical keys, if key is set
  398. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  399. * additionally, we could even add a key range for the blocks we
  400. * looked into to merge even more (-> replace unresolved refs by those
  401. * having a parent).
  402. * mode = 2: merge identical parents
  403. */
  404. static void __merge_refs(struct list_head *head, int mode)
  405. {
  406. struct list_head *pos1;
  407. list_for_each(pos1, head) {
  408. struct list_head *n2;
  409. struct list_head *pos2;
  410. struct __prelim_ref *ref1;
  411. ref1 = list_entry(pos1, struct __prelim_ref, list);
  412. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  413. pos2 = n2, n2 = pos2->next) {
  414. struct __prelim_ref *ref2;
  415. struct __prelim_ref *xchg;
  416. struct extent_inode_elem *eie;
  417. ref2 = list_entry(pos2, struct __prelim_ref, list);
  418. if (mode == 1) {
  419. if (!ref_for_same_block(ref1, ref2))
  420. continue;
  421. if (!ref1->parent && ref2->parent) {
  422. xchg = ref1;
  423. ref1 = ref2;
  424. ref2 = xchg;
  425. }
  426. } else {
  427. if (ref1->parent != ref2->parent)
  428. continue;
  429. }
  430. eie = ref1->inode_list;
  431. while (eie && eie->next)
  432. eie = eie->next;
  433. if (eie)
  434. eie->next = ref2->inode_list;
  435. else
  436. ref1->inode_list = ref2->inode_list;
  437. ref1->count += ref2->count;
  438. list_del(&ref2->list);
  439. kfree(ref2);
  440. }
  441. }
  442. }
  443. /*
  444. * add all currently queued delayed refs from this head whose seq nr is
  445. * smaller or equal that seq to the list
  446. */
  447. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  448. struct list_head *prefs)
  449. {
  450. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  451. struct rb_node *n = &head->node.rb_node;
  452. struct btrfs_key key;
  453. struct btrfs_key op_key = {0};
  454. int sgn;
  455. int ret = 0;
  456. if (extent_op && extent_op->update_key)
  457. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  458. while ((n = rb_prev(n))) {
  459. struct btrfs_delayed_ref_node *node;
  460. node = rb_entry(n, struct btrfs_delayed_ref_node,
  461. rb_node);
  462. if (node->bytenr != head->node.bytenr)
  463. break;
  464. WARN_ON(node->is_head);
  465. if (node->seq > seq)
  466. continue;
  467. switch (node->action) {
  468. case BTRFS_ADD_DELAYED_EXTENT:
  469. case BTRFS_UPDATE_DELAYED_HEAD:
  470. WARN_ON(1);
  471. continue;
  472. case BTRFS_ADD_DELAYED_REF:
  473. sgn = 1;
  474. break;
  475. case BTRFS_DROP_DELAYED_REF:
  476. sgn = -1;
  477. break;
  478. default:
  479. BUG_ON(1);
  480. }
  481. switch (node->type) {
  482. case BTRFS_TREE_BLOCK_REF_KEY: {
  483. struct btrfs_delayed_tree_ref *ref;
  484. ref = btrfs_delayed_node_to_tree_ref(node);
  485. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  486. ref->level + 1, 0, node->bytenr,
  487. node->ref_mod * sgn);
  488. break;
  489. }
  490. case BTRFS_SHARED_BLOCK_REF_KEY: {
  491. struct btrfs_delayed_tree_ref *ref;
  492. ref = btrfs_delayed_node_to_tree_ref(node);
  493. ret = __add_prelim_ref(prefs, ref->root, NULL,
  494. ref->level + 1, ref->parent,
  495. node->bytenr,
  496. node->ref_mod * sgn);
  497. break;
  498. }
  499. case BTRFS_EXTENT_DATA_REF_KEY: {
  500. struct btrfs_delayed_data_ref *ref;
  501. ref = btrfs_delayed_node_to_data_ref(node);
  502. key.objectid = ref->objectid;
  503. key.type = BTRFS_EXTENT_DATA_KEY;
  504. key.offset = ref->offset;
  505. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  506. node->bytenr,
  507. node->ref_mod * sgn);
  508. break;
  509. }
  510. case BTRFS_SHARED_DATA_REF_KEY: {
  511. struct btrfs_delayed_data_ref *ref;
  512. ref = btrfs_delayed_node_to_data_ref(node);
  513. key.objectid = ref->objectid;
  514. key.type = BTRFS_EXTENT_DATA_KEY;
  515. key.offset = ref->offset;
  516. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  517. ref->parent, node->bytenr,
  518. node->ref_mod * sgn);
  519. break;
  520. }
  521. default:
  522. WARN_ON(1);
  523. }
  524. if (ret)
  525. return ret;
  526. }
  527. return 0;
  528. }
  529. /*
  530. * add all inline backrefs for bytenr to the list
  531. */
  532. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  533. struct btrfs_path *path, u64 bytenr,
  534. int *info_level, struct list_head *prefs)
  535. {
  536. int ret = 0;
  537. int slot;
  538. struct extent_buffer *leaf;
  539. struct btrfs_key key;
  540. struct btrfs_key found_key;
  541. unsigned long ptr;
  542. unsigned long end;
  543. struct btrfs_extent_item *ei;
  544. u64 flags;
  545. u64 item_size;
  546. /*
  547. * enumerate all inline refs
  548. */
  549. leaf = path->nodes[0];
  550. slot = path->slots[0];
  551. item_size = btrfs_item_size_nr(leaf, slot);
  552. BUG_ON(item_size < sizeof(*ei));
