1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939 |
- /*
- * linux/kernel/timer.c
- *
- * Kernel internal timers, kernel timekeeping, basic process system calls
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- *
- * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
- *
- * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
- * serialize accesses to xtime/lost_ticks).
- * Copyright (C) 1998 Andrea Arcangeli
- * 1999-03-10 Improved NTP compatibility by Ulrich Windl
- * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
- * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
- * Copyright (C) 2000, 2001, 2002 Ingo Molnar
- * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
- */
- #include <linux/kernel_stat.h>
- #include <linux/module.h>
- #include <linux/interrupt.h>
- #include <linux/percpu.h>
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/notifier.h>
- #include <linux/thread_info.h>
- #include <linux/time.h>
- #include <linux/jiffies.h>
- #include <linux/posix-timers.h>
- #include <linux/cpu.h>
- #include <linux/syscalls.h>
- #include <linux/delay.h>
- #include <asm/uaccess.h>
- #include <asm/unistd.h>
- #include <asm/div64.h>
- #include <asm/timex.h>
- #include <asm/io.h>
- #ifdef CONFIG_TIME_INTERPOLATION
- static void time_interpolator_update(long delta_nsec);
- #else
- #define time_interpolator_update(x)
- #endif
- u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
- EXPORT_SYMBOL(jiffies_64);
- /*
- * per-CPU timer vector definitions:
- */
- #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
- #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
- #define TVN_SIZE (1 << TVN_BITS)
- #define TVR_SIZE (1 << TVR_BITS)
- #define TVN_MASK (TVN_SIZE - 1)
- #define TVR_MASK (TVR_SIZE - 1)
- typedef struct tvec_s {
- struct list_head vec[TVN_SIZE];
- } tvec_t;
- typedef struct tvec_root_s {
- struct list_head vec[TVR_SIZE];
- } tvec_root_t;
- struct tvec_t_base_s {
- spinlock_t lock;
- struct timer_list *running_timer;
- unsigned long timer_jiffies;
- tvec_root_t tv1;
- tvec_t tv2;
- tvec_t tv3;
- tvec_t tv4;
- tvec_t tv5;
- } ____cacheline_aligned_in_smp;
- typedef struct tvec_t_base_s tvec_base_t;
- tvec_base_t boot_tvec_bases;
- EXPORT_SYMBOL(boot_tvec_bases);
- static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
- static inline void set_running_timer(tvec_base_t *base,
- struct timer_list *timer)
- {
- #ifdef CONFIG_SMP
- base->running_timer = timer;
- #endif
- }
- static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
- {
- unsigned long expires = timer->expires;
- unsigned long idx = expires - base->timer_jiffies;
- struct list_head *vec;
- if (idx < TVR_SIZE) {
- int i = expires & TVR_MASK;
- vec = base->tv1.vec + i;
- } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
- int i = (expires >> TVR_BITS) & TVN_MASK;
- vec = base->tv2.vec + i;
- } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
- vec = base->tv3.vec + i;
- } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
- vec = base->tv4.vec + i;
- } else if ((signed long) idx < 0) {
- /*
- * Can happen if you add a timer with expires == jiffies,
- * or you set a timer to go off in the past
- */
- vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
- } else {
- int i;
- /* If the timeout is larger than 0xffffffff on 64-bit
- * architectures then we use the maximum timeout:
- */
- if (idx > 0xffffffffUL) {
- idx = 0xffffffffUL;
- expires = idx + base->timer_jiffies;
- }
- i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
- vec = base->tv5.vec + i;
- }
- /*
- * Timers are FIFO:
- */
- list_add_tail(&timer->entry, vec);
- }
- /***
- * init_timer - initialize a timer.
- * @timer: the timer to be initialized
- *
- * init_timer() must be done to a timer prior calling *any* of the
- * other timer functions.
- */
- void fastcall init_timer(struct timer_list *timer)
- {
- timer->entry.next = NULL;
- timer->base = __raw_get_cpu_var(tvec_bases);
- }
- EXPORT_SYMBOL(init_timer);
- static inline void detach_timer(struct timer_list *timer,
- int clear_pending)
- {
- struct list_head *entry = &timer->entry;
- __list_del(entry->prev, entry->next);
- if (clear_pending)
- entry->next = NULL;
- entry->prev = LIST_POISON2;
- }
- /*
- * We are using hashed locking: holding per_cpu(tvec_bases).lock
- * means that all timers which are tied to this base via timer->base are
- * locked, and the base itself is locked too.
- *
- * So __run_timers/migrate_timers can safely modify all timers which could
- * be found on ->tvX lists.
- *
- * When the timer's base is locked, and the timer removed from list, it is
- * possible to set timer->base = NULL and drop the lock: the timer remains
- * locked.
- */
- static tvec_base_t *lock_timer_base(struct timer_list *timer,
- unsigned long *flags)
- {
- tvec_base_t *base;
- for (;;) {
- base = timer->base;
- if (likely(base != NULL)) {
- spin_lock_irqsave(&base->lock, *flags);
- if (likely(base == timer->base))
- return base;
- /* The timer has migrated to another CPU */
- spin_unlock_irqrestore(&base->lock, *flags);
- }
- cpu_relax();
- }
- }
- int __mod_timer(struct timer_list *timer, unsigned long expires)
- {
- tvec_base_t *base, *new_base;
- unsigned long flags;
- int ret = 0;
- BUG_ON(!timer->function);
- base = lock_timer_base(timer, &flags);
- if (timer_pending(timer)) {
- detach_timer(timer, 0);
- ret = 1;
- }
- new_base = __get_cpu_var(tvec_bases);
- if (base != new_base) {
- /*
- * We are trying to schedule the timer on the local CPU.
- * However we can't change timer's base while it is running,
- * otherwise del_timer_sync() can't detect that the timer's
- * handler yet has not finished. This also guarantees that
- * the timer is serialized wrt itself.
- */
- if (likely(base->running_timer != timer)) {
- /* See the comment in lock_timer_base() */
- timer->base = NULL;
- spin_unlock(&base->lock);
- base = new_base;
- spin_lock(&base->lock);
- timer->base = base;
- }
- }
- timer->expires = expires;
- internal_add_timer(base, timer);
- spin_unlock_irqrestore(&base->lock, flags);
- return ret;
- }
- EXPORT_SYMBOL(__mod_timer);
- /***
- * add_timer_on - start a timer on a particular CPU
- * @timer: the timer to be added
- * @cpu: the CPU to start it on
- *
- * This is not very scalable on SMP. Double adds are not possible.
