efx.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include "net_driver.h"
  23. #include "gmii.h"
  24. #include "ethtool.h"
  25. #include "tx.h"
  26. #include "rx.h"
  27. #include "efx.h"
  28. #include "mdio_10g.h"
  29. #include "falcon.h"
  30. #include "mac.h"
  31. #define EFX_MAX_MTU (9 * 1024)
  32. /* RX slow fill workqueue. If memory allocation fails in the fast path,
  33. * a work item is pushed onto this work queue to retry the allocation later,
  34. * to avoid the NIC being starved of RX buffers. Since this is a per cpu
  35. * workqueue, there is nothing to be gained in making it per NIC
  36. */
  37. static struct workqueue_struct *refill_workqueue;
  38. /**************************************************************************
  39. *
  40. * Configurable values
  41. *
  42. *************************************************************************/
  43. /*
  44. * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
  45. *
  46. * This sets the default for new devices. It can be controlled later
  47. * using ethtool.
  48. */
  49. static int lro = true;
  50. module_param(lro, int, 0644);
  51. MODULE_PARM_DESC(lro, "Large receive offload acceleration");
  52. /*
  53. * Use separate channels for TX and RX events
  54. *
  55. * Set this to 1 to use separate channels for TX and RX. It allows us to
  56. * apply a higher level of interrupt moderation to TX events.
  57. *
  58. * This is forced to 0 for MSI interrupt mode as the interrupt vector
  59. * is not written
  60. */
  61. static unsigned int separate_tx_and_rx_channels = true;
  62. /* This is the weight assigned to each of the (per-channel) virtual
  63. * NAPI devices.
  64. */
  65. static int napi_weight = 64;
  66. /* This is the time (in jiffies) between invocations of the hardware
  67. * monitor, which checks for known hardware bugs and resets the
  68. * hardware and driver as necessary.
  69. */
  70. unsigned int efx_monitor_interval = 1 * HZ;
  71. /* This controls whether or not the hardware monitor will trigger a
  72. * reset when it detects an error condition.
  73. */
  74. static unsigned int monitor_reset = true;
  75. /* This controls whether or not the driver will initialise devices
  76. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  77. * such devices will be initialised with a random locally-generated
  78. * MAC address. This allows for loading the sfc_mtd driver to
  79. * reprogram the flash, even if the flash contents (including the MAC
  80. * address) have previously been erased.
  81. */
  82. static unsigned int allow_bad_hwaddr;
  83. /* Initial interrupt moderation settings. They can be modified after
  84. * module load with ethtool.
  85. *
  86. * The default for RX should strike a balance between increasing the
  87. * round-trip latency and reducing overhead.
  88. */
  89. static unsigned int rx_irq_mod_usec = 60;
  90. /* Initial interrupt moderation settings. They can be modified after
  91. * module load with ethtool.
  92. *
  93. * This default is chosen to ensure that a 10G link does not go idle
  94. * while a TX queue is stopped after it has become full. A queue is
  95. * restarted when it drops below half full. The time this takes (assuming
  96. * worst case 3 descriptors per packet and 1024 descriptors) is
  97. * 512 / 3 * 1.2 = 205 usec.
  98. */
  99. static unsigned int tx_irq_mod_usec = 150;
  100. /* This is the first interrupt mode to try out of:
  101. * 0 => MSI-X
  102. * 1 => MSI
  103. * 2 => legacy
  104. */
  105. static unsigned int interrupt_mode;
  106. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  107. * i.e. the number of CPUs among which we may distribute simultaneous
  108. * interrupt handling.
  109. *
  110. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  111. * The default (0) means to assign an interrupt to each package (level II cache)
  112. */
  113. static unsigned int rss_cpus;
  114. module_param(rss_cpus, uint, 0444);
  115. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  116. /**************************************************************************
  117. *
  118. * Utility functions and prototypes
  119. *
  120. *************************************************************************/
  121. static void efx_remove_channel(struct efx_channel *channel);
  122. static void efx_remove_port(struct efx_nic *efx);
  123. static void efx_fini_napi(struct efx_nic *efx);
  124. static void efx_fini_channels(struct efx_nic *efx);
  125. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  126. do { \
  127. if ((efx->state == STATE_RUNNING) || \
  128. (efx->state == STATE_RESETTING)) \
  129. ASSERT_RTNL(); \
  130. } while (0)
  131. /**************************************************************************
  132. *
  133. * Event queue processing
  134. *
  135. *************************************************************************/
  136. /* Process channel's event queue
  137. *
  138. * This function is responsible for processing the event queue of a
  139. * single channel. The caller must guarantee that this function will
  140. * never be concurrently called more than once on the same channel,
  141. * though different channels may be being processed concurrently.
  142. */
  143. static int efx_process_channel(struct efx_channel *channel, int rx_quota)
  144. {
  145. struct efx_nic *efx = channel->efx;
  146. int rx_packets;
  147. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  148. !channel->enabled))
  149. return 0;
  150. rx_packets = falcon_process_eventq(channel, rx_quota);
  151. if (rx_packets == 0)
  152. return 0;
  153. /* Deliver last RX packet. */
  154. if (channel->rx_pkt) {
  155. __efx_rx_packet(channel, channel->rx_pkt,
  156. channel->rx_pkt_csummed);
  157. channel->rx_pkt = NULL;
  158. }
  159. efx_flush_lro(channel);
  160. efx_rx_strategy(channel);
  161. efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
  162. return rx_packets;
  163. }
  164. /* Mark channel as finished processing
  165. *
  166. * Note that since we will not receive further interrupts for this
  167. * channel before we finish processing and call the eventq_read_ack()
  168. * method, there is no need to use the interrupt hold-off timers.
  169. */
  170. static inline void efx_channel_processed(struct efx_channel *channel)
  171. {
  172. /* The interrupt handler for this channel may set work_pending
  173. * as soon as we acknowledge the events we've seen. Make sure
  174. * it's cleared before then. */
  175. channel->work_pending = false;
  176. smp_wmb();
  177. falcon_eventq_read_ack(channel);
  178. }
  179. /* NAPI poll handler
  180. *
  181. * NAPI guarantees serialisation of polls of the same device, which
  182. * provides the guarantee required by efx_process_channel().
  183. */
  184. static int efx_poll(struct napi_struct *napi, int budget)
  185. {
  186. struct efx_channel *channel =
  187. container_of(napi, struct efx_channel, napi_str);
  188. struct net_device *napi_dev = channel->napi_dev;
  189. int rx_packets;
  190. EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
  191. channel->channel, raw_smp_processor_id());
  192. rx_packets = efx_process_channel(channel, budget);
  193. if (rx_packets < budget) {
  194. /* There is no race here; although napi_disable() will
  195. * only wait for netif_rx_complete(), this isn't a problem
  196. * since efx_channel_processed() will have no effect if
  197. * interrupts have already been disabled.
  198. */
  199. netif_rx_complete(napi_dev, napi);
  200. efx_channel_processed(channel);
  201. }
  202. return rx_packets;
  203. }
  204. /* Process the eventq of the specified channel immediately on this CPU
  205. *
  206. * Disable hardware generated interrupts, wait for any existing
  207. * processing to finish, then directly poll (and ack ) the eventq.
  208. * Finally reenable NAPI and interrupts.
  209. *
  210. * Since we are touching interrupts the caller should hold the suspend lock
  211. */
  212. void efx_process_channel_now(struct efx_channel *channel)
  213. {
  214. struct efx_nic *efx = channel->efx;
  215. BUG_ON(!channel->used_flags);
  216. BUG_ON(!channel->enabled);
  217. /* Disable interrupts and wait for ISRs to complete */
  218. falcon_disable_interrupts(efx);
  219. if (efx->legacy_irq)
  220. synchronize_irq(efx->legacy_irq);
  221. if (channel->irq)
  222. synchronize_irq(channel->irq);
  223. /* Wait for any NAPI processing to complete */
  224. napi_disable(&channel->napi_str);
  225. /* Poll the channel */
  226. efx_process_channel(channel, efx->type->evq_size);
  227. /* Ack the eventq. This may cause an interrupt to be generated
  228. * when they are reenabled */
  229. efx_channel_processed(channel);
  230. napi_enable(&channel->napi_str);
  231. falcon_enable_interrupts(efx);
  232. }
  233. /* Create event queue
  234. * Event queue memory allocations are done only once. If the channel
  235. * is reset, the memory buffer will be reused; this guards against
  236. * errors during channel reset and also simplifies interrupt handling.