  553. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  554. flags = btrfs_extent_flags(leaf, ei);
  555. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  556. ptr = (unsigned long)(ei + 1);
  557. end = (unsigned long)ei + item_size;
  558. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  559. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  560. struct btrfs_tree_block_info *info;
  561. info = (struct btrfs_tree_block_info *)ptr;
  562. *info_level = btrfs_tree_block_level(leaf, info);
  563. ptr += sizeof(struct btrfs_tree_block_info);
  564. BUG_ON(ptr > end);
  565. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  566. *info_level = found_key.offset;
  567. } else {
  568. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  569. }
  570. while (ptr < end) {
  571. struct btrfs_extent_inline_ref *iref;
  572. u64 offset;
  573. int type;
  574. iref = (struct btrfs_extent_inline_ref *)ptr;
  575. type = btrfs_extent_inline_ref_type(leaf, iref);
  576. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  577. switch (type) {
  578. case BTRFS_SHARED_BLOCK_REF_KEY:
  579. ret = __add_prelim_ref(prefs, 0, NULL,
  580. *info_level + 1, offset,
  581. bytenr, 1);
  582. break;
  583. case BTRFS_SHARED_DATA_REF_KEY: {
  584. struct btrfs_shared_data_ref *sdref;
  585. int count;
  586. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  587. count = btrfs_shared_data_ref_count(leaf, sdref);
  588. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  589. bytenr, count);
  590. break;
  591. }
  592. case BTRFS_TREE_BLOCK_REF_KEY:
  593. ret = __add_prelim_ref(prefs, offset, NULL,
  594. *info_level + 1, 0,
  595. bytenr, 1);
  596. break;
  597. case BTRFS_EXTENT_DATA_REF_KEY: {
  598. struct btrfs_extent_data_ref *dref;
  599. int count;
  600. u64 root;
  601. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  602. count = btrfs_extent_data_ref_count(leaf, dref);
  603. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  604. dref);
  605. key.type = BTRFS_EXTENT_DATA_KEY;
  606. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  607. root = btrfs_extent_data_ref_root(leaf, dref);
  608. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  609. bytenr, count);
  610. break;
  611. }
  612. default:
  613. WARN_ON(1);
  614. }
  615. if (ret)
  616. return ret;
  617. ptr += btrfs_extent_inline_ref_size(type);
  618. }
  619. return 0;
  620. }
  621. /*
  622. * add all non-inline backrefs for bytenr to the list
  623. */
  624. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  625. struct btrfs_path *path, u64 bytenr,
  626. int info_level, struct list_head *prefs)
  627. {
  628. struct btrfs_root *extent_root = fs_info->extent_root;
  629. int ret;
  630. int slot;
  631. struct extent_buffer *leaf;
  632. struct btrfs_key key;
  633. while (1) {
  634. ret = btrfs_next_item(extent_root, path);
  635. if (ret < 0)
  636. break;
  637. if (ret) {
  638. ret = 0;
  639. break;
  640. }
  641. slot = path->slots[0];
  642. leaf = path->nodes[0];
  643. btrfs_item_key_to_cpu(leaf, &key, slot);
  644. if (key.objectid != bytenr)
  645. break;
  646. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  647. continue;
  648. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  649. break;
  650. switch (key.type) {
  651. case BTRFS_SHARED_BLOCK_REF_KEY:
  652. ret = __add_prelim_ref(prefs, 0, NULL,
  653. info_level + 1, key.offset,
  654. bytenr, 1);
  655. break;
  656. case BTRFS_SHARED_DATA_REF_KEY: {
  657. struct btrfs_shared_data_ref *sdref;
  658. int count;
  659. sdref = btrfs_item_ptr(leaf, slot,
  660. struct btrfs_shared_data_ref);
  661. count = btrfs_shared_data_ref_count(leaf, sdref);
  662. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  663. bytenr, count);
  664. break;
  665. }
  666. case BTRFS_TREE_BLOCK_REF_KEY:
  667. ret = __add_prelim_ref(prefs, key.offset, NULL,
  668. info_level + 1, 0,
  669. bytenr, 1);
  670. break;
  671. case BTRFS_EXTENT_DATA_REF_KEY: {
  672. struct btrfs_extent_data_ref *dref;
  673. int count;
  674. u64 root;
  675. dref = btrfs_item_ptr(leaf, slot,
  676. struct btrfs_extent_data_ref);
  677. count = btrfs_extent_data_ref_count(leaf, dref);
  678. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  679. dref);
  680. key.type = BTRFS_EXTENT_DATA_KEY;
  681. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  682. root = btrfs_extent_data_ref_root(leaf, dref);
  683. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  684. bytenr, count);
  685. break;
  686. }
  687. default:
  688. WARN_ON(1);
  689. }
  690. if (ret)
  691. return ret;
  692. }
  693. return ret;
  694. }
  695. /*
  696. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  697. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  698. * indirect refs to their parent bytenr.