- */
- void add_timer_on(struct timer_list *timer, int cpu)
- {
- tvec_base_t *base = per_cpu(tvec_bases, cpu);
- unsigned long flags;
- BUG_ON(timer_pending(timer) || !timer->function);
- spin_lock_irqsave(&base->lock, flags);
- timer->base = base;
- internal_add_timer(base, timer);
- spin_unlock_irqrestore(&base->lock, flags);
- }
- /***
- * mod_timer - modify a timer's timeout
- * @timer: the timer to be modified
- *
- * mod_timer is a more efficient way to update the expire field of an
- * active timer (if the timer is inactive it will be activated)
- *
- * mod_timer(timer, expires) is equivalent to:
- *
- * del_timer(timer); timer->expires = expires; add_timer(timer);
- *
- * Note that if there are multiple unserialized concurrent users of the
- * same timer, then mod_timer() is the only safe way to modify the timeout,
- * since add_timer() cannot modify an already running timer.
- *
- * The function returns whether it has modified a pending timer or not.
- * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
- * active timer returns 1.)
- */
- int mod_timer(struct timer_list *timer, unsigned long expires)
- {
- BUG_ON(!timer->function);
- /*
- * This is a common optimization triggered by the
- * networking code - if the timer is re-modified
- * to be the same thing then just return:
- */
- if (timer->expires == expires && timer_pending(timer))
- return 1;
- return __mod_timer(timer, expires);
- }
- EXPORT_SYMBOL(mod_timer);
- /***
- * del_timer - deactive a timer.
- * @timer: the timer to be deactivated
- *
- * del_timer() deactivates a timer - this works on both active and inactive
- * timers.
- *
- * The function returns whether it has deactivated a pending timer or not.
- * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
- * active timer returns 1.)
- */
- int del_timer(struct timer_list *timer)
- {
- tvec_base_t *base;
- unsigned long flags;
- int ret = 0;
- if (timer_pending(timer)) {
- base = lock_timer_base(timer, &flags);
- if (timer_pending(timer)) {
- detach_timer(timer, 1);
- ret = 1;
- }
- spin_unlock_irqrestore(&base->lock, flags);
- }
- return ret;
- }
- EXPORT_SYMBOL(del_timer);
- #ifdef CONFIG_SMP
- /*
- * This function tries to deactivate a timer. Upon successful (ret >= 0)
- * exit the timer is not queued and the handler is not running on any CPU.
- *
- * It must not be called from interrupt contexts.
- */
- int try_to_del_timer_sync(struct timer_list *timer)
- {
- tvec_base_t *base;
- unsigned long flags;
- int ret = -1;
- base = lock_timer_base(timer, &flags);
- if (base->running_timer == timer)
- goto out;
- ret = 0;
- if (timer_pending(timer)) {
- detach_timer(timer, 1);
- ret = 1;
- }
- out:
- spin_unlock_irqrestore(&base->lock, flags);
- return ret;
- }
- /***
- * del_timer_sync - deactivate a timer and wait for the handler to finish.
- * @timer: the timer to be deactivated
- *
- * This function only differs from del_timer() on SMP: besides deactivating
- * the timer it also makes sure the handler has finished executing on other
- * CPUs.
- *
- * Synchronization rules: callers must prevent restarting of the timer,
- * otherwise this function is meaningless. It must not be called from
- * interrupt contexts. The caller must not hold locks which would prevent
- * completion of the timer's handler. The timer's handler must not call
- * add_timer_on(). Upon exit the timer is not queued and the handler is
- * not running on any CPU.
- *
- * The function returns whether it has deactivated a pending timer or not.
- */
- int del_timer_sync(struct timer_list *timer)
- {
- for (;;) {
- int ret = try_to_del_timer_sync(timer);
- if (ret >= 0)
- return ret;
- cpu_relax();
- }
- }
- EXPORT_SYMBOL(del_timer_sync);
- #endif
- static int cascade(tvec_base_t *base, tvec_t *tv, int index)
- {
- /* cascade all the timers from tv up one level */
- struct timer_list *timer, *tmp;
- struct list_head tv_list;
- list_replace_init(tv->vec + index, &tv_list);
- /*
- * We are removing _all_ timers from the list, so we
- * don't have to detach them individually.
- */
- list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
- BUG_ON(timer->base != base);
- internal_add_timer(base, timer);
- }
- return index;
- }
- /***
- * __run_timers - run all expired timers (if any) on this CPU.
- * @base: the timer vector to be processed.
- *
- * This function cascades all vectors and executes all expired timer
- * vectors.
- */
- #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
- static inline void __run_timers(tvec_base_t *base)
- {
- struct timer_list *timer;
- spin_lock_irq(&base->lock);
- while (time_after_eq(jiffies, base->timer_jiffies)) {
- struct list_head work_list;
- struct list_head *head = &work_list;
- int index = base->timer_jiffies & TVR_MASK;
- /*
- * Cascade timers:
- */
- if (!index &&
- (!cascade(base, &base->tv2, INDEX(0))) &&
- (!cascade(base, &base->tv3, INDEX(1))) &&
- !cascade(base, &base->tv4, INDEX(2)))
- cascade(base, &base->tv5, INDEX(3));
- ++base->timer_jiffies;
- list_replace_init(base->tv1.vec + index, &work_list);
- while (!list_empty(head)) {
- void (*fn)(unsigned long);
- unsigned long data;
- timer = list_entry(head->next,struct timer_list,entry);
- fn = timer->function;
- data = timer->data;
- set_running_timer(base, timer);
- detach_timer(timer, 1);
- spin_unlock_irq(&base->lock);
- {
- int preempt_count = preempt_count();
- fn(data);
- if (preempt_count != preempt_count()) {
- printk(KERN_WARNING "huh, entered %p "
- "with preempt_count %08x, exited"
- " with %08x?\n",
- fn, preempt_count,
- preempt_count());
- BUG();
- }
- }
- spin_lock_irq(&base->lock);
- }
- }
- set_running_timer(base, NULL);
- spin_unlock_irq(&base->lock);
- }
- #ifdef CONFIG_NO_IDLE_HZ
- /*
- * Find out when the next timer event is due to happen. This
- * is used on S/390 to stop all activity when a cpus is idle.
- * This functions needs to be called disabled.