  237. */
  238. static int efx_probe_eventq(struct efx_channel *channel)
  239. {
  240. EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
  241. return falcon_probe_eventq(channel);
  242. }
  243. /* Prepare channel's event queue */
  244. static void efx_init_eventq(struct efx_channel *channel)
  245. {
  246. EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
  247. channel->eventq_read_ptr = 0;
  248. falcon_init_eventq(channel);
  249. }
  250. static void efx_fini_eventq(struct efx_channel *channel)
  251. {
  252. EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
  253. falcon_fini_eventq(channel);
  254. }
  255. static void efx_remove_eventq(struct efx_channel *channel)
  256. {
  257. EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
  258. falcon_remove_eventq(channel);
  259. }
  260. /**************************************************************************
  261. *
  262. * Channel handling
  263. *
  264. *************************************************************************/
  265. static int efx_probe_channel(struct efx_channel *channel)
  266. {
  267. struct efx_tx_queue *tx_queue;
  268. struct efx_rx_queue *rx_queue;
  269. int rc;
  270. EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
  271. rc = efx_probe_eventq(channel);
  272. if (rc)
  273. goto fail1;
  274. efx_for_each_channel_tx_queue(tx_queue, channel) {
  275. rc = efx_probe_tx_queue(tx_queue);
  276. if (rc)
  277. goto fail2;
  278. }
  279. efx_for_each_channel_rx_queue(rx_queue, channel) {
  280. rc = efx_probe_rx_queue(rx_queue);
  281. if (rc)
  282. goto fail3;
  283. }
  284. channel->n_rx_frm_trunc = 0;
  285. return 0;
  286. fail3:
  287. efx_for_each_channel_rx_queue(rx_queue, channel)
  288. efx_remove_rx_queue(rx_queue);
  289. fail2:
  290. efx_for_each_channel_tx_queue(tx_queue, channel)
  291. efx_remove_tx_queue(tx_queue);
  292. fail1:
  293. return rc;
  294. }
  295. /* Channels are shutdown and reinitialised whilst the NIC is running
  296. * to propagate configuration changes (mtu, checksum offload), or
  297. * to clear hardware error conditions
  298. */
  299. static void efx_init_channels(struct efx_nic *efx)
  300. {
  301. struct efx_tx_queue *tx_queue;
  302. struct efx_rx_queue *rx_queue;
  303. struct efx_channel *channel;
  304. /* Calculate the rx buffer allocation parameters required to
  305. * support the current MTU, including padding for header
  306. * alignment and overruns.
  307. */
  308. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  309. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  310. efx->type->rx_buffer_padding);
  311. efx->rx_buffer_order = get_order(efx->rx_buffer_len);
  312. /* Initialise the channels */
  313. efx_for_each_channel(channel, efx) {
  314. EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
  315. efx_init_eventq(channel);
  316. efx_for_each_channel_tx_queue(tx_queue, channel)
  317. efx_init_tx_queue(tx_queue);
  318. /* The rx buffer allocation strategy is MTU dependent */
  319. efx_rx_strategy(channel);
  320. efx_for_each_channel_rx_queue(rx_queue, channel)
  321. efx_init_rx_queue(rx_queue);
  322. WARN_ON(channel->rx_pkt != NULL);
  323. efx_rx_strategy(channel);
  324. }
  325. }
  326. /* This enables event queue processing and packet transmission.
  327. *
  328. * Note that this function is not allowed to fail, since that would
  329. * introduce too much complexity into the suspend/resume path.
  330. */
  331. static void efx_start_channel(struct efx_channel *channel)
  332. {
  333. struct efx_rx_queue *rx_queue;
  334. EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
  335. if (!(channel->efx->net_dev->flags & IFF_UP))
  336. netif_napi_add(channel->napi_dev, &channel->napi_str,
  337. efx_poll, napi_weight);
  338. /* The interrupt handler for this channel may set work_pending
  339. * as soon as we enable it. Make sure it's cleared before
  340. * then. Similarly, make sure it sees the enabled flag set. */
  341. channel->work_pending = false;
  342. channel->enabled = true;
  343. smp_wmb();
  344. napi_enable(&channel->napi_str);
  345. /* Load up RX descriptors */
  346. efx_for_each_channel_rx_queue(rx_queue, channel)
  347. efx_fast_push_rx_descriptors(rx_queue);
  348. }
  349. /* This disables event queue processing and packet transmission.
  350. * This function does not guarantee that all queue processing
  351. * (e.g. RX refill) is complete.
  352. */
  353. static void efx_stop_channel(struct efx_channel *channel)
  354. {
  355. struct efx_rx_queue *rx_queue;
  356. if (!channel->enabled)
  357. return;
  358. EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
  359. channel->enabled = false;
  360. napi_disable(&channel->napi_str);
  361. /* Ensure that any worker threads have exited or will be no-ops */
  362. efx_for_each_channel_rx_queue(rx_queue, channel) {
  363. spin_lock_bh(&rx_queue->add_lock);
  364. spin_unlock_bh(&rx_queue->add_lock);
  365. }
  366. }
  367. static void efx_fini_channels(struct efx_nic *efx)
  368. {
  369. struct efx_channel *channel;
  370. struct efx_tx_queue *tx_queue;
  371. struct efx_rx_queue *rx_queue;
  372. EFX_ASSERT_RESET_SERIALISED(efx);
  373. BUG_ON(efx->port_enabled);
  374. efx_for_each_channel(channel, efx) {
  375. EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
  376. efx_for_each_channel_rx_queue(rx_queue, channel)
  377. efx_fini_rx_queue(rx_queue);
  378. efx_for_each_channel_tx_queue(tx_queue, channel)
  379. efx_fini_tx_queue(tx_queue);
  380. }
  381. /* Do the event queues last so that we can handle flush events
  382. * for all DMA queues. */
  383. efx_for_each_channel(channel, efx) {
  384. EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
  385. efx_fini_eventq(channel);
  386. }
  387. }
  388. static void efx_remove_channel(struct efx_channel *channel)
  389. {
  390. struct efx_tx_queue *tx_queue;
  391. struct efx_rx_queue *rx_queue;
  392. EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
  393. efx_for_each_channel_rx_queue(rx_queue, channel)
  394. efx_remove_rx_queue(rx_queue);
  395. efx_for_each_channel_tx_queue(tx_queue, channel)
  396. efx_remove_tx_queue(tx_queue);
  397. efx_remove_eventq(channel);
  398. channel->used_flags = 0;
  399. }
  400. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
  401. {
  402. queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
  403. }
  404. /**************************************************************************
  405. *
  406. * Port handling
  407. *
  408. **************************************************************************/
  409. /* This ensures that the kernel is kept informed (via
  410. * netif_carrier_on/off) of the link status, and also maintains the
  411. * link status's stop on the port's TX queue.
  412. */
  413. static void efx_link_status_changed(struct efx_nic *efx)
  414. {
  415. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  416. * that no events are triggered between unregister_netdev() and the
  417. * driver unloading. A more general condition is that NETDEV_CHANGE
  418. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  419. if (!netif_running(efx->net_dev))
  420. return;
  421. if (efx->port_inhibited) {
  422. netif_carrier_off(efx->net_dev);
  423. return;
  424. }
  425. if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
  426. efx->n_link_state_changes++;
  427. if (efx->link_up)
  428. netif_carrier_on(efx->net_dev);
  429. else
  430. netif_carrier_off(efx->net_dev);
  431. }
  432. /* Status message for kernel log */
  433. if (efx->link_up) {
  434. struct mii_if_info *gmii = &efx->mii;
  435. unsigned adv, lpa;
  436. /* NONE here means direct XAUI from the controller, with no
  437. * MDIO-attached device we can query. */
  438. if (efx->phy_type != PHY_TYPE_NONE) {
  439. adv = gmii_advertised(gmii);
  440. lpa = gmii_lpa(gmii);
  441. } else {
  442. lpa = GM_LPA_10000 | LPA_DUPLEX;
  443. adv = lpa;
  444. }
  445. EFX_INFO(efx, "link up at %dMbps %s-duplex "
  446. "(adv %04x lpa %04x) (MTU %d)%s\n",
  447. (efx->link_options & GM_LPA_10000 ? 10000 :
  448. (efx->link_options & GM_LPA_1000 ? 1000 :
  449. (efx->link_options & GM_LPA_100 ? 100 :
  450. 10))),
  451. (efx->link_options & GM_LPA_DUPLEX ?