  699. * When roots are found, they're added to the roots list
  700. *
  701. * FIXME some caching might speed things up
  702. */
  703. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  704. struct btrfs_fs_info *fs_info, u64 bytenr,
  705. u64 time_seq, struct ulist *refs,
  706. struct ulist *roots, const u64 *extent_item_pos)
  707. {
  708. struct btrfs_key key;
  709. struct btrfs_path *path;
  710. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  711. struct btrfs_delayed_ref_head *head;
  712. int info_level = 0;
  713. int ret;
  714. struct list_head prefs_delayed;
  715. struct list_head prefs;
  716. struct __prelim_ref *ref;
  717. INIT_LIST_HEAD(&prefs);
  718. INIT_LIST_HEAD(&prefs_delayed);
  719. key.objectid = bytenr;
  720. key.offset = (u64)-1;
  721. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  722. key.type = BTRFS_METADATA_ITEM_KEY;
  723. else
  724. key.type = BTRFS_EXTENT_ITEM_KEY;
  725. path = btrfs_alloc_path();
  726. if (!path)
  727. return -ENOMEM;
  728. if (!trans)
  729. path->search_commit_root = 1;
  730. /*
  731. * grab both a lock on the path and a lock on the delayed ref head.
  732. * We need both to get a consistent picture of how the refs look
  733. * at a specified point in time
  734. */
  735. again:
  736. head = NULL;
  737. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  738. if (ret < 0)
  739. goto out;
  740. BUG_ON(ret == 0);
  741. if (trans) {
  742. /*
  743. * look if there are updates for this ref queued and lock the
  744. * head
  745. */
  746. delayed_refs = &trans->transaction->delayed_refs;
  747. spin_lock(&delayed_refs->lock);
  748. head = btrfs_find_delayed_ref_head(trans, bytenr);
  749. if (head) {
  750. if (!mutex_trylock(&head->mutex)) {
  751. atomic_inc(&head->node.refs);
  752. spin_unlock(&delayed_refs->lock);
  753. btrfs_release_path(path);
  754. /*
  755. * Mutex was contended, block until it's
  756. * released and try again
  757. */
  758. mutex_lock(&head->mutex);
  759. mutex_unlock(&head->mutex);
  760. btrfs_put_delayed_ref(&head->node);
  761. goto again;
  762. }
  763. ret = __add_delayed_refs(head, time_seq,
  764. &prefs_delayed);
  765. mutex_unlock(&head->mutex);
  766. if (ret) {
  767. spin_unlock(&delayed_refs->lock);
  768. goto out;
  769. }
  770. }
  771. spin_unlock(&delayed_refs->lock);
  772. }
  773. if (path->slots[0]) {
  774. struct extent_buffer *leaf;
  775. int slot;
  776. path->slots[0]--;
  777. leaf = path->nodes[0];
  778. slot = path->slots[0];
  779. btrfs_item_key_to_cpu(leaf, &key, slot);
  780. if (key.objectid == bytenr &&
  781. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  782. key.type == BTRFS_METADATA_ITEM_KEY)) {
  783. ret = __add_inline_refs(fs_info, path, bytenr,
  784. &info_level, &prefs);
  785. if (ret)
  786. goto out;
  787. ret = __add_keyed_refs(fs_info, path, bytenr,
  788. info_level, &prefs);
  789. if (ret)
  790. goto out;
  791. }
  792. }
  793. btrfs_release_path(path);
  794. list_splice_init(&prefs_delayed, &prefs);
  795. ret = __add_missing_keys(fs_info, &prefs);
  796. if (ret)
  797. goto out;
  798. __merge_refs(&prefs, 1);
  799. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  800. extent_item_pos);
  801. if (ret)
  802. goto out;
  803. __merge_refs(&prefs, 2);
  804. while (!list_empty(&prefs)) {
  805. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  806. list_del(&ref->list);
  807. WARN_ON(ref->count < 0);
  808. if (ref->count && ref->root_id && ref->parent == 0) {
  809. /* no parent == root of tree */
  810. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  811. if (ret < 0)
  812. goto out;
  813. }
  814. if (ref->count && ref->parent) {
  815. struct extent_inode_elem *eie = NULL;
  816. if (extent_item_pos && !ref->inode_list) {
  817. u32 bsz;
  818. struct extent_buffer *eb;
  819. bsz = btrfs_level_size(fs_info->extent_root,
  820. info_level);
  821. eb = read_tree_block(fs_info->extent_root,
  822. ref->parent, bsz, 0);
  823. if (!eb || !extent_buffer_uptodate(eb)) {
  824. free_extent_buffer(eb);
  825. ret = -EIO;
  826. goto out;
  827. }
  828. ret = find_extent_in_eb(eb, bytenr,
  829. *extent_item_pos, &eie);
  830. ref->inode_list = eie;
  831. free_extent_buffer(eb);
  832. }
  833. ret = ulist_add_merge(refs, ref->parent,
  834. (uintptr_t)ref->inode_list,
  835. (u64 *)&eie, GFP_NOFS);
  836. if (ret < 0)
  837. goto out;
  838. if (!ret && extent_item_pos) {
  839. /*
  840. * we've recorded that parent, so we must extend
  841. * its inode list here
  842. */
  843. BUG_ON(!eie);
  844. while (eie->next)
  845. eie = eie->next;
  846. eie->next = ref->inode_list;
  847. }
  848. }
  849. kfree(ref);
  850. }
  851. out:
  852. btrfs_free_path(path);
  853. while (!list_empty(&prefs)) {
  854. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  855. list_del(&ref->list);
  856. kfree(ref);
  857. }
  858. while (!list_empty(&prefs_delayed)) {
  859. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  860. list);
  861. list_del(&ref->list);
  862. kfree(ref);
  863. }
  864. return ret;
  865. }
  866. static void free_leaf_list(struct ulist *blocks)
  867. {
  868. struct ulist_node *node = NULL;
  869. struct extent_inode_elem *eie;
  870. struct extent_inode_elem *eie_next;
  871. struct ulist_iterator uiter;
  872. ULIST_ITER_INIT(&uiter);
  873. while ((node = ulist_next(blocks, &uiter))) {
  874. if (!node->aux)
  875. continue;
  876. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  877. for (; eie; eie = eie_next) {
  878. eie_next = eie->next;
  879. kfree(eie);
  880. }
  881. node->aux = 0;
  882. }
  883. ulist_free(blocks);
  884. }
  885. /*
  886. * Finds all leafs with a reference to the specified combination of bytenr and
  887. * offset. key_list_head will point to a list of corresponding keys (caller must
  888. * free each list element). The leafs will be stored in the leafs ulist, which
  889. * must be freed with ulist_free.