- */
- unsigned long next_timer_interrupt(void)
- {
- tvec_base_t *base;
- struct list_head *list;
- struct timer_list *nte;
- unsigned long expires;
- unsigned long hr_expires = MAX_JIFFY_OFFSET;
- ktime_t hr_delta;
- tvec_t *varray[4];
- int i, j;
- hr_delta = hrtimer_get_next_event();
- if (hr_delta.tv64 != KTIME_MAX) {
- struct timespec tsdelta;
- tsdelta = ktime_to_timespec(hr_delta);
- hr_expires = timespec_to_jiffies(&tsdelta);
- if (hr_expires < 3)
- return hr_expires + jiffies;
- }
- hr_expires += jiffies;
- base = __get_cpu_var(tvec_bases);
- spin_lock(&base->lock);
- expires = base->timer_jiffies + (LONG_MAX >> 1);
- list = NULL;
- /* Look for timer events in tv1. */
- j = base->timer_jiffies & TVR_MASK;
- do {
- list_for_each_entry(nte, base->tv1.vec + j, entry) {
- expires = nte->expires;
- if (j < (base->timer_jiffies & TVR_MASK))
- list = base->tv2.vec + (INDEX(0));
- goto found;
- }
- j = (j + 1) & TVR_MASK;
- } while (j != (base->timer_jiffies & TVR_MASK));
- /* Check tv2-tv5. */
- varray[0] = &base->tv2;
- varray[1] = &base->tv3;
- varray[2] = &base->tv4;
- varray[3] = &base->tv5;
- for (i = 0; i < 4; i++) {
- j = INDEX(i);
- do {
- if (list_empty(varray[i]->vec + j)) {
- j = (j + 1) & TVN_MASK;
- continue;
- }
- list_for_each_entry(nte, varray[i]->vec + j, entry)
- if (time_before(nte->expires, expires))
- expires = nte->expires;
- if (j < (INDEX(i)) && i < 3)
- list = varray[i + 1]->vec + (INDEX(i + 1));
- goto found;
- } while (j != (INDEX(i)));
- }
- found:
- if (list) {
- /*
- * The search wrapped. We need to look at the next list
- * from next tv element that would cascade into tv element
- * where we found the timer element.
- */
- list_for_each_entry(nte, list, entry) {
- if (time_before(nte->expires, expires))
- expires = nte->expires;
- }
- }
- spin_unlock(&base->lock);
- /*
- * It can happen that other CPUs service timer IRQs and increment
- * jiffies, but we have not yet got a local timer tick to process
- * the timer wheels. In that case, the expiry time can be before
- * jiffies, but since the high-resolution timer here is relative to
- * jiffies, the default expression when high-resolution timers are
- * not active,
- *
- * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
- *
- * would falsely evaluate to true. If that is the case, just
- * return jiffies so that we can immediately fire the local timer
- */
- if (time_before(expires, jiffies))
- return jiffies;
- if (time_before(hr_expires, expires))
- return hr_expires;
- return expires;
- }
- #endif
- /******************************************************************/
- /*
- * Timekeeping variables
- */
- unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
- unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
- /*
- * The current time
- * wall_to_monotonic is what we need to add to xtime (or xtime corrected
- * for sub jiffie times) to get to monotonic time. Monotonic is pegged
- * at zero at system boot time, so wall_to_monotonic will be negative,
- * however, we will ALWAYS keep the tv_nsec part positive so we can use
- * the usual normalization.
- */
- struct timespec xtime __attribute__ ((aligned (16)));
- struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
- EXPORT_SYMBOL(xtime);
- /* Don't completely fail for HZ > 500. */
- int tickadj = 500/HZ ? : 1; /* microsecs */
- /*
- * phase-lock loop variables
- */
- /* TIME_ERROR prevents overwriting the CMOS clock */
- int time_state = TIME_OK; /* clock synchronization status */
- int time_status = STA_UNSYNC; /* clock status bits */
- long time_offset; /* time adjustment (us) */
- long time_constant = 2; /* pll time constant */
- long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
- long time_precision = 1; /* clock precision (us) */
- long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
- long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
- long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
- /* frequency offset (scaled ppm)*/
- static long time_adj; /* tick adjust (scaled 1 / HZ) */
- long time_reftime; /* time at last adjustment (s) */
- long time_adjust;
- long time_next_adjust;
- /*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
- *
- */
- static void second_overflow(void)
- {
- long ltemp;
- /* Bump the maxerror field */
- time_maxerror += time_tolerance >> SHIFT_USEC;
- if (time_maxerror > NTP_PHASE_LIMIT) {
- time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
- }
- /*
- * Leap second processing. If in leap-insert state at the end of the
- * day, the system clock is set back one second; if in leap-delete
- * state, the system clock is set ahead one second. The microtime()
- * routine or external clock driver will insure that reported time is
- * always monotonic. The ugly divides should be replaced.
- */
- switch (time_state) {
- case TIME_OK:
- if (time_status & STA_INS)
- time_state = TIME_INS;
- else if (time_status & STA_DEL)
- time_state = TIME_DEL;
- break;
- case TIME_INS:
- if (xtime.tv_sec % 86400 == 0) {
- xtime.tv_sec--;
- wall_to_monotonic.tv_sec++;
- /*
- * The timer interpolator will make time change
- * gradually instead of an immediate jump by one second
- */
- time_interpolator_update(-NSEC_PER_SEC);
- time_state = TIME_OOP;
- clock_was_set();
- printk(KERN_NOTICE "Clock: inserting leap second "
- "23:59:60 UTC\n");
- }
- break;
- case TIME_DEL:
- if ((xtime.tv_sec + 1) % 86400 == 0) {
- xtime.tv_sec++;
- wall_to_monotonic.tv_sec--;
- /*
- * Use of time interpolator for a gradual change of
- * time
- */
- time_interpolator_update(NSEC_PER_SEC);
- time_state = TIME_WAIT;
- clock_was_set();
- printk(KERN_NOTICE "Clock: deleting leap second "
- "23:59:59 UTC\n");
- }
- break;
- case TIME_OOP:
- time_state = TIME_WAIT;
- break;
- case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
- }
- /*
- * Compute the phase adjustment for the next second. In PLL mode, the
- * offset is reduced by a fixed factor times the time constant. In FLL
- * mode the offset is used directly. In either mode, the maximum phase
- * adjustment for each second is clamped so as to spread the adjustment
- * over not more than the number of seconds between updates.
- */
- ltemp = time_offset;
- if (!(time_status & STA_FLL))
- ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
- ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
- ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
- time_offset -= ltemp;
- time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
- /*
- * Compute the frequency estimate and additional phase adjustment due
- * to frequency error for the next second.
