super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /*
  2. * linux/fs/hfs/super.c
  3. *
  4. * Copyright (C) 1995-1997 Paul H. Hargrove
  5. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6. * This file may be distributed under the terms of the GNU General Public License.
  7. *
  8. * This file contains hfs_read_super(), some of the super_ops and
  9. * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in
  10. * inode.c since they deal with inodes.
  11. *
  12. * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
  13. */
  14. #include <linux/module.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/mount.h>
  17. #include <linux/init.h>
  18. #include <linux/nls.h>
  19. #include <linux/parser.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/vfs.h>
  22. #include "hfs_fs.h"
  23. #include "btree.h"
  24. static struct kmem_cache *hfs_inode_cachep;
  25. MODULE_LICENSE("GPL");
  26. /*
  27. * hfs_write_super()
  28. *
  29. * Description:
  30. * This function is called by the VFS only. When the filesystem
  31. * is mounted r/w it updates the MDB on disk.
  32. * Input Variable(s):
  33. * struct super_block *sb: Pointer to the hfs superblock
  34. * Output Variable(s):
  35. * NONE
  36. * Returns:
  37. * void
  38. * Preconditions:
  39. * 'sb' points to a "valid" (struct super_block).
  40. * Postconditions:
  41. * The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
  42. * (hfs_put_super() must set this flag!). Some MDB fields are updated
  43. * and the MDB buffer is written to disk by calling hfs_mdb_commit().
  44. */
  45. static void hfs_write_super(struct super_block *sb)
  46. {
  47. sb->s_dirt = 0;
  48. if (sb->s_flags & MS_RDONLY)
  49. return;
  50. /* sync everything to the buffers */
  51. hfs_mdb_commit(sb);
  52. }
  53. /*
  54. * hfs_put_super()
  55. *
  56. * This is the put_super() entry in the super_operations structure for
  57. * HFS filesystems. The purpose is to release the resources
  58. * associated with the superblock sb.
  59. */
  60. static void hfs_put_super(struct super_block *sb)
  61. {
  62. if (sb->s_dirt)
  63. hfs_write_super(sb);
  64. hfs_mdb_close(sb);
  65. /* release the MDB's resources */
  66. hfs_mdb_put(sb);
  67. }
  68. /*
  69. * hfs_statfs()
  70. *
  71. * This is the statfs() entry in the super_operations structure for
  72. * HFS filesystems. The purpose is to return various data about the
  73. * filesystem.
  74. *
  75. * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
  76. */
  77. static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  78. {
  79. struct super_block *sb = dentry->d_sb;
  80. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  81. buf->f_type = HFS_SUPER_MAGIC;
  82. buf->f_bsize = sb->s_blocksize;
  83. buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
  84. buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
  85. buf->f_bavail = buf->f_bfree;
  86. buf->f_files = HFS_SB(sb)->fs_ablocks;
  87. buf->f_ffree = HFS_SB(sb)->free_ablocks;
  88. buf->f_fsid.val[0] = (u32)id;
  89. buf->f_fsid.val[1] = (u32)(id >> 32);
  90. buf->f_namelen = HFS_NAMELEN;
  91. return 0;
  92. }
  93. static int hfs_remount(struct super_block *sb, int *flags, char *data)
  94. {
  95. *flags |= MS_NODIRATIME;
  96. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  97. return 0;
  98. if (!(*flags & MS_RDONLY)) {
  99. if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
  100. printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
  101. "running fsck.hfs is recommended. leaving read-only.\n");
  102. sb->s_flags |= MS_RDONLY;
  103. *flags |= MS_RDONLY;
  104. } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
  105. printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
  106. sb->s_flags |= MS_RDONLY;
  107. *flags |= MS_RDONLY;
  108. }
  109. }
  110. return 0;
  111. }
  112. static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt)
  113. {
  114. struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb);
  115. if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
  116. seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
  117. if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
  118. seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
  119. seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
  120. if (sbi->s_file_umask != 0133)
  121. seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
  122. if (sbi->s_dir_umask != 0022)
  123. seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
  124. if (sbi->part >= 0)
  125. seq_printf(seq, ",part=%u", sbi->part);
  126. if (sbi->session >= 0)
  127. seq_printf(seq, ",session=%u", sbi->session);