  890. *
  891. * returns 0 on success, <0 on error
  892. */
  893. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  894. struct btrfs_fs_info *fs_info, u64 bytenr,
  895. u64 time_seq, struct ulist **leafs,
  896. const u64 *extent_item_pos)
  897. {
  898. struct ulist *tmp;
  899. int ret;
  900. tmp = ulist_alloc(GFP_NOFS);
  901. if (!tmp)
  902. return -ENOMEM;
  903. *leafs = ulist_alloc(GFP_NOFS);
  904. if (!*leafs) {
  905. ulist_free(tmp);
  906. return -ENOMEM;
  907. }
  908. ret = find_parent_nodes(trans, fs_info, bytenr,
  909. time_seq, *leafs, tmp, extent_item_pos);
  910. ulist_free(tmp);
  911. if (ret < 0 && ret != -ENOENT) {
  912. free_leaf_list(*leafs);
  913. return ret;
  914. }
  915. return 0;
  916. }
  917. /*
  918. * walk all backrefs for a given extent to find all roots that reference this
  919. * extent. Walking a backref means finding all extents that reference this
  920. * extent and in turn walk the backrefs of those, too. Naturally this is a
  921. * recursive process, but here it is implemented in an iterative fashion: We
  922. * find all referencing extents for the extent in question and put them on a
  923. * list. In turn, we find all referencing extents for those, further appending
  924. * to the list. The way we iterate the list allows adding more elements after
  925. * the current while iterating. The process stops when we reach the end of the
  926. * list. Found roots are added to the roots list.
  927. *
  928. * returns 0 on success, < 0 on error.
  929. */
  930. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  931. struct btrfs_fs_info *fs_info, u64 bytenr,
  932. u64 time_seq, struct ulist **roots)
  933. {
  934. struct ulist *tmp;
  935. struct ulist_node *node = NULL;
  936. struct ulist_iterator uiter;
  937. int ret;
  938. tmp = ulist_alloc(GFP_NOFS);
  939. if (!tmp)
  940. return -ENOMEM;
  941. *roots = ulist_alloc(GFP_NOFS);
  942. if (!*roots) {
  943. ulist_free(tmp);
  944. return -ENOMEM;
  945. }
  946. ULIST_ITER_INIT(&uiter);
  947. while (1) {
  948. ret = find_parent_nodes(trans, fs_info, bytenr,
  949. time_seq, tmp, *roots, NULL);
  950. if (ret < 0 && ret != -ENOENT) {
  951. ulist_free(tmp);
  952. ulist_free(*roots);
  953. return ret;
  954. }
  955. node = ulist_next(tmp, &uiter);
  956. if (!node)
  957. break;
  958. bytenr = node->val;
  959. }
  960. ulist_free(tmp);
  961. return 0;
  962. }
  963. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  964. struct btrfs_root *fs_root, struct btrfs_path *path,
  965. struct btrfs_key *found_key)
  966. {
  967. int ret;
  968. struct btrfs_key key;
  969. struct extent_buffer *eb;
  970. key.type = key_type;
  971. key.objectid = inum;
  972. key.offset = ioff;
  973. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  974. if (ret < 0)
  975. return ret;
  976. eb = path->nodes[0];
  977. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  978. ret = btrfs_next_leaf(fs_root, path);
  979. if (ret)
  980. return ret;
  981. eb = path->nodes[0];
  982. }
  983. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  984. if (found_key->type != key.type || found_key->objectid != key.objectid)
  985. return 1;
  986. return 0;
  987. }
  988. /*
  989. * this makes the path point to (inum INODE_ITEM ioff)
  990. */
  991. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  992. struct btrfs_path *path)
  993. {
  994. struct btrfs_key key;
  995. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  996. &key);
  997. }
  998. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  999. struct btrfs_path *path,
  1000. struct btrfs_key *found_key)
  1001. {
  1002. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  1003. found_key);
  1004. }
  1005. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1006. u64 start_off, struct btrfs_path *path,
  1007. struct btrfs_inode_extref **ret_extref,
  1008. u64 *found_off)
  1009. {
  1010. int ret, slot;
  1011. struct btrfs_key key;
  1012. struct btrfs_key found_key;
  1013. struct btrfs_inode_extref *extref;
  1014. struct extent_buffer *leaf;
  1015. unsigned long ptr;
  1016. key.objectid = inode_objectid;
  1017. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1018. key.offset = start_off;
  1019. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1020. if (ret < 0)
  1021. return ret;
  1022. while (1) {
  1023. leaf = path->nodes[0];
  1024. slot = path->slots[0];
  1025. if (slot >= btrfs_header_nritems(leaf)) {
  1026. /*
  1027. * If the item at offset is not found,
  1028. * btrfs_search_slot will point us to the slot
  1029. * where it should be inserted. In our case
  1030. * that will be the slot directly before the
  1031. * next INODE_REF_KEY_V2 item. In the case
  1032. * that we're pointing to the last slot in a
  1033. * leaf, we must move one leaf over.