- */
- ltemp = time_freq;
- time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
- #if HZ == 100
- /*
- * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
- * get 128.125; => only 0.125% error (p. 14)
- */
- time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
- #endif
- #if HZ == 250
- /*
- * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
- * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
- */
- time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
- #endif
- #if HZ == 1000
- /*
- * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
- * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
- */
- time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
- #endif
- }
- /*
- * Returns how many microseconds we need to add to xtime this tick
- * in doing an adjustment requested with adjtime.
- */
- static long adjtime_adjustment(void)
- {
- long time_adjust_step;
- time_adjust_step = time_adjust;
- if (time_adjust_step) {
- /*
- * We are doing an adjtime thing. Prepare time_adjust_step to
- * be within bounds. Note that a positive time_adjust means we
- * want the clock to run faster.
- *
- * Limit the amount of the step to be in the range
- * -tickadj .. +tickadj
- */
- time_adjust_step = min(time_adjust_step, (long)tickadj);
- time_adjust_step = max(time_adjust_step, (long)-tickadj);
- }
- return time_adjust_step;
- }
- /* in the NTP reference this is called "hardclock()" */
- static void update_ntp_one_tick(void)
- {
- long time_adjust_step;
- time_adjust_step = adjtime_adjustment();
- if (time_adjust_step)
- /* Reduce by this step the amount of time left */
- time_adjust -= time_adjust_step;
- /* Changes by adjtime() do not take effect till next tick. */
- if (time_next_adjust != 0) {
- time_adjust = time_next_adjust;
- time_next_adjust = 0;
- }
- }
- /*
- * Return how long ticks are at the moment, that is, how much time
- * update_wall_time_one_tick will add to xtime next time we call it
- * (assuming no calls to do_adjtimex in the meantime).
- * The return value is in fixed-point nanoseconds shifted by the
- * specified number of bits to the right of the binary point.
- * This function has no side-effects.
- */
- u64 current_tick_length(void)
- {
- long delta_nsec;
- u64 ret;
- /* calculate the finest interval NTP will allow.
- * ie: nanosecond value shifted by (SHIFT_SCALE - 10)
- */
- delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
- ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
- ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
- return ret;
- }
- /* XXX - all of this timekeeping code should be later moved to time.c */
- #include <linux/clocksource.h>
- static struct clocksource *clock; /* pointer to current clocksource */
- #ifdef CONFIG_GENERIC_TIME
- /**
- * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
- *
- * private function, must hold xtime_lock lock when being
- * called. Returns the number of nanoseconds since the
- * last call to update_wall_time() (adjusted by NTP scaling)
- */
- static inline s64 __get_nsec_offset(void)
- {
- cycle_t cycle_now, cycle_delta;
- s64 ns_offset;
- /* read clocksource: */
- cycle_now = clocksource_read(clock);
- /* calculate the delta since the last update_wall_time: */
- cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
- /* convert to nanoseconds: */
- ns_offset = cyc2ns(clock, cycle_delta);
- return ns_offset;
- }
- /**
- * __get_realtime_clock_ts - Returns the time of day in a timespec
- * @ts: pointer to the timespec to be set
- *
- * Returns the time of day in a timespec. Used by
- * do_gettimeofday() and get_realtime_clock_ts().
- */
- static inline void __get_realtime_clock_ts(struct timespec *ts)
- {
- unsigned long seq;
- s64 nsecs;
- do {
- seq = read_seqbegin(&xtime_lock);
- *ts = xtime;
- nsecs = __get_nsec_offset();
- } while (read_seqretry(&xtime_lock, seq));
- timespec_add_ns(ts, nsecs);
- }
- /**
- * getnstimeofday - Returns the time of day in a timespec
- * @ts: pointer to the timespec to be set
- *
- * Returns the time of day in a timespec.
- */
- void getnstimeofday(struct timespec *ts)
- {
- __get_realtime_clock_ts(ts);
- }
- EXPORT_SYMBOL(getnstimeofday);
- /**
- * do_gettimeofday - Returns the time of day in a timeval
- * @tv: pointer to the timeval to be set
- *
- * NOTE: Users should be converted to using get_realtime_clock_ts()
- */
- void do_gettimeofday(struct timeval *tv)
- {
- struct timespec now;
- __get_realtime_clock_ts(&now);
- tv->tv_sec = now.tv_sec;
- tv->tv_usec = now.tv_nsec/1000;
- }
- EXPORT_SYMBOL(do_gettimeofday);
- /**
- * do_settimeofday - Sets the time of day
- * @tv: pointer to the timespec variable containing the new time
- *
- * Sets the time of day to the new time and update NTP and notify hrtimers
- */
- int do_settimeofday(struct timespec *tv)
- {
- unsigned long flags;
- time_t wtm_sec, sec = tv->tv_sec;
- long wtm_nsec, nsec = tv->tv_nsec;
- if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
- return -EINVAL;
- write_seqlock_irqsave(&xtime_lock, flags);
- nsec -= __get_nsec_offset();
- wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
- wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
- set_normalized_timespec(&xtime, sec, nsec);
- set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
- clock->error = 0;
- ntp_clear();
- write_sequnlock_irqrestore(&xtime_lock, flags);
- /* signal hrtimers about time change */
- clock_was_set();
- return 0;
- }
- EXPORT_SYMBOL(do_settimeofday);
- /**
- * change_clocksource - Swaps clocksources if a new one is available
- *
- * Accumulates current time interval and initializes new clocksource
- */
- static int change_clocksource(void)
- {
- struct clocksource *new;
- cycle_t now;
- u64 nsec;
- new = clocksource_get_next();
- if (clock != new) {
- now = clocksource_read(new);
- nsec = __get_nsec_offset();
- timespec_add_ns(&xtime, nsec);
- clock = new;
- clock->cycle_last = now;
- printk(KERN_INFO "Time: %s clocksource has been installed.\n",
- clock->name);
- return 1;
- } else if (clock->update_callback) {
- return clock->update_callback();
- }
- return 0;
- }
- #else
- #define change_clocksource() (0)
- #endif
- /**
- * timeofday_is_continuous - check to see if timekeeping is free running
- */
- int timekeeping_is_continuous(void)
- {
- unsigned long seq;
- int ret;
- do {
- seq = read_seqbegin(&xtime_lock);
- ret = clock->is_continuous;
- } while (read_seqretry(&xtime_lock, seq));
- return ret;
- }
- /*
- * timekeeping_init - Initializes the clocksource and common timekeeping values
- */
- void __init timekeeping_init(void)
- {
- unsigned long flags;
- write_seqlock_irqsave(&xtime_lock, flags);
- clock = clocksource_get_next();
- clocksource_calculate_interval(clock, tick_nsec);
- clock->cycle_last = clocksource_read(clock);
- ntp_clear();
- write_sequnlock_irqrestore(&xtime_lock, flags);
- }
- static int timekeeping_suspended;
- /*
- * timekeeping_resume - Resumes the generic timekeeping subsystem.