  452. "full" : "half"),
  453. adv, lpa,
  454. efx->net_dev->mtu,
  455. (efx->promiscuous ? " [PROMISC]" : ""));
  456. } else {
  457. EFX_INFO(efx, "link down\n");
  458. }
  459. }
  460. /* This call reinitialises the MAC to pick up new PHY settings. The
  461. * caller must hold the mac_lock */
  462. void __efx_reconfigure_port(struct efx_nic *efx)
  463. {
  464. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  465. EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
  466. raw_smp_processor_id());
  467. falcon_reconfigure_xmac(efx);
  468. /* Inform kernel of loss/gain of carrier */
  469. efx_link_status_changed(efx);
  470. }
  471. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  472. * disabled. */
  473. void efx_reconfigure_port(struct efx_nic *efx)
  474. {
  475. EFX_ASSERT_RESET_SERIALISED(efx);
  476. mutex_lock(&efx->mac_lock);
  477. __efx_reconfigure_port(efx);
  478. mutex_unlock(&efx->mac_lock);
  479. }
  480. /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
  481. * we don't efx_reconfigure_port() if the port is disabled. Care is taken
  482. * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
  483. static void efx_reconfigure_work(struct work_struct *data)
  484. {
  485. struct efx_nic *efx = container_of(data, struct efx_nic,
  486. reconfigure_work);
  487. mutex_lock(&efx->mac_lock);
  488. if (efx->port_enabled)
  489. __efx_reconfigure_port(efx);
  490. mutex_unlock(&efx->mac_lock);
  491. }
  492. static int efx_probe_port(struct efx_nic *efx)
  493. {
  494. int rc;
  495. EFX_LOG(efx, "create port\n");
  496. /* Connect up MAC/PHY operations table and read MAC address */
  497. rc = falcon_probe_port(efx);
  498. if (rc)
  499. goto err;
  500. /* Sanity check MAC address */
  501. if (is_valid_ether_addr(efx->mac_address)) {
  502. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  503. } else {
  504. DECLARE_MAC_BUF(mac);
  505. EFX_ERR(efx, "invalid MAC address %s\n",
  506. print_mac(mac, efx->mac_address));
  507. if (!allow_bad_hwaddr) {
  508. rc = -EINVAL;
  509. goto err;
  510. }
  511. random_ether_addr(efx->net_dev->dev_addr);
  512. EFX_INFO(efx, "using locally-generated MAC %s\n",
  513. print_mac(mac, efx->net_dev->dev_addr));
  514. }
  515. return 0;
  516. err:
  517. efx_remove_port(efx);
  518. return rc;
  519. }
  520. static int efx_init_port(struct efx_nic *efx)
  521. {
  522. int rc;
  523. EFX_LOG(efx, "init port\n");
  524. /* Initialise the MAC and PHY */
  525. rc = falcon_init_xmac(efx);
  526. if (rc)
  527. return rc;
  528. efx->port_initialized = true;
  529. efx->stats_enabled = true;
  530. /* Reconfigure port to program MAC registers */
  531. falcon_reconfigure_xmac(efx);
  532. return 0;
  533. }
  534. /* Allow efx_reconfigure_port() to be scheduled, and close the window
  535. * between efx_stop_port and efx_flush_all whereby a previously scheduled
  536. * efx_reconfigure_port() may have been cancelled */
  537. static void efx_start_port(struct efx_nic *efx)
  538. {
  539. EFX_LOG(efx, "start port\n");
  540. BUG_ON(efx->port_enabled);
  541. mutex_lock(&efx->mac_lock);
  542. efx->port_enabled = true;
  543. __efx_reconfigure_port(efx);
  544. mutex_unlock(&efx->mac_lock);
  545. }
  546. /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
  547. * efx_set_multicast_list() from scheduling efx_reconfigure_work.
  548. * efx_reconfigure_work can still be scheduled via NAPI processing
  549. * until efx_flush_all() is called */
  550. static void efx_stop_port(struct efx_nic *efx)
  551. {
  552. EFX_LOG(efx, "stop port\n");
  553. mutex_lock(&efx->mac_lock);
  554. efx->port_enabled = false;
  555. mutex_unlock(&efx->mac_lock);
  556. /* Serialise against efx_set_multicast_list() */
  557. if (efx_dev_registered(efx)) {
  558. netif_addr_lock_bh(efx->net_dev);
  559. netif_addr_unlock_bh(efx->net_dev);
  560. }
  561. }
  562. static void efx_fini_port(struct efx_nic *efx)
  563. {
  564. EFX_LOG(efx, "shut down port\n");
  565. if (!efx->port_initialized)
  566. return;
  567. falcon_fini_xmac(efx);
  568. efx->port_initialized = false;
  569. efx->link_up = false;
  570. efx_link_status_changed(efx);
  571. }
  572. static void efx_remove_port(struct efx_nic *efx)
  573. {
  574. EFX_LOG(efx, "destroying port\n");
  575. falcon_remove_port(efx);
  576. }
  577. /**************************************************************************
  578. *
  579. * NIC handling
  580. *
  581. **************************************************************************/
  582. /* This configures the PCI device to enable I/O and DMA. */
  583. static int efx_init_io(struct efx_nic *efx)
  584. {
  585. struct pci_dev *pci_dev = efx->pci_dev;
  586. dma_addr_t dma_mask = efx->type->max_dma_mask;
  587. int rc;
  588. EFX_LOG(efx, "initialising I/O\n");
  589. rc = pci_enable_device(pci_dev);
  590. if (rc) {
  591. EFX_ERR(efx, "failed to enable PCI device\n");
  592. goto fail1;
  593. }
  594. pci_set_master(pci_dev);
  595. /* Set the PCI DMA mask. Try all possibilities from our
  596. * genuine mask down to 32 bits, because some architectures
  597. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  598. * masks event though they reject 46 bit masks.
  599. */
  600. while (dma_mask > 0x7fffffffUL) {
  601. if (pci_dma_supported(pci_dev, dma_mask) &&
  602. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  603. break;
  604. dma_mask >>= 1;
  605. }
  606. if (rc) {
  607. EFX_ERR(efx, "could not find a suitable DMA mask\n");
  608. goto fail2;
  609. }
  610. EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
  611. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  612. if (rc) {
  613. /* pci_set_consistent_dma_mask() is not *allowed* to
  614. * fail with a mask that pci_set_dma_mask() accepted,
  615. * but just in case...
  616. */
  617. EFX_ERR(efx, "failed to set consistent DMA mask\n");
  618. goto fail2;
  619. }
  620. efx->membase_phys = pci_resource_start(efx->pci_dev,
  621. efx->type->mem_bar);
  622. rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
  623. if (rc) {
  624. EFX_ERR(efx, "request for memory BAR failed\n");
  625. rc = -EIO;
  626. goto fail3;
  627. }
  628. efx->membase = ioremap_nocache(efx->membase_phys,
  629. efx->type->mem_map_size);
  630. if (!efx->membase) {
  631. EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
  632. efx->type->mem_bar,
  633. (unsigned long long)efx->membase_phys,
  634. efx->type->mem_map_size);
  635. rc = -ENOMEM;
  636. goto fail4;
  637. }
  638. EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
  639. efx->type->mem_bar, (unsigned long long)efx->membase_phys,
  640. efx->type->mem_map_size, efx->membase);
  641. return 0;
  642. fail4:
  643. release_mem_region(efx->membase_phys, efx->type->mem_map_size);
  644. fail3:
  645. efx->membase_phys = 0;
  646. fail2:
  647. pci_disable_device(efx->pci_dev);
  648. fail1:
  649. return rc;
  650. }
  651. static void efx_fini_io(struct efx_nic *efx)
  652. {
  653. EFX_LOG(efx, "shutting down I/O\n");
  654. if (efx->membase) {
  655. iounmap(efx->membase);
  656. efx->membase = NULL;
  657. }
  658. if (efx->membase_phys) {
  659. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  660. efx->membase_phys = 0;
  661. }
  662. pci_disable_device(efx->pci_dev);
  663. }
  664. /* Get number of RX queues wanted. Return number of online CPU
  665. * packages in the expectation that an IRQ balancer will spread
  666. * interrupts across them. */
  667. static int efx_wanted_rx_queues(void)
  668. {
  669. cpumask_t core_mask;
  670. int count;
  671. int cpu;
  672. cpus_clear(core_mask);
  673. count = 0;
  674. for_each_online_cpu(cpu) {
  675. if (!cpu_isset(cpu, core_mask)) {
  676. ++count;
  677. cpus_or(core_mask, core_mask,
  678. topology_core_siblings(cpu));
  679. }
  680. }
  681. return count;
  682. }
  683. /* Probe the number and type of interrupts we are able to obtain, and
  684. * the resulting numbers of channels and RX queues.