  1034. */
  1035. ret = btrfs_next_leaf(root, path);
  1036. if (ret) {
  1037. if (ret >= 1)
  1038. ret = -ENOENT;
  1039. break;
  1040. }
  1041. continue;
  1042. }
  1043. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1044. /*
  1045. * Check that we're still looking at an extended ref key for
  1046. * this particular objectid. If we have different
  1047. * objectid or type then there are no more to be found
  1048. * in the tree and we can exit.
  1049. */
  1050. ret = -ENOENT;
  1051. if (found_key.objectid != inode_objectid)
  1052. break;
  1053. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1054. break;
  1055. ret = 0;
  1056. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1057. extref = (struct btrfs_inode_extref *)ptr;
  1058. *ret_extref = extref;
  1059. if (found_off)
  1060. *found_off = found_key.offset;
  1061. break;
  1062. }
  1063. return ret;
  1064. }
  1065. /*
  1066. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1067. * Elements of the path are separated by '/' and the path is guaranteed to be
  1068. * 0-terminated. the path is only given within the current file system.
  1069. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1070. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1071. * the start point of the resulting string is returned. this pointer is within
  1072. * dest, normally.
  1073. * in case the path buffer would overflow, the pointer is decremented further
  1074. * as if output was written to the buffer, though no more output is actually
  1075. * generated. that way, the caller can determine how much space would be
  1076. * required for the path to fit into the buffer. in that case, the returned
  1077. * value will be smaller than dest. callers must check this!
  1078. */
  1079. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1080. u32 name_len, unsigned long name_off,
  1081. struct extent_buffer *eb_in, u64 parent,
  1082. char *dest, u32 size)
  1083. {
  1084. int slot;
  1085. u64 next_inum;
  1086. int ret;
  1087. s64 bytes_left = ((s64)size) - 1;
  1088. struct extent_buffer *eb = eb_in;
  1089. struct btrfs_key found_key;
  1090. int leave_spinning = path->leave_spinning;
  1091. struct btrfs_inode_ref *iref;
  1092. if (bytes_left >= 0)
  1093. dest[bytes_left] = '\0';
  1094. path->leave_spinning = 1;
  1095. while (1) {
  1096. bytes_left -= name_len;
  1097. if (bytes_left >= 0)
  1098. read_extent_buffer(eb, dest + bytes_left,
  1099. name_off, name_len);
  1100. if (eb != eb_in) {
  1101. btrfs_tree_read_unlock_blocking(eb);
  1102. free_extent_buffer(eb);
  1103. }
  1104. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1105. if (ret > 0)
  1106. ret = -ENOENT;
  1107. if (ret)
  1108. break;
  1109. next_inum = found_key.offset;
  1110. /* regular exit ahead */
  1111. if (parent == next_inum)
  1112. break;
  1113. slot = path->slots[0];
  1114. eb = path->nodes[0];
  1115. /* make sure we can use eb after releasing the path */
  1116. if (eb != eb_in) {
  1117. atomic_inc(&eb->refs);
  1118. btrfs_tree_read_lock(eb);
  1119. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1120. }
  1121. btrfs_release_path(path);
  1122. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1123. name_len = btrfs_inode_ref_name_len(eb, iref);
  1124. name_off = (unsigned long)(iref + 1);
  1125. parent = next_inum;
  1126. --bytes_left;
  1127. if (bytes_left >= 0)
  1128. dest[bytes_left] = '/';
  1129. }
  1130. btrfs_release_path(path);
  1131. path->leave_spinning = leave_spinning;
  1132. if (ret)
  1133. return ERR_PTR(ret);
  1134. return dest + bytes_left;
  1135. }
  1136. /*
  1137. * this makes the path point to (logical EXTENT_ITEM *)
  1138. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1139. * tree blocks and <0 on error.