- * @dev: unused
- *
- * This is for the generic clocksource timekeeping.
- * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
- * still managed by arch specific suspend/resume code.
- */
- static int timekeeping_resume(struct sys_device *dev)
- {
- unsigned long flags;
- write_seqlock_irqsave(&xtime_lock, flags);
- /* restart the last cycle value */
- clock->cycle_last = clocksource_read(clock);
- clock->error = 0;
- timekeeping_suspended = 0;
- write_sequnlock_irqrestore(&xtime_lock, flags);
- return 0;
- }
- static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
- {
- unsigned long flags;
- write_seqlock_irqsave(&xtime_lock, flags);
- timekeeping_suspended = 1;
- write_sequnlock_irqrestore(&xtime_lock, flags);
- return 0;
- }
- /* sysfs resume/suspend bits for timekeeping */
- static struct sysdev_class timekeeping_sysclass = {
- .resume = timekeeping_resume,
- .suspend = timekeeping_suspend,
- set_kset_name("timekeeping"),
- };
- static struct sys_device device_timer = {
- .id = 0,
- .cls = &timekeeping_sysclass,
- };
- static int __init timekeeping_init_device(void)
- {
- int error = sysdev_class_register(&timekeeping_sysclass);
- if (!error)
- error = sysdev_register(&device_timer);
- return error;
- }
- device_initcall(timekeeping_init_device);
- /*
- * If the error is already larger, we look ahead even further
- * to compensate for late or lost adjustments.
- */
- static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset)
- {
- s64 tick_error, i;
- u32 look_ahead, adj;
- s32 error2, mult;
- /*
- * Use the current error value to determine how much to look ahead.
- * The larger the error the slower we adjust for it to avoid problems
- * with losing too many ticks, otherwise we would overadjust and
- * produce an even larger error. The smaller the adjustment the
- * faster we try to adjust for it, as lost ticks can do less harm
- * here. This is tuned so that an error of about 1 msec is adusted
- * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
- */
- error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
- error2 = abs(error2);
- for (look_ahead = 0; error2 > 0; look_ahead++)
- error2 >>= 2;
- /*
- * Now calculate the error in (1 << look_ahead) ticks, but first
- * remove the single look ahead already included in the error.
- */
- tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
- tick_error -= clock->xtime_interval >> 1;
- error = ((error - tick_error) >> look_ahead) + tick_error;
- /* Finally calculate the adjustment shift value. */
- i = *interval;
- mult = 1;
- if (error < 0) {
- error = -error;
- *interval = -*interval;
- *offset = -*offset;
- mult = -1;
- }
- for (adj = 0; error > i; adj++)
- error >>= 1;
- *interval <<= adj;
- *offset <<= adj;
- return mult << adj;
- }
- /*
- * Adjust the multiplier to reduce the error value,
- * this is optimized for the most common adjustments of -1,0,1,
- * for other values we can do a bit more work.
- */
- static void clocksource_adjust(struct clocksource *clock, s64 offset)
- {
- s64 error, interval = clock->cycle_interval;
- int adj;
- error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
- if (error > interval) {
- error >>= 2;
- if (likely(error <= interval))
- adj = 1;
- else
- adj = clocksource_bigadjust(error, &interval, &offset);
- } else if (error < -interval) {
- error >>= 2;
- if (likely(error >= -interval)) {
- adj = -1;
- interval = -interval;
- offset = -offset;
- } else
- adj = clocksource_bigadjust(error, &interval, &offset);
- } else
- return;
- clock->mult += adj;
- clock->xtime_interval += interval;
- clock->xtime_nsec -= offset;
- clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
- }
- /*
- * update_wall_time - Uses the current clocksource to increment the wall time
- *
- * Called from the timer interrupt, must hold a write on xtime_lock.
- */
- static void update_wall_time(void)
- {
- cycle_t offset;
- /* Make sure we're fully resumed: */
- if (unlikely(timekeeping_suspended))
- return;
- #ifdef CONFIG_GENERIC_TIME
- offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
- #else
- offset = clock->cycle_interval;
- #endif
- clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
- /* normally this loop will run just once, however in the
- * case of lost or late ticks, it will accumulate correctly.
- */
- while (offset >= clock->cycle_interval) {
- /* accumulate one interval */
- clock->xtime_nsec += clock->xtime_interval;
- clock->cycle_last += clock->cycle_interval;
- offset -= clock->cycle_interval;
- if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
- clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
- xtime.tv_sec++;
- second_overflow();
- }
- /* interpolator bits */
- time_interpolator_update(clock->xtime_interval
- >> clock->shift);
- /* increment the NTP state machine */
- update_ntp_one_tick();
- /* accumulate error between NTP and clock interval */
- clock->error += current_tick_length();
- clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
- }
- /* correct the clock when NTP error is too big */
- clocksource_adjust(clock, offset);
- /* store full nanoseconds into xtime */
- xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
- clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
- /* check to see if there is a new clocksource to use */
- if (change_clocksource()) {
- clock->error = 0;
- clock->xtime_nsec = 0;
- clocksource_calculate_interval(clock, tick_nsec);
- }
- }
- /*
- * Called from the timer interrupt handler to charge one tick to the current
- * process. user_tick is 1 if the tick is user time, 0 for system.
- */
- void update_process_times(int user_tick)
- {
- struct task_struct *p = current;
- int cpu = smp_processor_id();
- /* Note: this timer irq context must be accounted for as well. */
- if (user_tick)
- account_user_time(p, jiffies_to_cputime(1));
- else
- account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
- run_local_timers();
- if (rcu_pending(cpu))
- rcu_check_callbacks(cpu, user_tick);
- scheduler_tick();
- run_posix_cpu_timers(p);
- }
- /*
- * Nr of active tasks - counted in fixed-point numbers
- */
- static unsigned long count_active_tasks(void)
- {
- return nr_active() * FIXED_1;
- }
- /*
- * Hmm.. Changed this, as the GNU make sources (load.c) seems to
- * imply that avenrun[] is the standard name for this kind of thing.