  685. */
  686. static void efx_probe_interrupts(struct efx_nic *efx)
  687. {
  688. int max_channels =
  689. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  690. int rc, i;
  691. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  692. struct msix_entry xentries[EFX_MAX_CHANNELS];
  693. int wanted_ints;
  694. /* We want one RX queue and interrupt per CPU package
  695. * (or as specified by the rss_cpus module parameter).
  696. * We will need one channel per interrupt.
  697. */
  698. wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
  699. efx->n_rx_queues = min(wanted_ints, max_channels);
  700. for (i = 0; i < efx->n_rx_queues; i++)
  701. xentries[i].entry = i;
  702. rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
  703. if (rc > 0) {
  704. EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
  705. efx->n_rx_queues = rc;
  706. rc = pci_enable_msix(efx->pci_dev, xentries,
  707. efx->n_rx_queues);
  708. }
  709. if (rc == 0) {
  710. for (i = 0; i < efx->n_rx_queues; i++)
  711. efx->channel[i].irq = xentries[i].vector;
  712. } else {
  713. /* Fall back to single channel MSI */
  714. efx->interrupt_mode = EFX_INT_MODE_MSI;
  715. EFX_ERR(efx, "could not enable MSI-X\n");
  716. }
  717. }
  718. /* Try single interrupt MSI */
  719. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  720. efx->n_rx_queues = 1;
  721. rc = pci_enable_msi(efx->pci_dev);
  722. if (rc == 0) {
  723. efx->channel[0].irq = efx->pci_dev->irq;
  724. } else {
  725. EFX_ERR(efx, "could not enable MSI\n");
  726. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  727. }
  728. }
  729. /* Assume legacy interrupts */
  730. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  731. efx->n_rx_queues = 1;
  732. efx->legacy_irq = efx->pci_dev->irq;
  733. }
  734. }
  735. static void efx_remove_interrupts(struct efx_nic *efx)
  736. {
  737. struct efx_channel *channel;
  738. /* Remove MSI/MSI-X interrupts */
  739. efx_for_each_channel(channel, efx)
  740. channel->irq = 0;
  741. pci_disable_msi(efx->pci_dev);
  742. pci_disable_msix(efx->pci_dev);
  743. /* Remove legacy interrupt */
  744. efx->legacy_irq = 0;
  745. }
  746. static void efx_set_channels(struct efx_nic *efx)
  747. {
  748. struct efx_tx_queue *tx_queue;
  749. struct efx_rx_queue *rx_queue;
  750. efx_for_each_tx_queue(tx_queue, efx) {
  751. if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
  752. tx_queue->channel = &efx->channel[1];
  753. else
  754. tx_queue->channel = &efx->channel[0];
  755. tx_queue->channel->used_flags |= EFX_USED_BY_TX;
  756. }
  757. efx_for_each_rx_queue(rx_queue, efx) {
  758. rx_queue->channel = &efx->channel[rx_queue->queue];
  759. rx_queue->channel->used_flags |= EFX_USED_BY_RX;
  760. }
  761. }
  762. static int efx_probe_nic(struct efx_nic *efx)
  763. {
  764. int rc;
  765. EFX_LOG(efx, "creating NIC\n");
  766. /* Carry out hardware-type specific initialisation */
  767. rc = falcon_probe_nic(efx);
  768. if (rc)
  769. return rc;
  770. /* Determine the number of channels and RX queues by trying to hook
  771. * in MSI-X interrupts. */
  772. efx_probe_interrupts(efx);
  773. efx_set_channels(efx);
  774. /* Initialise the interrupt moderation settings */
  775. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
  776. return 0;
  777. }
  778. static void efx_remove_nic(struct efx_nic *efx)
  779. {
  780. EFX_LOG(efx, "destroying NIC\n");
  781. efx_remove_interrupts(efx);
  782. falcon_remove_nic(efx);
  783. }
  784. /**************************************************************************
  785. *
  786. * NIC startup/shutdown
  787. *
  788. *************************************************************************/
  789. static int efx_probe_all(struct efx_nic *efx)
  790. {
  791. struct efx_channel *channel;
  792. int rc;
  793. /* Create NIC */
  794. rc = efx_probe_nic(efx);
  795. if (rc) {
  796. EFX_ERR(efx, "failed to create NIC\n");
  797. goto fail1;
  798. }
  799. /* Create port */
  800. rc = efx_probe_port(efx);
  801. if (rc) {
  802. EFX_ERR(efx, "failed to create port\n");
  803. goto fail2;
  804. }
  805. /* Create channels */
  806. efx_for_each_channel(channel, efx) {
  807. rc = efx_probe_channel(channel);
  808. if (rc) {
  809. EFX_ERR(efx, "failed to create channel %d\n",
  810. channel->channel);
  811. goto fail3;
  812. }
  813. }
  814. return 0;
  815. fail3:
  816. efx_for_each_channel(channel, efx)
  817. efx_remove_channel(channel);
  818. efx_remove_port(efx);
  819. fail2:
  820. efx_remove_nic(efx);
  821. fail1:
  822. return rc;
  823. }
  824. /* Called after previous invocation(s) of efx_stop_all, restarts the
  825. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  826. * and ensures that the port is scheduled to be reconfigured.
  827. * This function is safe to call multiple times when the NIC is in any
  828. * state. */
  829. static void efx_start_all(struct efx_nic *efx)
  830. {
  831. struct efx_channel *channel;
  832. EFX_ASSERT_RESET_SERIALISED(efx);
  833. /* Check that it is appropriate to restart the interface. All
  834. * of these flags are safe to read under just the rtnl lock */
  835. if (efx->port_enabled)
  836. return;
  837. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  838. return;
  839. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  840. return;
  841. /* Mark the port as enabled so port reconfigurations can start, then
  842. * restart the transmit interface early so the watchdog timer stops */
  843. efx_start_port(efx);
  844. if (efx_dev_registered(efx))
  845. efx_wake_queue(efx);
  846. efx_for_each_channel(channel, efx)
  847. efx_start_channel(channel);
  848. falcon_enable_interrupts(efx);
  849. /* Start hardware monitor if we're in RUNNING */
  850. if (efx->state == STATE_RUNNING)
  851. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  852. efx_monitor_interval);
  853. }
  854. /* Flush all delayed work. Should only be called when no more delayed work
  855. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  856. * since we're holding the rtnl_lock at this point. */
  857. static void efx_flush_all(struct efx_nic *efx)
  858. {
  859. struct efx_rx_queue *rx_queue;
  860. /* Make sure the hardware monitor is stopped */
  861. cancel_delayed_work_sync(&efx->monitor_work);
  862. /* Ensure that all RX slow refills are complete. */
  863. efx_for_each_rx_queue(rx_queue, efx)
  864. cancel_delayed_work_sync(&rx_queue->work);
  865. /* Stop scheduled port reconfigurations */
  866. cancel_work_sync(&efx->reconfigure_work);
  867. }
  868. /* Quiesce hardware and software without bringing the link down.