  1140. */
  1141. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1142. struct btrfs_path *path, struct btrfs_key *found_key,
  1143. u64 *flags_ret)
  1144. {
  1145. int ret;
  1146. u64 flags;
  1147. u64 size = 0;
  1148. u32 item_size;
  1149. struct extent_buffer *eb;
  1150. struct btrfs_extent_item *ei;
  1151. struct btrfs_key key;
  1152. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1153. key.type = BTRFS_METADATA_ITEM_KEY;
  1154. else
  1155. key.type = BTRFS_EXTENT_ITEM_KEY;
  1156. key.objectid = logical;
  1157. key.offset = (u64)-1;
  1158. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1159. if (ret < 0)
  1160. return ret;
  1161. ret = btrfs_previous_item(fs_info->extent_root, path,
  1162. 0, BTRFS_EXTENT_ITEM_KEY);
  1163. if (ret < 0)
  1164. return ret;
  1165. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1166. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1167. size = fs_info->extent_root->leafsize;
  1168. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1169. size = found_key->offset;
  1170. if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
  1171. found_key->type != BTRFS_METADATA_ITEM_KEY) ||
  1172. found_key->objectid > logical ||
  1173. found_key->objectid + size <= logical) {
  1174. pr_debug("logical %llu is not within any extent\n",
  1175. (unsigned long long)logical);
  1176. return -ENOENT;
  1177. }
  1178. eb = path->nodes[0];
  1179. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1180. BUG_ON(item_size < sizeof(*ei));
  1181. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1182. flags = btrfs_extent_flags(eb, ei);
  1183. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1184. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1185. (unsigned long long)logical,
  1186. (unsigned long long)(logical - found_key->objectid),
  1187. (unsigned long long)found_key->objectid,
  1188. (unsigned long long)found_key->offset,
  1189. (unsigned long long)flags, item_size);
  1190. WARN_ON(!flags_ret);
  1191. if (flags_ret) {
  1192. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1193. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1194. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1195. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1196. else
  1197. BUG_ON(1);
  1198. return 0;
  1199. }
  1200. return -EIO;
  1201. }
  1202. /*
  1203. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1204. * for the first call and may be modified. it is used to track state.
  1205. * if more refs exist, 0 is returned and the next call to
  1206. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1207. * next ref. after the last ref was processed, 1 is returned.
  1208. * returns <0 on error
  1209. */
  1210. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1211. struct btrfs_extent_item *ei, u32 item_size,
  1212. struct btrfs_extent_inline_ref **out_eiref,
  1213. int *out_type)
  1214. {
  1215. unsigned long end;
  1216. u64 flags;
  1217. struct btrfs_tree_block_info *info;
  1218. if (!*ptr) {
  1219. /* first call */
  1220. flags = btrfs_extent_flags(eb, ei);
  1221. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1222. info = (struct btrfs_tree_block_info *)(ei + 1);
  1223. *out_eiref =
  1224. (struct btrfs_extent_inline_ref *)(info + 1);
  1225. } else {
  1226. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1227. }
  1228. *ptr = (unsigned long)*out_eiref;
  1229. if ((void *)*ptr >= (void *)ei + item_size)
  1230. return -ENOENT;
  1231. }
  1232. end = (unsigned long)ei + item_size;
  1233. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1234. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1235. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1236. WARN_ON(*ptr > end);
  1237. if (*ptr == end)
  1238. return 1; /* last */
  1239. return 0;
  1240. }
  1241. /*
  1242. * reads the tree block backref for an extent. tree level and root are returned
  1243. * through out_level and out_root. ptr must point to a 0 value for the first
  1244. * call and may be modified (see __get_extent_inline_ref comment).
  1245. * returns 0 if data was provided, 1 if there was no more data to provide or
  1246. * <0 on error.
  1247. */
  1248. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1249. struct btrfs_extent_item *ei, u32 item_size,
  1250. u64 *out_root, u8 *out_level)
  1251. {
  1252. int ret;
  1253. int type;
  1254. struct btrfs_tree_block_info *info;
  1255. struct btrfs_extent_inline_ref *eiref;
  1256. if (*ptr == (unsigned long)-1)
  1257. return 1;
  1258. while (1) {
  1259. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1260. &eiref, &type);
  1261. if (ret < 0)
  1262. return ret;
  1263. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1264. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1265. break;
  1266. if (ret == 1)
  1267. return 1;
  1268. }
  1269. /* we can treat both ref types equally here */
  1270. info = (struct btrfs_tree_block_info *)(ei + 1);
  1271. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1272. *out_level = btrfs_tree_block_level(eb, info);
  1273. if (ret == 1)
  1274. *ptr = (unsigned long)-1;
  1275. return 0;
  1276. }
  1277. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1278. u64 root, u64 extent_item_objectid,
  1279. iterate_extent_inodes_t *iterate, void *ctx)
  1280. {
  1281. struct extent_inode_elem *eie;
  1282. int ret = 0;
  1283. for (eie = inode_list; eie; eie = eie->next) {
  1284. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1285. "root %llu\n", extent_item_objectid,
  1286. eie->inum, eie->offset, root);
  1287. ret = iterate(eie->inum, eie->offset, root, ctx);
  1288. if (ret) {
  1289. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1290. extent_item_objectid, ret);
  1291. break;
  1292. }
  1293. }
  1294. return ret;
  1295. }
  1296. /*
  1297. * calls iterate() for every inode that references the extent identified by
  1298. * the given parameters.