- * Nothing else seems to be standardized: the fractional size etc
- * all seem to differ on different machines.
- *
- * Requires xtime_lock to access.
- */
- unsigned long avenrun[3];
- EXPORT_SYMBOL(avenrun);
- /*
- * calc_load - given tick count, update the avenrun load estimates.
- * This is called while holding a write_lock on xtime_lock.
- */
- static inline void calc_load(unsigned long ticks)
- {
- unsigned long active_tasks; /* fixed-point */
- static int count = LOAD_FREQ;
- count -= ticks;
- if (count < 0) {
- count += LOAD_FREQ;
- active_tasks = count_active_tasks();
- CALC_LOAD(avenrun[0], EXP_1, active_tasks);
- CALC_LOAD(avenrun[1], EXP_5, active_tasks);
- CALC_LOAD(avenrun[2], EXP_15, active_tasks);
- }
- }
- /* jiffies at the most recent update of wall time */
- unsigned long wall_jiffies = INITIAL_JIFFIES;
- /*
- * This read-write spinlock protects us from races in SMP while
- * playing with xtime and avenrun.
- */
- #ifndef ARCH_HAVE_XTIME_LOCK
- __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
- EXPORT_SYMBOL(xtime_lock);
- #endif
- /*
- * This function runs timers and the timer-tq in bottom half context.
- */
- static void run_timer_softirq(struct softirq_action *h)
- {
- tvec_base_t *base = __get_cpu_var(tvec_bases);
- hrtimer_run_queues();
- if (time_after_eq(jiffies, base->timer_jiffies))
- __run_timers(base);
- }
- /*
- * Called by the local, per-CPU timer interrupt on SMP.
- */
- void run_local_timers(void)
- {
- raise_softirq(TIMER_SOFTIRQ);
- softlockup_tick();
- }
- /*
- * Called by the timer interrupt. xtime_lock must already be taken
- * by the timer IRQ!
- */
- static inline void update_times(void)
- {
- unsigned long ticks;
- ticks = jiffies - wall_jiffies;
- wall_jiffies += ticks;
- update_wall_time();
- calc_load(ticks);
- }
-
- /*
- * The 64-bit jiffies value is not atomic - you MUST NOT read it
- * without sampling the sequence number in xtime_lock.
- * jiffies is defined in the linker script...
- */
- void do_timer(struct pt_regs *regs)
- {
- jiffies_64++;
- /* prevent loading jiffies before storing new jiffies_64 value. */
- barrier();
- update_times();
- }
- #ifdef __ARCH_WANT_SYS_ALARM
- /*
- * For backwards compatibility? This can be done in libc so Alpha
- * and all newer ports shouldn't need it.
- */
- asmlinkage unsigned long sys_alarm(unsigned int seconds)
- {
- return alarm_setitimer(seconds);
- }
- #endif
- #ifndef __alpha__
- /*
- * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
- * should be moved into arch/i386 instead?
- */
- /**
- * sys_getpid - return the thread group id of the current process
- *
- * Note, despite the name, this returns the tgid not the pid. The tgid and
- * the pid are identical unless CLONE_THREAD was specified on clone() in
- * which case the tgid is the same in all threads of the same group.
- *
- * This is SMP safe as current->tgid does not change.
- */
- asmlinkage long sys_getpid(void)
- {
- return current->tgid;
- }
- /*
- * Accessing ->group_leader->real_parent is not SMP-safe, it could
- * change from under us. However, rather than getting any lock
- * we can use an optimistic algorithm: get the parent
- * pid, and go back and check that the parent is still
- * the same. If it has changed (which is extremely unlikely
- * indeed), we just try again..
- *
- * NOTE! This depends on the fact that even if we _do_
- * get an old value of "parent", we can happily dereference
- * the pointer (it was and remains a dereferencable kernel pointer
- * no matter what): we just can't necessarily trust the result
- * until we know that the parent pointer is valid.
- *
- * NOTE2: ->group_leader never changes from under us.
- */
- asmlinkage long sys_getppid(void)
- {
- int pid;
- struct task_struct *me = current;
- struct task_struct *parent;
- parent = me->group_leader->real_parent;
- for (;;) {
- pid = parent->tgid;
- #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
- {
- struct task_struct *old = parent;
- /*
- * Make sure we read the pid before re-reading the
- * parent pointer:
- */
- smp_rmb();
- parent = me->group_leader->real_parent;
- if (old != parent)
- continue;
- }
- #endif
- break;
- }
- return pid;
- }
- asmlinkage long sys_getuid(void)
- {
- /* Only we change this so SMP safe */
- return current->uid;
- }
- asmlinkage long sys_geteuid(void)
- {
- /* Only we change this so SMP safe */
- return current->euid;
- }
- asmlinkage long sys_getgid(void)
- {
- /* Only we change this so SMP safe */
- return current->gid;
- }
- asmlinkage long sys_getegid(void)
- {
- /* Only we change this so SMP safe */
- return current->egid;
- }
- #endif
- static void process_timeout(unsigned long __data)
- {
- wake_up_process((struct task_struct *)__data);
- }
- /**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns. The routine will return 0
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task. In this case the remaining time
- * in jiffies will be returned, or 0 if the timer expired in time
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * In all cases the return value is guaranteed to be non-negative.
- */
- fastcall signed long __sched schedule_timeout(signed long timeout)
- {
- struct timer_list timer;
- unsigned long expire;
- switch (timeout)
- {
- case MAX_SCHEDULE_TIMEOUT:
- /*
- * These two special cases are useful to be comfortable
- * in the caller. Nothing more. We could take
- * MAX_SCHEDULE_TIMEOUT from one of the negative value
- * but I' d like to return a valid offset (>=0) to allow
- * the caller to do everything it want with the retval.
- */
- schedule();
- goto out;
- default:
- /*
- * Another bit of PARANOID. Note that the retval will be
- * 0 since no piece of kernel is supposed to do a check
- * for a negative retval of schedule_timeout() (since it
- * should never happens anyway). You just have the printk()
- * that will tell you if something is gone wrong and where.