  869. * Safe to call multiple times, when the nic and interface is in any
  870. * state. The caller is guaranteed to subsequently be in a position
  871. * to modify any hardware and software state they see fit without
  872. * taking locks. */
  873. static void efx_stop_all(struct efx_nic *efx)
  874. {
  875. struct efx_channel *channel;
  876. EFX_ASSERT_RESET_SERIALISED(efx);
  877. /* port_enabled can be read safely under the rtnl lock */
  878. if (!efx->port_enabled)
  879. return;
  880. /* Disable interrupts and wait for ISR to complete */
  881. falcon_disable_interrupts(efx);
  882. if (efx->legacy_irq)
  883. synchronize_irq(efx->legacy_irq);
  884. efx_for_each_channel(channel, efx) {
  885. if (channel->irq)
  886. synchronize_irq(channel->irq);
  887. }
  888. /* Stop all NAPI processing and synchronous rx refills */
  889. efx_for_each_channel(channel, efx)
  890. efx_stop_channel(channel);
  891. /* Stop all asynchronous port reconfigurations. Since all
  892. * event processing has already been stopped, there is no
  893. * window to loose phy events */
  894. efx_stop_port(efx);
  895. /* Flush reconfigure_work, refill_workqueue, monitor_work */
  896. efx_flush_all(efx);
  897. /* Isolate the MAC from the TX and RX engines, so that queue
  898. * flushes will complete in a timely fashion. */
  899. falcon_deconfigure_mac_wrapper(efx);
  900. falcon_drain_tx_fifo(efx);
  901. /* Stop the kernel transmit interface late, so the watchdog
  902. * timer isn't ticking over the flush */
  903. if (efx_dev_registered(efx)) {
  904. efx_stop_queue(efx);
  905. netif_tx_lock_bh(efx->net_dev);
  906. netif_tx_unlock_bh(efx->net_dev);
  907. }
  908. }
  909. static void efx_remove_all(struct efx_nic *efx)
  910. {
  911. struct efx_channel *channel;
  912. efx_for_each_channel(channel, efx)
  913. efx_remove_channel(channel);
  914. efx_remove_port(efx);
  915. efx_remove_nic(efx);
  916. }
  917. /* A convinience function to safely flush all the queues */
  918. void efx_flush_queues(struct efx_nic *efx)
  919. {
  920. EFX_ASSERT_RESET_SERIALISED(efx);
  921. efx_stop_all(efx);
  922. efx_fini_channels(efx);
  923. efx_init_channels(efx);
  924. efx_start_all(efx);
  925. }
  926. /**************************************************************************
  927. *
  928. * Interrupt moderation
  929. *
  930. **************************************************************************/
  931. /* Set interrupt moderation parameters */
  932. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
  933. {
  934. struct efx_tx_queue *tx_queue;
  935. struct efx_rx_queue *rx_queue;
  936. EFX_ASSERT_RESET_SERIALISED(efx);
  937. efx_for_each_tx_queue(tx_queue, efx)
  938. tx_queue->channel->irq_moderation = tx_usecs;
  939. efx_for_each_rx_queue(rx_queue, efx)
  940. rx_queue->channel->irq_moderation = rx_usecs;
  941. }
  942. /**************************************************************************
  943. *
  944. * Hardware monitor
  945. *
  946. **************************************************************************/
  947. /* Run periodically off the general workqueue. Serialised against
  948. * efx_reconfigure_port via the mac_lock */
  949. static void efx_monitor(struct work_struct *data)
  950. {
  951. struct efx_nic *efx = container_of(data, struct efx_nic,
  952. monitor_work.work);
  953. int rc = 0;
  954. EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
  955. raw_smp_processor_id());
  956. /* If the mac_lock is already held then it is likely a port
  957. * reconfiguration is already in place, which will likely do
  958. * most of the work of check_hw() anyway. */
  959. if (!mutex_trylock(&efx->mac_lock)) {
  960. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  961. efx_monitor_interval);
  962. return;
  963. }
  964. if (efx->port_enabled)
  965. rc = falcon_check_xmac(efx);
  966. mutex_unlock(&efx->mac_lock);
  967. if (rc) {
  968. if (monitor_reset) {
  969. EFX_ERR(efx, "hardware monitor detected a fault: "
  970. "triggering reset\n");
  971. efx_schedule_reset(efx, RESET_TYPE_MONITOR);
  972. } else {
  973. EFX_ERR(efx, "hardware monitor detected a fault, "
  974. "skipping reset\n");
  975. }
  976. }
  977. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  978. efx_monitor_interval);
  979. }
  980. /**************************************************************************
  981. *
  982. * ioctls
  983. *
  984. *************************************************************************/
  985. /* Net device ioctl
  986. * Context: process, rtnl_lock() held.
  987. */
  988. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  989. {
  990. struct efx_nic *efx = netdev_priv(net_dev);
  991. EFX_ASSERT_RESET_SERIALISED(efx);
  992. return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
  993. }
  994. /**************************************************************************
  995. *
  996. * NAPI interface
  997. *
  998. **************************************************************************/
  999. static int efx_init_napi(struct efx_nic *efx)
  1000. {
  1001. struct efx_channel *channel;
  1002. int rc;
  1003. efx_for_each_channel(channel, efx) {
  1004. channel->napi_dev = efx->net_dev;
  1005. rc = efx_lro_init(&channel->lro_mgr, efx);
  1006. if (rc)
  1007. goto err;
  1008. }
  1009. return 0;
  1010. err:
  1011. efx_fini_napi(efx);
  1012. return rc;
  1013. }
  1014. static void efx_fini_napi(struct efx_nic *efx)
  1015. {
  1016. struct efx_channel *channel;
  1017. efx_for_each_channel(channel, efx) {
  1018. efx_lro_fini(&channel->lro_mgr);
  1019. channel->napi_dev = NULL;
  1020. }
  1021. }
  1022. /**************************************************************************
  1023. *
  1024. * Kernel netpoll interface
  1025. *
  1026. *************************************************************************/
  1027. #ifdef CONFIG_NET_POLL_CONTROLLER
  1028. /* Although in the common case interrupts will be disabled, this is not
  1029. * guaranteed. However, all our work happens inside the NAPI callback,
  1030. * so no locking is required.
  1031. */
  1032. static void efx_netpoll(struct net_device *net_dev)
  1033. {
  1034. struct efx_nic *efx = netdev_priv(net_dev);
  1035. struct efx_channel *channel;
  1036. efx_for_each_channel(channel, efx)
  1037. efx_schedule_channel(channel);
  1038. }
  1039. #endif
  1040. /**************************************************************************
  1041. *
  1042. * Kernel net device interface
  1043. *
  1044. *************************************************************************/
  1045. /* Context: process, rtnl_lock() held. */
  1046. static int efx_net_open(struct net_device *net_dev)
  1047. {
  1048. struct efx_nic *efx = netdev_priv(net_dev);
  1049. EFX_ASSERT_RESET_SERIALISED(efx);
  1050. EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
  1051. raw_smp_processor_id());
  1052. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1053. return -EBUSY;
  1054. efx_start_all(efx);
  1055. return 0;
  1056. }
  1057. /* Context: process, rtnl_lock() held.
  1058. * Note that the kernel will ignore our return code; this method
  1059. * should really be a void.
  1060. */
  1061. static int efx_net_stop(struct net_device *net_dev)
  1062. {
  1063. struct efx_nic *efx = netdev_priv(net_dev);
  1064. EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
  1065. raw_smp_processor_id());
  1066. /* Stop the device and flush all the channels */
  1067. efx_stop_all(efx);
  1068. efx_fini_channels(efx);
  1069. efx_init_channels(efx);
  1070. return 0;
  1071. }
  1072. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1073. static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
  1074. {
  1075. struct efx_nic *efx = netdev_priv(net_dev);
  1076. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1077. struct net_device_stats *stats = &net_dev->stats;
  1078. /* Update stats if possible, but do not wait if another thread
  1079. * is updating them (or resetting the NIC); slightly stale
  1080. * stats are acceptable.