  1299. * when the iterator function returns a non-zero value, iteration stops.
  1300. */
  1301. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1302. u64 extent_item_objectid, u64 extent_item_pos,
  1303. int search_commit_root,
  1304. iterate_extent_inodes_t *iterate, void *ctx)
  1305. {
  1306. int ret;
  1307. struct btrfs_trans_handle *trans = NULL;
  1308. struct ulist *refs = NULL;
  1309. struct ulist *roots = NULL;
  1310. struct ulist_node *ref_node = NULL;
  1311. struct ulist_node *root_node = NULL;
  1312. struct seq_list tree_mod_seq_elem = {};
  1313. struct ulist_iterator ref_uiter;
  1314. struct ulist_iterator root_uiter;
  1315. pr_debug("resolving all inodes for extent %llu\n",
  1316. extent_item_objectid);
  1317. if (!search_commit_root) {
  1318. trans = btrfs_join_transaction(fs_info->extent_root);
  1319. if (IS_ERR(trans))
  1320. return PTR_ERR(trans);
  1321. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1322. }
  1323. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1324. tree_mod_seq_elem.seq, &refs,
  1325. &extent_item_pos);
  1326. if (ret)
  1327. goto out;
  1328. ULIST_ITER_INIT(&ref_uiter);
  1329. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1330. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1331. tree_mod_seq_elem.seq, &roots);
  1332. if (ret)
  1333. break;
  1334. ULIST_ITER_INIT(&root_uiter);
  1335. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1336. pr_debug("root %llu references leaf %llu, data list "
  1337. "%#llx\n", root_node->val, ref_node->val,
  1338. (long long)ref_node->aux);
  1339. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1340. (uintptr_t)ref_node->aux,
  1341. root_node->val,
  1342. extent_item_objectid,
  1343. iterate, ctx);
  1344. }
  1345. ulist_free(roots);
  1346. }
  1347. free_leaf_list(refs);
  1348. out:
  1349. if (!search_commit_root) {
  1350. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1351. btrfs_end_transaction(trans, fs_info->extent_root);
  1352. }
  1353. return ret;
  1354. }
  1355. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1356. struct btrfs_path *path,
  1357. iterate_extent_inodes_t *iterate, void *ctx)
  1358. {
  1359. int ret;
  1360. u64 extent_item_pos;
  1361. u64 flags = 0;
  1362. struct btrfs_key found_key;
  1363. int search_commit_root = path->search_commit_root;
  1364. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1365. btrfs_release_path(path);
  1366. if (ret < 0)
  1367. return ret;
  1368. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1369. return -EINVAL;
  1370. extent_item_pos = logical - found_key.objectid;
  1371. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1372. extent_item_pos, search_commit_root,
  1373. iterate, ctx);
  1374. return ret;
  1375. }
  1376. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1377. struct extent_buffer *eb, void *ctx);
  1378. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1379. struct btrfs_path *path,
  1380. iterate_irefs_t *iterate, void *ctx)
  1381. {
  1382. int ret = 0;
  1383. int slot;
  1384. u32 cur;
  1385. u32 len;
  1386. u32 name_len;
  1387. u64 parent = 0;
  1388. int found = 0;
  1389. struct extent_buffer *eb;
  1390. struct btrfs_item *item;
  1391. struct btrfs_inode_ref *iref;
  1392. struct btrfs_key found_key;
  1393. while (!ret) {
  1394. path->leave_spinning = 1;
  1395. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1396. &found_key);
  1397. if (ret < 0)
  1398. break;
  1399. if (ret) {
  1400. ret = found ? 0 : -ENOENT;
  1401. break;
  1402. }
  1403. ++found;
  1404. parent = found_key.offset;
  1405. slot = path->slots[0];
  1406. eb = path->nodes[0];
  1407. /* make sure we can use eb after releasing the path */
  1408. atomic_inc(&eb->refs);
  1409. btrfs_tree_read_lock(eb);
  1410. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1411. btrfs_release_path(path);
  1412. item = btrfs_item_nr(eb, slot);
  1413. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1414. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1415. name_len = btrfs_inode_ref_name_len(eb, iref);
  1416. /* path must be released before calling iterate()! */
  1417. pr_debug("following ref at offset %u for inode %llu in "
  1418. "tree %llu\n", cur,
  1419. (unsigned long long)found_key.objectid,
  1420. (unsigned long long)fs_root->objectid);
  1421. ret = iterate(parent, name_len,
  1422. (unsigned long)(iref + 1), eb, ctx);
  1423. if (ret)
  1424. break;
  1425. len = sizeof(*iref) + name_len;
  1426. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1427. }
  1428. btrfs_tree_read_unlock_blocking(eb);
  1429. free_extent_buffer(eb);
  1430. }
  1431. btrfs_release_path(path);
  1432. return ret;
  1433. }
  1434. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1435. struct btrfs_path *path,
  1436. iterate_irefs_t *iterate, void *ctx)
  1437. {
  1438. int ret;
  1439. int slot;
  1440. u64 offset = 0;
  1441. u64 parent;
  1442. int found = 0;
  1443. struct extent_buffer *eb;
  1444. struct btrfs_inode_extref *extref;
  1445. struct extent_buffer *leaf;
  1446. u32 item_size;
  1447. u32 cur_offset;
  1448. unsigned long ptr;
  1449. while (1) {
  1450. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1451. &offset);