- */
- if (timeout < 0)
- {
- printk(KERN_ERR "schedule_timeout: wrong timeout "
- "value %lx from %p\n", timeout,
- __builtin_return_address(0));
- current->state = TASK_RUNNING;
- goto out;
- }
- }
- expire = timeout + jiffies;
- setup_timer(&timer, process_timeout, (unsigned long)current);
- __mod_timer(&timer, expire);
- schedule();
- del_singleshot_timer_sync(&timer);
- timeout = expire - jiffies;
- out:
- return timeout < 0 ? 0 : timeout;
- }
- EXPORT_SYMBOL(schedule_timeout);
- /*
- * We can use __set_current_state() here because schedule_timeout() calls
- * schedule() unconditionally.
- */
- signed long __sched schedule_timeout_interruptible(signed long timeout)
- {
- __set_current_state(TASK_INTERRUPTIBLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_interruptible);
- signed long __sched schedule_timeout_uninterruptible(signed long timeout)
- {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_uninterruptible);
- /* Thread ID - the internal kernel "pid" */
- asmlinkage long sys_gettid(void)
- {
- return current->pid;
- }
- /*
- * sys_sysinfo - fill in sysinfo struct
- */
- asmlinkage long sys_sysinfo(struct sysinfo __user *info)
- {
- struct sysinfo val;
- unsigned long mem_total, sav_total;
- unsigned int mem_unit, bitcount;
- unsigned long seq;
- memset((char *)&val, 0, sizeof(struct sysinfo));
- do {
- struct timespec tp;
- seq = read_seqbegin(&xtime_lock);
- /*
- * This is annoying. The below is the same thing
- * posix_get_clock_monotonic() does, but it wants to
- * take the lock which we want to cover the loads stuff
- * too.
- */
- getnstimeofday(&tp);
- tp.tv_sec += wall_to_monotonic.tv_sec;
- tp.tv_nsec += wall_to_monotonic.tv_nsec;
- if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
- tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
- tp.tv_sec++;
- }
- val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
- val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
- val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
- val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
- val.procs = nr_threads;
- } while (read_seqretry(&xtime_lock, seq));
- si_meminfo(&val);
- si_swapinfo(&val);
- /*
- * If the sum of all the available memory (i.e. ram + swap)
- * is less than can be stored in a 32 bit unsigned long then
- * we can be binary compatible with 2.2.x kernels. If not,
- * well, in that case 2.2.x was broken anyways...
- *
- * -Erik Andersen <andersee@debian.org>
- */
- mem_total = val.totalram + val.totalswap;
- if (mem_total < val.totalram || mem_total < val.totalswap)
- goto out;
- bitcount = 0;
- mem_unit = val.mem_unit;
- while (mem_unit > 1) {
- bitcount++;
- mem_unit >>= 1;
- sav_total = mem_total;
- mem_total <<= 1;
- if (mem_total < sav_total)
- goto out;
- }
- /*
- * If mem_total did not overflow, multiply all memory values by
- * val.mem_unit and set it to 1. This leaves things compatible
- * with 2.2.x, and also retains compatibility with earlier 2.4.x
- * kernels...
- */
- val.mem_unit = 1;
- val.totalram <<= bitcount;
- val.freeram <<= bitcount;
- val.sharedram <<= bitcount;
- val.bufferram <<= bitcount;
- val.totalswap <<= bitcount;
- val.freeswap <<= bitcount;
- val.totalhigh <<= bitcount;
- val.freehigh <<= bitcount;
- out:
- if (copy_to_user(info, &val, sizeof(struct sysinfo)))
- return -EFAULT;
- return 0;
- }
- /*
- * lockdep: we want to track each per-CPU base as a separate lock-class,
- * but timer-bases are kmalloc()-ed, so we need to attach separate
- * keys to them:
- */
- static struct lock_class_key base_lock_keys[NR_CPUS];
- static int __devinit init_timers_cpu(int cpu)
- {
- int j;
- tvec_base_t *base;
- static char __devinitdata tvec_base_done[NR_CPUS];
- if (!tvec_base_done[cpu]) {
- static char boot_done;
- if (boot_done) {
- /*
- * The APs use this path later in boot
- */
- base = kmalloc_node(sizeof(*base), GFP_KERNEL,
- cpu_to_node(cpu));
- if (!base)
- return -ENOMEM;
- memset(base, 0, sizeof(*base));
- per_cpu(tvec_bases, cpu) = base;
- } else {
- /*
- * This is for the boot CPU - we use compile-time
- * static initialisation because per-cpu memory isn't
- * ready yet and because the memory allocators are not
- * initialised either.
- */
- boot_done = 1;
- base = &boot_tvec_bases;
- }
- tvec_base_done[cpu] = 1;
- } else {
- base = per_cpu(tvec_bases, cpu);
- }
- spin_lock_init(&base->lock);
- lockdep_set_class(&base->lock, base_lock_keys + cpu);
- for (j = 0; j < TVN_SIZE; j++) {
- INIT_LIST_HEAD(base->tv5.vec + j);
- INIT_LIST_HEAD(base->tv4.vec + j);
- INIT_LIST_HEAD(base->tv3.vec + j);
- INIT_LIST_HEAD(base->tv2.vec + j);
- }
- for (j = 0; j < TVR_SIZE; j++)
- INIT_LIST_HEAD(base->tv1.vec + j);
- base->timer_jiffies = jiffies;
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
- {
- struct timer_list *timer;
- while (!list_empty(head)) {
- timer = list_entry(head->next, struct timer_list, entry);
- detach_timer(timer, 0);
- timer->base = new_base;
- internal_add_timer(new_base, timer);
- }
- }
- static void __devinit migrate_timers(int cpu)
- {
- tvec_base_t *old_base;
- tvec_base_t *new_base;
- int i;
- BUG_ON(cpu_online(cpu));
- old_base = per_cpu(tvec_bases, cpu);
- new_base = get_cpu_var(tvec_bases);
- local_irq_disable();
- spin_lock(&new_base->lock);
- spin_lock(&old_base->lock);
- BUG_ON(old_base->running_timer);
- for (i = 0; i < TVR_SIZE; i++)
- migrate_timer_list(new_base, old_base->tv1.vec + i);
- for (i = 0; i < TVN_SIZE; i++) {
- migrate_timer_list(new_base, old_base->tv2.vec + i);
- migrate_timer_list(new_base, old_base->tv3.vec + i);
- migrate_timer_list(new_base, old_base->tv4.vec + i);
- migrate_timer_list(new_base, old_base->tv5.vec + i);
- }
- spin_unlock(&old_base->lock);
- spin_unlock(&new_base->lock);
- local_irq_enable();
- put_cpu_var(tvec_bases);
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- static int __cpuinit timer_cpu_notify(struct notifier_block *self,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- switch(action) {
- case CPU_UP_PREPARE:
- if (init_timers_cpu(cpu) < 0)
- return NOTIFY_BAD;
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_DEAD:
- migrate_timers(cpu);
- break;
- #endif
- default:
- break;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block __cpuinitdata timers_nb = {
- .notifier_call = timer_cpu_notify,
- };
- void __init init_timers(void)
- {
- timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
- (void *)(long)smp_processor_id());
- register_cpu_notifier(&timers_nb);
- open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
- }
- #ifdef CONFIG_TIME_INTERPOLATION
- struct time_interpolator *time_interpolator __read_mostly;
- static struct time_interpolator *time_interpolator_list __read_mostly;
- static DEFINE_SPINLOCK(time_interpolator_lock);
- static inline u64 time_interpolator_get_cycles(unsigned int src)
- {
- unsigned long (*x)(void);
- switch (src)
- {
- case TIME_SOURCE_FUNCTION:
- x = time_interpolator->addr;
- return x();
- case TIME_SOURCE_MMIO64 :
- return readq_relaxed((void __iomem *)time_interpolator->addr);
- case TIME_SOURCE_MMIO32 :
- return readl_relaxed((void __iomem *)time_interpolator->addr);
- default: return get_cycles();
- }
- }
- static inline u64 time_interpolator_get_counter(int writelock)
- {
- unsigned int src = time_interpolator->source;
- if (time_interpolator->jitter)
- {
- u64 lcycle;
- u64 now;
- do {
- lcycle = time_interpolator->last_cycle;
- now = time_interpolator_get_cycles(src);
- if (lcycle && time_after(lcycle, now))
- return lcycle;
- /* When holding the xtime write lock, there's no need
- * to add the overhead of the cmpxchg. Readers are
- * force to retry until the write lock is released.