  1081. */
  1082. if (!spin_trylock(&efx->stats_lock))
  1083. return stats;
  1084. if (efx->stats_enabled) {
  1085. falcon_update_stats_xmac(efx);
  1086. falcon_update_nic_stats(efx);
  1087. }
  1088. spin_unlock(&efx->stats_lock);
  1089. stats->rx_packets = mac_stats->rx_packets;
  1090. stats->tx_packets = mac_stats->tx_packets;
  1091. stats->rx_bytes = mac_stats->rx_bytes;
  1092. stats->tx_bytes = mac_stats->tx_bytes;
  1093. stats->multicast = mac_stats->rx_multicast;
  1094. stats->collisions = mac_stats->tx_collision;
  1095. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1096. mac_stats->rx_length_error);
  1097. stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
  1098. stats->rx_crc_errors = mac_stats->rx_bad;
  1099. stats->rx_frame_errors = mac_stats->rx_align_error;
  1100. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1101. stats->rx_missed_errors = mac_stats->rx_missed;
  1102. stats->tx_window_errors = mac_stats->tx_late_collision;
  1103. stats->rx_errors = (stats->rx_length_errors +
  1104. stats->rx_over_errors +
  1105. stats->rx_crc_errors +
  1106. stats->rx_frame_errors +
  1107. stats->rx_fifo_errors +
  1108. stats->rx_missed_errors +
  1109. mac_stats->rx_symbol_error);
  1110. stats->tx_errors = (stats->tx_window_errors +
  1111. mac_stats->tx_bad);
  1112. return stats;
  1113. }
  1114. /* Context: netif_tx_lock held, BHs disabled. */
  1115. static void efx_watchdog(struct net_device *net_dev)
  1116. {
  1117. struct efx_nic *efx = netdev_priv(net_dev);
  1118. EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
  1119. atomic_read(&efx->netif_stop_count), efx->port_enabled,
  1120. monitor_reset ? "resetting channels" : "skipping reset");
  1121. if (monitor_reset)
  1122. efx_schedule_reset(efx, RESET_TYPE_MONITOR);
  1123. }
  1124. /* Context: process, rtnl_lock() held. */
  1125. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1126. {
  1127. struct efx_nic *efx = netdev_priv(net_dev);
  1128. int rc = 0;
  1129. EFX_ASSERT_RESET_SERIALISED(efx);
  1130. if (new_mtu > EFX_MAX_MTU)
  1131. return -EINVAL;
  1132. efx_stop_all(efx);
  1133. EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
  1134. efx_fini_channels(efx);
  1135. net_dev->mtu = new_mtu;
  1136. efx_init_channels(efx);
  1137. efx_start_all(efx);
  1138. return rc;
  1139. }
  1140. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1141. {
  1142. struct efx_nic *efx = netdev_priv(net_dev);
  1143. struct sockaddr *addr = data;
  1144. char *new_addr = addr->sa_data;
  1145. EFX_ASSERT_RESET_SERIALISED(efx);
  1146. if (!is_valid_ether_addr(new_addr)) {
  1147. DECLARE_MAC_BUF(mac);
  1148. EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
  1149. print_mac(mac, new_addr));
  1150. return -EINVAL;
  1151. }
  1152. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1153. /* Reconfigure the MAC */
  1154. efx_reconfigure_port(efx);
  1155. return 0;
  1156. }
  1157. /* Context: netif_tx_lock held, BHs disabled. */
  1158. static void efx_set_multicast_list(struct net_device *net_dev)
  1159. {
  1160. struct efx_nic *efx = netdev_priv(net_dev);
  1161. struct dev_mc_list *mc_list = net_dev->mc_list;
  1162. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1163. bool promiscuous;
  1164. u32 crc;
  1165. int bit;
  1166. int i;
  1167. /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
  1168. promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1169. if (efx->promiscuous != promiscuous) {
  1170. efx->promiscuous = promiscuous;
  1171. /* Close the window between efx_stop_port() and efx_flush_all()
  1172. * by only queuing work when the port is enabled. */
  1173. if (efx->port_enabled)
  1174. queue_work(efx->workqueue, &efx->reconfigure_work);
  1175. }
  1176. /* Build multicast hash table */
  1177. if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1178. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1179. } else {
  1180. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1181. for (i = 0; i < net_dev->mc_count; i++) {
  1182. crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
  1183. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1184. set_bit_le(bit, mc_hash->byte);
  1185. mc_list = mc_list->next;
  1186. }
  1187. }
  1188. /* Create and activate new global multicast hash table */
  1189. falcon_set_multicast_hash(efx);
  1190. }
  1191. static int efx_netdev_event(struct notifier_block *this,
  1192. unsigned long event, void *ptr)
  1193. {
  1194. struct net_device *net_dev = ptr;
  1195. if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
  1196. struct efx_nic *efx = netdev_priv(net_dev);
  1197. strcpy(efx->name, net_dev->name);
  1198. }
  1199. return NOTIFY_DONE;
  1200. }
  1201. static struct notifier_block efx_netdev_notifier = {
  1202. .notifier_call = efx_netdev_event,
  1203. };
  1204. static int efx_register_netdev(struct efx_nic *efx)
  1205. {
  1206. struct net_device *net_dev = efx->net_dev;
  1207. int rc;
  1208. net_dev->watchdog_timeo = 5 * HZ;
  1209. net_dev->irq = efx->pci_dev->irq;
  1210. net_dev->open = efx_net_open;
  1211. net_dev->stop = efx_net_stop;
  1212. net_dev->get_stats = efx_net_stats;
  1213. net_dev->tx_timeout = &efx_watchdog;
  1214. net_dev->hard_start_xmit = efx_hard_start_xmit;
  1215. net_dev->do_ioctl = efx_ioctl;
  1216. net_dev->change_mtu = efx_change_mtu;
  1217. net_dev->set_mac_address = efx_set_mac_address;
  1218. net_dev->set_multicast_list = efx_set_multicast_list;
  1219. #ifdef CONFIG_NET_POLL_CONTROLLER
  1220. net_dev->poll_controller = efx_netpoll;
  1221. #endif
  1222. SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
  1223. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1224. /* Always start with carrier off; PHY events will detect the link */
  1225. netif_carrier_off(efx->net_dev);
  1226. /* Clear MAC statistics */
  1227. falcon_update_stats_xmac(efx);
  1228. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1229. rc = register_netdev(net_dev);
  1230. if (rc) {
  1231. EFX_ERR(efx, "could not register net dev\n");
  1232. return rc;
  1233. }
  1234. strcpy(efx->name, net_dev->name);
  1235. return 0;
  1236. }
  1237. static void efx_unregister_netdev(struct efx_nic *efx)
  1238. {
  1239. struct efx_tx_queue *tx_queue;
  1240. if (!efx->net_dev)
  1241. return;
  1242. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1243. /* Free up any skbs still remaining. This has to happen before
  1244. * we try to unregister the netdev as running their destructors
  1245. * may be needed to get the device ref. count to 0. */
  1246. efx_for_each_tx_queue(tx_queue, efx)
  1247. efx_release_tx_buffers(tx_queue);
  1248. if (efx_dev_registered(efx)) {
  1249. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1250. unregister_netdev(efx->net_dev);
  1251. }
  1252. }
  1253. /**************************************************************************
  1254. *
  1255. * Device reset and suspend
  1256. *
  1257. **************************************************************************/
  1258. /* Tears down the entire software state and most of the hardware state
  1259. * before reset. */
  1260. void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
  1261. {
  1262. int rc;
  1263. EFX_ASSERT_RESET_SERIALISED(efx);
  1264. /* The net_dev->get_stats handler is quite slow, and will fail
  1265. * if a fetch is pending over reset. Serialise against it. */
  1266. spin_lock(&efx->stats_lock);
  1267. efx->stats_enabled = false;
  1268. spin_unlock(&efx->stats_lock);
  1269. efx_stop_all(efx);
  1270. mutex_lock(&efx->mac_lock);
  1271. rc = falcon_xmac_get_settings(efx, ecmd);
  1272. if (rc)
  1273. EFX_ERR(efx, "could not back up PHY settings\n");
  1274. efx_fini_channels(efx);
  1275. }
  1276. /* This function will always ensure that the locks acquired in
  1277. * efx_reset_down() are released. A failure return code indicates
  1278. * that we were unable to reinitialise the hardware, and the
  1279. * driver should be disabled. If ok is false, then the rx and tx
  1280. * engines are not restarted, pending a RESET_DISABLE. */
  1281. int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
  1282. {
  1283. int rc;
  1284. EFX_ASSERT_RESET_SERIALISED(efx);
  1285. rc = falcon_init_nic(efx);
  1286. if (rc) {
  1287. EFX_ERR(efx, "failed to initialise NIC\n");
  1288. ok = false;
  1289. }
  1290. if (ok) {
  1291. efx_init_channels(efx);
  1292. if (falcon_xmac_set_settings(efx, ecmd))
  1293. EFX_ERR(efx, "could not restore PHY settings\n");
  1294. }
  1295. mutex_unlock(&efx->mac_lock);
  1296. if (ok) {
  1297. efx_start_all(efx);
  1298. efx->stats_enabled = true;
  1299. }
  1300. return rc;
  1301. }
  1302. /* Reset the NIC as transparently as possible. Do not reset the PHY
  1303. * Note that the reset may fail, in which case the card will be left
  1304. * in a most-probably-unusable state.
  1305. *
  1306. * This function will sleep. You cannot reset from within an atomic
  1307. * state; use efx_schedule_reset() instead.
  1308. *
  1309. * Grabs the rtnl_lock.
  1310. */
  1311. static int efx_reset(struct efx_nic *efx)
  1312. {
  1313. struct ethtool_cmd ecmd;
  1314. enum reset_type method = efx->reset_pending;
  1315. int rc;
  1316. /* Serialise with kernel interfaces */
  1317. rtnl_lock();
  1318. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1319. * flag set so that efx_pci_probe_main will be retried */
  1320. if (efx->state != STATE_RUNNING) {
  1321. EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
  1322. goto unlock_rtnl;
  1323. }
  1324. efx->state = STATE_RESETTING;
  1325. EFX_INFO(efx, "resetting (%d)\n", method);
  1326. efx_reset_down(efx, &ecmd);
  1327. rc = falcon_reset_hw(efx, method);
  1328. if (rc) {
  1329. EFX_ERR(efx, "failed to reset hardware\n");
  1330. goto fail;
  1331. }
  1332. /* Allow resets to be rescheduled. */
  1333. efx->reset_pending = RESET_TYPE_NONE;
  1334. /* Reinitialise bus-mastering, which may have been turned off before
  1335. * the reset was scheduled. This is still appropriate, even in the
  1336. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1337. * can respond to requests. */
  1338. pci_set_master(efx->pci_dev);
  1339. /* Leave device stopped if necessary */
  1340. if (method == RESET_TYPE_DISABLE) {
  1341. rc = -EIO;
  1342. goto fail;
  1343. }
  1344. rc = efx_reset_up(efx, &ecmd, true);
  1345. if (rc)
  1346. goto disable;
  1347. EFX_LOG(efx, "reset complete\n");
  1348. efx->state = STATE_RUNNING;
  1349. unlock_rtnl:
  1350. rtnl_unlock();
  1351. return 0;
  1352. fail:
  1353. efx_reset_up(efx, &ecmd, false);
  1354. disable:
  1355. EFX_ERR(efx, "has been disabled\n");
  1356. efx->state = STATE_DISABLED;
  1357. rtnl_unlock();
  1358. efx_unregister_netdev(efx);
  1359. efx_fini_port(efx);
  1360. return rc;
  1361. }
  1362. /* The worker thread exists so that code that cannot sleep can
  1363. * schedule a reset for later.