  1452. if (ret < 0)
  1453. break;
  1454. if (ret) {
  1455. ret = found ? 0 : -ENOENT;
  1456. break;
  1457. }
  1458. ++found;
  1459. slot = path->slots[0];
  1460. eb = path->nodes[0];
  1461. /* make sure we can use eb after releasing the path */
  1462. atomic_inc(&eb->refs);
  1463. btrfs_tree_read_lock(eb);
  1464. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1465. btrfs_release_path(path);
  1466. leaf = path->nodes[0];
  1467. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1468. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1469. cur_offset = 0;
  1470. while (cur_offset < item_size) {
  1471. u32 name_len;
  1472. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1473. parent = btrfs_inode_extref_parent(eb, extref);
  1474. name_len = btrfs_inode_extref_name_len(eb, extref);
  1475. ret = iterate(parent, name_len,
  1476. (unsigned long)&extref->name, eb, ctx);
  1477. if (ret)
  1478. break;
  1479. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1480. cur_offset += sizeof(*extref);
  1481. }
  1482. btrfs_tree_read_unlock_blocking(eb);
  1483. free_extent_buffer(eb);
  1484. offset++;
  1485. }
  1486. btrfs_release_path(path);
  1487. return ret;
  1488. }
  1489. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1490. struct btrfs_path *path, iterate_irefs_t *iterate,
  1491. void *ctx)
  1492. {
  1493. int ret;
  1494. int found_refs = 0;
  1495. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1496. if (!ret)
  1497. ++found_refs;
  1498. else if (ret != -ENOENT)
  1499. return ret;
  1500. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1501. if (ret == -ENOENT && found_refs)
  1502. return 0;
  1503. return ret;
  1504. }
  1505. /*
  1506. * returns 0 if the path could be dumped (probably truncated)
  1507. * returns <0 in case of an error
  1508. */
  1509. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1510. struct extent_buffer *eb, void *ctx)
  1511. {
  1512. struct inode_fs_paths *ipath = ctx;
  1513. char *fspath;
  1514. char *fspath_min;
  1515. int i = ipath->fspath->elem_cnt;
  1516. const int s_ptr = sizeof(char *);
  1517. u32 bytes_left;
  1518. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1519. ipath->fspath->bytes_left - s_ptr : 0;
  1520. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1521. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1522. name_off, eb, inum, fspath_min, bytes_left);
  1523. if (IS_ERR(fspath))
  1524. return PTR_ERR(fspath);
  1525. if (fspath > fspath_min) {
  1526. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1527. ++ipath->fspath->elem_cnt;
  1528. ipath->fspath->bytes_left = fspath - fspath_min;
  1529. } else {
  1530. ++ipath->fspath->elem_missed;
  1531. ipath->fspath->bytes_missing += fspath_min - fspath;
  1532. ipath->fspath->bytes_left = 0;
  1533. }
  1534. return 0;
  1535. }
  1536. /*
  1537. * this dumps all file system paths to the inode into the ipath struct, provided
  1538. * is has been created large enough. each path is zero-terminated and accessed
  1539. * from ipath->fspath->val[i].
  1540. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1541. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1542. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1543. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1544. * have been needed to return all paths.
  1545. */
  1546. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1547. {
  1548. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1549. inode_to_path, ipath);
  1550. }
  1551. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1552. {
  1553. struct btrfs_data_container *data;
  1554. size_t alloc_bytes;
  1555. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1556. data = vmalloc(alloc_bytes);
  1557. if (!data)
  1558. return ERR_PTR(-ENOMEM);
  1559. if (total_bytes >= sizeof(*data)) {
  1560. data->bytes_left = total_bytes - sizeof(*data);
  1561. data->bytes_missing = 0;
  1562. } else {
  1563. data->bytes_missing = sizeof(*data) - total_bytes;
  1564. data->bytes_left = 0;
  1565. }
  1566. data->elem_cnt = 0;
  1567. data->elem_missed = 0;
  1568. return data;
  1569. }
  1570. /*
  1571. * allocates space to return multiple file system paths for an inode.
  1572. * total_bytes to allocate are passed, note that space usable for actual path
  1573. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1574. * the returned pointer must be freed with free_ipath() in the end.
  1575. */
  1576. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1577. struct btrfs_path *path)
  1578. {
  1579. struct inode_fs_paths *ifp;
  1580. struct btrfs_data_container *fspath;
  1581. fspath = init_data_container(total_bytes);
  1582. if (IS_ERR(fspath))
  1583. return (void *)fspath;
  1584. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1585. if (!ifp) {
  1586. kfree(fspath);
  1587. return ERR_PTR(-ENOMEM);
  1588. }
  1589. ifp->btrfs_path = path;
  1590. ifp->fspath = fspath;
  1591. ifp->fs_root = fs_root;
  1592. return ifp;
  1593. }
  1594. void free_ipath(struct inode_fs_paths *ipath)
  1595. {
  1596. if (!ipath)
  1597. return;
  1598. vfree(ipath->fspath);
  1599. kfree(ipath);
  1600. }