- */
- if (writelock) {
- time_interpolator->last_cycle = now;
- return now;
- }
- /* Keep track of the last timer value returned. The use of cmpxchg here
- * will cause contention in an SMP environment.
- */
- } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
- return now;
- }
- else
- return time_interpolator_get_cycles(src);
- }
- void time_interpolator_reset(void)
- {
- time_interpolator->offset = 0;
- time_interpolator->last_counter = time_interpolator_get_counter(1);
- }
- #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
- unsigned long time_interpolator_get_offset(void)
- {
- /* If we do not have a time interpolator set up then just return zero */
- if (!time_interpolator)
- return 0;
- return time_interpolator->offset +
- GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
- }
- #define INTERPOLATOR_ADJUST 65536
- #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
- static void time_interpolator_update(long delta_nsec)
- {
- u64 counter;
- unsigned long offset;
- /* If there is no time interpolator set up then do nothing */
- if (!time_interpolator)
- return;
- /*
- * The interpolator compensates for late ticks by accumulating the late
- * time in time_interpolator->offset. A tick earlier than expected will
- * lead to a reset of the offset and a corresponding jump of the clock
- * forward. Again this only works if the interpolator clock is running
- * slightly slower than the regular clock and the tuning logic insures
- * that.
- */
- counter = time_interpolator_get_counter(1);
- offset = time_interpolator->offset +
- GET_TI_NSECS(counter, time_interpolator);
- if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
- time_interpolator->offset = offset - delta_nsec;
- else {
- time_interpolator->skips++;
- time_interpolator->ns_skipped += delta_nsec - offset;
- time_interpolator->offset = 0;
- }
- time_interpolator->last_counter = counter;
- /* Tuning logic for time interpolator invoked every minute or so.
- * Decrease interpolator clock speed if no skips occurred and an offset is carried.
- * Increase interpolator clock speed if we skip too much time.
- */
- if (jiffies % INTERPOLATOR_ADJUST == 0)
- {
- if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
- time_interpolator->nsec_per_cyc--;
- if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
- time_interpolator->nsec_per_cyc++;
- time_interpolator->skips = 0;
- time_interpolator->ns_skipped = 0;
- }
- }
- static inline int
- is_better_time_interpolator(struct time_interpolator *new)
- {
- if (!time_interpolator)
- return 1;
- return new->frequency > 2*time_interpolator->frequency ||
- (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
- }
- void
- register_time_interpolator(struct time_interpolator *ti)
- {
- unsigned long flags;
- /* Sanity check */
- BUG_ON(ti->frequency == 0 || ti->mask == 0);
- ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
- spin_lock(&time_interpolator_lock);
- write_seqlock_irqsave(&xtime_lock, flags);
- if (is_better_time_interpolator(ti)) {
- time_interpolator = ti;
- time_interpolator_reset();
- }
- write_sequnlock_irqrestore(&xtime_lock, flags);
- ti->next = time_interpolator_list;
- time_interpolator_list = ti;
- spin_unlock(&time_interpolator_lock);
- }
- void
- unregister_time_interpolator(struct time_interpolator *ti)
- {
- struct time_interpolator *curr, **prev;
- unsigned long flags;
- spin_lock(&time_interpolator_lock);
- prev = &time_interpolator_list;
- for (curr = *prev; curr; curr = curr->next) {
- if (curr == ti) {
- *prev = curr->next;
- break;
- }
- prev = &curr->next;
- }
- write_seqlock_irqsave(&xtime_lock, flags);
- if (ti == time_interpolator) {
- /* we lost the best time-interpolator: */
- time_interpolator = NULL;
- /* find the next-best interpolator */
- for (curr = time_interpolator_list; curr; curr = curr->next)
- if (is_better_time_interpolator(curr))
- time_interpolator = curr;
- time_interpolator_reset();
- }
- write_sequnlock_irqrestore(&xtime_lock, flags);
- spin_unlock(&time_interpolator_lock);
- }
- #endif /* CONFIG_TIME_INTERPOLATION */
- /**
- * msleep - sleep safely even with waitqueue interruptions
- * @msecs: Time in milliseconds to sleep for
- */
- void msleep(unsigned int msecs)
- {
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
- while (timeout)
- timeout = schedule_timeout_uninterruptible(timeout);
- }
- EXPORT_SYMBOL(msleep);
- /**
- * msleep_interruptible - sleep waiting for signals
- * @msecs: Time in milliseconds to sleep for
- */
- unsigned long msleep_interruptible(unsigned int msecs)
- {
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
- while (timeout && !signal_pending(current))
- timeout = schedule_timeout_interruptible(timeout);
- return jiffies_to_msecs(timeout);
- }
- EXPORT_SYMBOL(msleep_interruptible);
|