  1364. */
  1365. static void efx_reset_work(struct work_struct *data)
  1366. {
  1367. struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
  1368. efx_reset(nic);
  1369. }
  1370. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1371. {
  1372. enum reset_type method;
  1373. if (efx->reset_pending != RESET_TYPE_NONE) {
  1374. EFX_INFO(efx, "quenching already scheduled reset\n");
  1375. return;
  1376. }
  1377. switch (type) {
  1378. case RESET_TYPE_INVISIBLE:
  1379. case RESET_TYPE_ALL:
  1380. case RESET_TYPE_WORLD:
  1381. case RESET_TYPE_DISABLE:
  1382. method = type;
  1383. break;
  1384. case RESET_TYPE_RX_RECOVERY:
  1385. case RESET_TYPE_RX_DESC_FETCH:
  1386. case RESET_TYPE_TX_DESC_FETCH:
  1387. case RESET_TYPE_TX_SKIP:
  1388. method = RESET_TYPE_INVISIBLE;
  1389. break;
  1390. default:
  1391. method = RESET_TYPE_ALL;
  1392. break;
  1393. }
  1394. if (method != type)
  1395. EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
  1396. else
  1397. EFX_LOG(efx, "scheduling reset (%d)\n", method);
  1398. efx->reset_pending = method;
  1399. queue_work(efx->reset_workqueue, &efx->reset_work);
  1400. }
  1401. /**************************************************************************
  1402. *
  1403. * List of NICs we support
  1404. *
  1405. **************************************************************************/
  1406. /* PCI device ID table */
  1407. static struct pci_device_id efx_pci_table[] __devinitdata = {
  1408. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1409. .driver_data = (unsigned long) &falcon_a_nic_type},
  1410. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1411. .driver_data = (unsigned long) &falcon_b_nic_type},
  1412. {0} /* end of list */
  1413. };
  1414. /**************************************************************************
  1415. *
  1416. * Dummy PHY/MAC/Board operations
  1417. *
  1418. * Can be used for some unimplemented operations
  1419. * Needed so all function pointers are valid and do not have to be tested
  1420. * before use
  1421. *
  1422. **************************************************************************/
  1423. int efx_port_dummy_op_int(struct efx_nic *efx)
  1424. {
  1425. return 0;
  1426. }
  1427. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1428. void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
  1429. static struct efx_phy_operations efx_dummy_phy_operations = {
  1430. .init = efx_port_dummy_op_int,
  1431. .reconfigure = efx_port_dummy_op_void,
  1432. .check_hw = efx_port_dummy_op_int,
  1433. .fini = efx_port_dummy_op_void,
  1434. .clear_interrupt = efx_port_dummy_op_void,
  1435. .reset_xaui = efx_port_dummy_op_void,
  1436. };
  1437. static struct efx_board efx_dummy_board_info = {
  1438. .init = efx_port_dummy_op_int,
  1439. .init_leds = efx_port_dummy_op_int,
  1440. .set_fault_led = efx_port_dummy_op_blink,
  1441. .blink = efx_port_dummy_op_blink,
  1442. .fini = efx_port_dummy_op_void,
  1443. };
  1444. /**************************************************************************
  1445. *
  1446. * Data housekeeping
  1447. *
  1448. **************************************************************************/
  1449. /* This zeroes out and then fills in the invariants in a struct
  1450. * efx_nic (including all sub-structures).
  1451. */
  1452. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1453. struct pci_dev *pci_dev, struct net_device *net_dev)
  1454. {
  1455. struct efx_channel *channel;
  1456. struct efx_tx_queue *tx_queue;
  1457. struct efx_rx_queue *rx_queue;
  1458. int i, rc;
  1459. /* Initialise common structures */
  1460. memset(efx, 0, sizeof(*efx));
  1461. spin_lock_init(&efx->biu_lock);
  1462. spin_lock_init(&efx->phy_lock);
  1463. INIT_WORK(&efx->reset_work, efx_reset_work);
  1464. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1465. efx->pci_dev = pci_dev;
  1466. efx->state = STATE_INIT;
  1467. efx->reset_pending = RESET_TYPE_NONE;
  1468. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1469. efx->board_info = efx_dummy_board_info;
  1470. efx->net_dev = net_dev;
  1471. efx->rx_checksum_enabled = true;
  1472. spin_lock_init(&efx->netif_stop_lock);
  1473. spin_lock_init(&efx->stats_lock);
  1474. mutex_init(&efx->mac_lock);
  1475. efx->phy_op = &efx_dummy_phy_operations;
  1476. efx->mii.dev = net_dev;
  1477. INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
  1478. atomic_set(&efx->netif_stop_count, 1);
  1479. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1480. channel = &efx->channel[i];
  1481. channel->efx = efx;
  1482. channel->channel = i;
  1483. channel->work_pending = false;
  1484. }
  1485. for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
  1486. tx_queue = &efx->tx_queue[i];
  1487. tx_queue->efx = efx;
  1488. tx_queue->queue = i;
  1489. tx_queue->buffer = NULL;
  1490. tx_queue->channel = &efx->channel[0]; /* for safety */
  1491. tx_queue->tso_headers_free = NULL;
  1492. }
  1493. for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
  1494. rx_queue = &efx->rx_queue[i];
  1495. rx_queue->efx = efx;
  1496. rx_queue->queue = i;
  1497. rx_queue->channel = &efx->channel[0]; /* for safety */
  1498. rx_queue->buffer = NULL;
  1499. spin_lock_init(&rx_queue->add_lock);
  1500. INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
  1501. }
  1502. efx->type = type;
  1503. /* Sanity-check NIC type */
  1504. EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
  1505. (efx->type->txd_ring_mask + 1));
  1506. EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
  1507. (efx->type->rxd_ring_mask + 1));
  1508. EFX_BUG_ON_PARANOID(efx->type->evq_size &
  1509. (efx->type->evq_size - 1));
  1510. /* As close as we can get to guaranteeing that we don't overflow */
  1511. EFX_BUG_ON_PARANOID(efx->type->evq_size <
  1512. (efx->type->txd_ring_mask + 1 +
  1513. efx->type->rxd_ring_mask + 1));
  1514. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1515. /* Higher numbered interrupt modes are less capable! */
  1516. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1517. interrupt_mode);
  1518. efx->workqueue = create_singlethread_workqueue("sfc_work");
  1519. if (!efx->workqueue) {
  1520. rc = -ENOMEM;
  1521. goto fail1;
  1522. }
  1523. efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
  1524. if (!efx->reset_workqueue) {
  1525. rc = -ENOMEM;
  1526. goto fail2;
  1527. }
  1528. return 0;
  1529. fail2:
  1530. destroy_workqueue(efx->workqueue);
  1531. efx->workqueue = NULL;
  1532. fail1:
  1533. return rc;
  1534. }
  1535. static void efx_fini_struct(struct efx_nic *efx)
  1536. {
  1537. if (efx->reset_workqueue) {
  1538. destroy_workqueue(efx->reset_workqueue);
  1539. efx->reset_workqueue = NULL;
  1540. }
  1541. if (efx->workqueue) {
  1542. destroy_workqueue(efx->workqueue);
  1543. efx->workqueue = NULL;
  1544. }
  1545. }
  1546. /**************************************************************************
  1547. *
  1548. * PCI interface
  1549. *
  1550. **************************************************************************/
  1551. /* Main body of final NIC shutdown code
  1552. * This is called only at module unload (or hotplug removal).