  128. if (sbi->nls_disk)
  129. seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
  130. if (sbi->nls_io)
  131. seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
  132. if (sbi->s_quiet)
  133. seq_printf(seq, ",quiet");
  134. return 0;
  135. }
  136. static struct inode *hfs_alloc_inode(struct super_block *sb)
  137. {
  138. struct hfs_inode_info *i;
  139. i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
  140. return i ? &i->vfs_inode : NULL;
  141. }
  142. static void hfs_destroy_inode(struct inode *inode)
  143. {
  144. kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
  145. }
  146. static const struct super_operations hfs_super_operations = {
  147. .alloc_inode = hfs_alloc_inode,
  148. .destroy_inode = hfs_destroy_inode,
  149. .write_inode = hfs_write_inode,
  150. .clear_inode = hfs_clear_inode,
  151. .put_super = hfs_put_super,
  152. .write_super = hfs_write_super,
  153. .statfs = hfs_statfs,
  154. .remount_fs = hfs_remount,
  155. .show_options = hfs_show_options,
  156. };
  157. enum {
  158. opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
  159. opt_part, opt_session, opt_type, opt_creator, opt_quiet,
  160. opt_codepage, opt_iocharset,
  161. opt_err
  162. };
  163. static const match_table_t tokens = {
  164. { opt_uid, "uid=%u" },
  165. { opt_gid, "gid=%u" },
  166. { opt_umask, "umask=%o" },
  167. { opt_file_umask, "file_umask=%o" },
  168. { opt_dir_umask, "dir_umask=%o" },
  169. { opt_part, "part=%u" },
  170. { opt_session, "session=%u" },
  171. { opt_type, "type=%s" },
  172. { opt_creator, "creator=%s" },
  173. { opt_quiet, "quiet" },
  174. { opt_codepage, "codepage=%s" },
  175. { opt_iocharset, "iocharset=%s" },
  176. { opt_err, NULL }
  177. };
  178. static inline int match_fourchar(substring_t *arg, u32 *result)
  179. {
  180. if (arg->to - arg->from != 4)
  181. return -EINVAL;
  182. memcpy(result, arg->from, 4);
  183. return 0;
  184. }
  185. /*
  186. * parse_options()
  187. *
  188. * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
  189. * This function is called by hfs_read_super() to parse the mount options.
  190. */
  191. static int parse_options(char *options, struct hfs_sb_info *hsb)
  192. {
  193. char *p;
  194. substring_t args[MAX_OPT_ARGS];
  195. int tmp, token;
  196. /* initialize the sb with defaults */
  197. hsb->s_uid = current_uid();
  198. hsb->s_gid = current_gid();
  199. hsb->s_file_umask = 0133;
  200. hsb->s_dir_umask = 0022;
  201. hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
  202. hsb->s_quiet = 0;
  203. hsb->part = -1;
  204. hsb->session = -1;
  205. if (!options)
  206. return 1;
  207. while ((p = strsep(&options, ",")) != NULL) {
  208. if (!*p)
  209. continue;
  210. token = match_token(p, tokens, args);
  211. switch (token) {
  212. case opt_uid:
  213. if (match_int(&args[0], &tmp)) {
  214. printk(KERN_ERR "hfs: uid requires an argument\n");
  215. return 0;
  216. }
  217. hsb->s_uid = (uid_t)tmp;
  218. break;
  219. case opt_gid:
  220. if (match_int(&args[0], &tmp)) {
  221. printk(KERN_ERR "hfs: gid requires an argument\n");
  222. return 0;
  223. }
  224. hsb->s_gid = (gid_t)tmp;
  225. break;
  226. case opt_umask:
  227. if (match_octal(&args[0], &tmp)) {
  228. printk(KERN_ERR "hfs: umask requires a value\n");
  229. return 0;
  230. }
  231. hsb->s_file_umask = (umode_t)tmp;
  232. hsb->s_dir_umask = (umode_t)tmp;
  233. break;
  234. case opt_file_umask:
  235. if (match_octal(&args[0], &tmp)) {
  236. printk(KERN_ERR "hfs: file_umask requires a value\n");
  237. return 0;
  238. }
  239. hsb->s_file_umask = (umode_t)tmp;
  240. break;
  241. case opt_dir_umask:
  242. if (match_octal(&args[0], &tmp)) {
  243. printk(KERN_ERR "hfs: dir_umask requires a value\n");
  244. return 0;
  245. }
  246. hsb->s_dir_umask = (umode_t)tmp;
  247. break;
  248. case opt_part:
  249. if (match_int(&args[0], &hsb->part)) {
  250. printk(KERN_ERR "hfs: part requires an argument\n");
  251. return 0;
  252. }
  253. break;
  254. case opt_session:
  255. if (match_int(&args[0], &hsb->session)) {
  256. printk(KERN_ERR "hfs: session requires an argument\n");
  257. return 0;
  258. }
  259. break;
  260. case opt_type:
  261. if (match_fourchar(&args[0], &hsb->s_type)) {
  262. printk(KERN_ERR "hfs: type requires a 4 character value\n");
  263. return 0;
  264. }
  265. break;
  266. case opt_creator:
  267. if (match_fourchar(&args[0], &hsb->s_creator)) {
  268. printk(KERN_ERR "hfs: creator requires a 4 character value\n");
  269. return 0;
  270. }
  271. break;
  272. case opt_quiet:
  273. hsb->s_quiet = 1;
  274. break;