  1553. */
  1554. static void efx_pci_remove_main(struct efx_nic *efx)
  1555. {
  1556. EFX_ASSERT_RESET_SERIALISED(efx);
  1557. /* Skip everything if we never obtained a valid membase */
  1558. if (!efx->membase)
  1559. return;
  1560. efx_fini_channels(efx);
  1561. efx_fini_port(efx);
  1562. /* Shutdown the board, then the NIC and board state */
  1563. efx->board_info.fini(efx);
  1564. falcon_fini_interrupt(efx);
  1565. efx_fini_napi(efx);
  1566. efx_remove_all(efx);
  1567. }
  1568. /* Final NIC shutdown
  1569. * This is called only at module unload (or hotplug removal).
  1570. */
  1571. static void efx_pci_remove(struct pci_dev *pci_dev)
  1572. {
  1573. struct efx_nic *efx;
  1574. efx = pci_get_drvdata(pci_dev);
  1575. if (!efx)
  1576. return;
  1577. /* Mark the NIC as fini, then stop the interface */
  1578. rtnl_lock();
  1579. efx->state = STATE_FINI;
  1580. dev_close(efx->net_dev);
  1581. /* Allow any queued efx_resets() to complete */
  1582. rtnl_unlock();
  1583. if (efx->membase == NULL)
  1584. goto out;
  1585. efx_unregister_netdev(efx);
  1586. /* Wait for any scheduled resets to complete. No more will be
  1587. * scheduled from this point because efx_stop_all() has been
  1588. * called, we are no longer registered with driverlink, and
  1589. * the net_device's have been removed. */
  1590. flush_workqueue(efx->reset_workqueue);
  1591. efx_pci_remove_main(efx);
  1592. out:
  1593. efx_fini_io(efx);
  1594. EFX_LOG(efx, "shutdown successful\n");
  1595. pci_set_drvdata(pci_dev, NULL);
  1596. efx_fini_struct(efx);
  1597. free_netdev(efx->net_dev);
  1598. };
  1599. /* Main body of NIC initialisation
  1600. * This is called at module load (or hotplug insertion, theoretically).
  1601. */
  1602. static int efx_pci_probe_main(struct efx_nic *efx)
  1603. {
  1604. int rc;
  1605. /* Do start-of-day initialisation */
  1606. rc = efx_probe_all(efx);
  1607. if (rc)
  1608. goto fail1;
  1609. rc = efx_init_napi(efx);
  1610. if (rc)
  1611. goto fail2;
  1612. /* Initialise the board */
  1613. rc = efx->board_info.init(efx);
  1614. if (rc) {
  1615. EFX_ERR(efx, "failed to initialise board\n");
  1616. goto fail3;
  1617. }
  1618. rc = falcon_init_nic(efx);
  1619. if (rc) {
  1620. EFX_ERR(efx, "failed to initialise NIC\n");
  1621. goto fail4;
  1622. }
  1623. rc = efx_init_port(efx);
  1624. if (rc) {
  1625. EFX_ERR(efx, "failed to initialise port\n");
  1626. goto fail5;
  1627. }
  1628. efx_init_channels(efx);
  1629. rc = falcon_init_interrupt(efx);
  1630. if (rc)
  1631. goto fail6;
  1632. return 0;
  1633. fail6:
  1634. efx_fini_channels(efx);
  1635. efx_fini_port(efx);
  1636. fail5:
  1637. fail4:
  1638. fail3:
  1639. efx_fini_napi(efx);
  1640. fail2:
  1641. efx_remove_all(efx);
  1642. fail1:
  1643. return rc;
  1644. }
  1645. /* NIC initialisation
  1646. *
  1647. * This is called at module load (or hotplug insertion,
  1648. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1649. * sets up and registers the network devices with the kernel and hooks
  1650. * the interrupt service routine. It does not prepare the device for
  1651. * transmission; this is left to the first time one of the network
  1652. * interfaces is brought up (i.e. efx_net_open).
  1653. */
  1654. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1655. const struct pci_device_id *entry)
  1656. {
  1657. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1658. struct net_device *net_dev;
  1659. struct efx_nic *efx;
  1660. int i, rc;
  1661. /* Allocate and initialise a struct net_device and struct efx_nic */
  1662. net_dev = alloc_etherdev(sizeof(*efx));
  1663. if (!net_dev)
  1664. return -ENOMEM;
  1665. net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
  1666. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1667. if (lro)
  1668. net_dev->features |= NETIF_F_LRO;
  1669. /* Mask for features that also apply to VLAN devices */
  1670. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1671. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1672. efx = netdev_priv(net_dev);
  1673. pci_set_drvdata(pci_dev, efx);
  1674. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  1675. if (rc)
  1676. goto fail1;
  1677. EFX_INFO(efx, "Solarflare Communications NIC detected\n");
  1678. /* Set up basic I/O (BAR mappings etc) */
  1679. rc = efx_init_io(efx);
  1680. if (rc)
  1681. goto fail2;
  1682. /* No serialisation is required with the reset path because
  1683. * we're in STATE_INIT. */
  1684. for (i = 0; i < 5; i++) {
  1685. rc = efx_pci_probe_main(efx);
  1686. if (rc == 0)
  1687. break;
  1688. /* Serialise against efx_reset(). No more resets will be
  1689. * scheduled since efx_stop_all() has been called, and we
  1690. * have not and never have been registered with either
  1691. * the rtnetlink or driverlink layers. */
  1692. flush_workqueue(efx->reset_workqueue);
  1693. /* Retry if a recoverably reset event has been scheduled */
  1694. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  1695. (efx->reset_pending != RESET_TYPE_ALL))
  1696. goto fail3;
  1697. efx->reset_pending = RESET_TYPE_NONE;
  1698. }
  1699. if (rc) {
  1700. EFX_ERR(efx, "Could not reset NIC\n");
  1701. goto fail4;
  1702. }
  1703. /* Switch to the running state before we expose the device to
  1704. * the OS. This is to ensure that the initial gathering of
  1705. * MAC stats succeeds. */
  1706. rtnl_lock();
  1707. efx->state = STATE_RUNNING;
  1708. rtnl_unlock();
  1709. rc = efx_register_netdev(efx);
  1710. if (rc)
  1711. goto fail5;
  1712. EFX_LOG(efx, "initialisation successful\n");
  1713. return 0;
  1714. fail5:
  1715. efx_pci_remove_main(efx);
  1716. fail4:
  1717. fail3:
  1718. efx_fini_io(efx);
  1719. fail2:
  1720. efx_fini_struct(efx);
  1721. fail1:
  1722. EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
  1723. free_netdev(net_dev);
  1724. return rc;
  1725. }
  1726. static struct pci_driver efx_pci_driver = {
  1727. .name = EFX_DRIVER_NAME,
  1728. .id_table = efx_pci_table,
  1729. .probe = efx_pci_probe,
  1730. .remove = efx_pci_remove,
  1731. };
  1732. /**************************************************************************
  1733. *
  1734. * Kernel module interface
  1735. *
  1736. *************************************************************************/
  1737. module_param(interrupt_mode, uint, 0444);
  1738. MODULE_PARM_DESC(interrupt_mode,
  1739. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  1740. static int __init efx_init_module(void)
  1741. {
  1742. int rc;
  1743. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  1744. rc = register_netdevice_notifier(&efx_netdev_notifier);
  1745. if (rc)
  1746. goto err_notifier;
  1747. refill_workqueue = create_workqueue("sfc_refill");
  1748. if (!refill_workqueue) {
  1749. rc = -ENOMEM;
  1750. goto err_refill;
  1751. }
  1752. rc = pci_register_driver(&efx_pci_driver);
  1753. if (rc < 0)
  1754. goto err_pci;
  1755. return 0;
  1756. err_pci:
  1757. destroy_workqueue(refill_workqueue);
  1758. err_refill:
  1759. unregister_netdevice_notifier(&efx_netdev_notifier);
  1760. err_notifier:
  1761. return rc;
  1762. }
  1763. static void __exit efx_exit_module(void)
  1764. {
  1765. printk(KERN_INFO "Solarflare NET driver unloading\n");
  1766. pci_unregister_driver(&efx_pci_driver);
  1767. destroy_workqueue(refill_workqueue);
  1768. unregister_netdevice_notifier(&efx_netdev_notifier);
  1769. }
  1770. module_init(efx_init_module);
  1771. module_exit(efx_exit_module);
  1772. MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
  1773. "Solarflare Communications");
  1774. MODULE_DESCRIPTION("Solarflare Communications network driver");
  1775. MODULE_LICENSE("GPL");
  1776. MODULE_DEVICE_TABLE(pci, efx_pci_table);