  275. case opt_codepage:
  276. if (hsb->nls_disk) {
  277. printk(KERN_ERR "hfs: unable to change codepage\n");
  278. return 0;
  279. }
  280. p = match_strdup(&args[0]);
  281. if (p)
  282. hsb->nls_disk = load_nls(p);
  283. if (!hsb->nls_disk) {
  284. printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
  285. kfree(p);
  286. return 0;
  287. }
  288. kfree(p);
  289. break;
  290. case opt_iocharset:
  291. if (hsb->nls_io) {
  292. printk(KERN_ERR "hfs: unable to change iocharset\n");
  293. return 0;
  294. }
  295. p = match_strdup(&args[0]);
  296. if (p)
  297. hsb->nls_io = load_nls(p);
  298. if (!hsb->nls_io) {
  299. printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
  300. kfree(p);
  301. return 0;
  302. }
  303. kfree(p);
  304. break;
  305. default:
  306. return 0;
  307. }
  308. }
  309. if (hsb->nls_disk && !hsb->nls_io) {
  310. hsb->nls_io = load_nls_default();
  311. if (!hsb->nls_io) {
  312. printk(KERN_ERR "hfs: unable to load default iocharset\n");
  313. return 0;
  314. }
  315. }
  316. hsb->s_dir_umask &= 0777;
  317. hsb->s_file_umask &= 0577;
  318. return 1;
  319. }
  320. /*
  321. * hfs_read_super()
  322. *
  323. * This is the function that is responsible for mounting an HFS
  324. * filesystem. It performs all the tasks necessary to get enough data
  325. * from the disk to read the root inode. This includes parsing the
  326. * mount options, dealing with Macintosh partitions, reading the
  327. * superblock and the allocation bitmap blocks, calling
  328. * hfs_btree_init() to get the necessary data about the extents and
  329. * catalog B-trees and, finally, reading the root inode into memory.
  330. */
  331. static int hfs_fill_super(struct super_block *sb, void *data, int silent)
  332. {
  333. struct hfs_sb_info *sbi;
  334. struct hfs_find_data fd;
  335. hfs_cat_rec rec;
  336. struct inode *root_inode;
  337. int res;
  338. sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
  339. if (!sbi)
  340. return -ENOMEM;
  341. sb->s_fs_info = sbi;
  342. INIT_HLIST_HEAD(&sbi->rsrc_inodes);
  343. res = -EINVAL;
  344. if (!parse_options((char *)data, sbi)) {
  345. printk(KERN_ERR "hfs: unable to parse mount options.\n");
  346. goto bail;
  347. }
  348. sb->s_op = &hfs_super_operations;
  349. sb->s_flags |= MS_NODIRATIME;
  350. mutex_init(&sbi->bitmap_lock);
  351. res = hfs_mdb_get(sb);
  352. if (res) {
  353. if (!silent)
  354. printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
  355. hfs_mdb_name(sb));
  356. res = -EINVAL;
  357. goto bail;
  358. }
  359. /* try to get the root inode */
  360. hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
  361. res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
  362. if (!res)
  363. hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
  364. if (res) {
  365. hfs_find_exit(&fd);
  366. goto bail_no_root;
  367. }
  368. res = -EINVAL;
  369. root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
  370. hfs_find_exit(&fd);
  371. if (!root_inode)
  372. goto bail_no_root;
  373. res = -ENOMEM;
  374. sb->s_root = d_alloc_root(root_inode);
  375. if (!sb->s_root)
  376. goto bail_iput;
  377. sb->s_root->d_op = &hfs_dentry_operations;
  378. /* everything's okay */
  379. return 0;
  380. bail_iput:
  381. iput(root_inode);
  382. bail_no_root:
  383. printk(KERN_ERR "hfs: get root inode failed.\n");
  384. bail:
  385. hfs_mdb_put(sb);
  386. return res;
  387. }
  388. static int hfs_get_sb(struct file_system_type *fs_type,
  389. int flags, const char *dev_name, void *data,
  390. struct vfsmount *mnt)
  391. {
  392. return get_sb_bdev(fs_type, flags, dev_name, data, hfs_fill_super, mnt);
  393. }
  394. static struct file_system_type hfs_fs_type = {
  395. .owner = THIS_MODULE,
  396. .name = "hfs",
  397. .get_sb = hfs_get_sb,
  398. .kill_sb = kill_block_super,
  399. .fs_flags = FS_REQUIRES_DEV,
  400. };
  401. static void hfs_init_once(void *p)
  402. {
  403. struct hfs_inode_info *i = p;
  404. inode_init_once(&i->vfs_inode);
  405. }
  406. static int __init init_hfs_fs(void)
  407. {
  408. int err;
  409. hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
  410. sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
  411. hfs_init_once);
  412. if (!hfs_inode_cachep)
  413. return -ENOMEM;
  414. err = register_filesystem(&hfs_fs_type);
  415. if (err)
  416. kmem_cache_destroy(hfs_inode_cachep);
  417. return err;
  418. }
  419. static void __exit exit_hfs_fs(void)
  420. {
  421. unregister_filesystem(&hfs_fs_type);
  422. kmem_cache_destroy(hfs_inode_cachep);
  423. }
  424. module_init(init_hfs_fs)
  425. module_exit(exit_hfs_fs)