xfs_inode.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_btree_trace.h"
  44. #include "xfs_alloc.h"
  45. #include "xfs_ialloc.h"
  46. #include "xfs_bmap.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_error.h"
  49. #include "xfs_utils.h"
  50. #include "xfs_dir2_trace.h"
  51. #include "xfs_quota.h"
  52. #include "xfs_acl.h"
  53. #include "xfs_filestream.h"
  54. #include "xfs_vnodeops.h"
  55. kmem_zone_t *xfs_ifork_zone;
  56. kmem_zone_t *xfs_inode_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_host_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned(&ep->l0);
  83. rec.l1 = get_unaligned(&ep->l1);
  84. xfs_bmbt_get_all(&rec, &irec);
  85. if (fmt == XFS_EXTFMT_NOSTATE)
  86. ASSERT(irec.br_state == XFS_EXT_NORM);
  87. }
  88. }
  89. #else /* DEBUG */
  90. #define xfs_validate_extents(ifp, nrecs, fmt)
  91. #endif /* DEBUG */
  92. /*
  93. * Check that none of the inode's in the buffer have a next
  94. * unlinked field of 0.
  95. */
  96. #if defined(DEBUG)
  97. void
  98. xfs_inobp_check(
  99. xfs_mount_t *mp,
  100. xfs_buf_t *bp)
  101. {
  102. int i;
  103. int j;
  104. xfs_dinode_t *dip;
  105. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  106. for (i = 0; i < j; i++) {
  107. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  108. i * mp->m_sb.sb_inodesize);
  109. if (!dip->di_next_unlinked) {
  110. xfs_fs_cmn_err(CE_ALERT, mp,
  111. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  112. bp);
  113. ASSERT(dip->di_next_unlinked);
  114. }
  115. }
  116. }
  117. #endif
  118. /*
  119. * Find the buffer associated with the given inode map
  120. * We do basic validation checks on the buffer once it has been
  121. * retrieved from disk.
  122. */
  123. STATIC int
  124. xfs_imap_to_bp(
  125. xfs_mount_t *mp,
  126. xfs_trans_t *tp,
  127. xfs_imap_t *imap,
  128. xfs_buf_t **bpp,
  129. uint buf_flags,
  130. uint imap_flags)
  131. {
  132. int error;
  133. int i;
  134. int ni;
  135. xfs_buf_t *bp;
  136. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  137. (int)imap->im_len, buf_flags, &bp);
  138. if (error) {
  139. if (error != EAGAIN) {
  140. cmn_err(CE_WARN,
  141. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  142. "an error %d on %s. Returning error.",
  143. error, mp->m_fsname);
  144. } else {
  145. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  146. }
  147. return error;
  148. }
  149. /*
  150. * Validate the magic number and version of every inode in the buffer
  151. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  152. */
  153. #ifdef DEBUG
  154. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  155. #else /* usual case */
  156. ni = 1;
  157. #endif
  158. for (i = 0; i < ni; i++) {
  159. int di_ok;
  160. xfs_dinode_t *dip;
  161. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  162. (i << mp->m_sb.sb_inodelog));
  163. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  164. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  165. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  166. XFS_ERRTAG_ITOBP_INOTOBP,
  167. XFS_RANDOM_ITOBP_INOTOBP))) {
  168. if (imap_flags & XFS_IMAP_BULKSTAT) {
  169. xfs_trans_brelse(tp, bp);
  170. return XFS_ERROR(EINVAL);
  171. }
  172. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  173. XFS_ERRLEVEL_HIGH, mp, dip);
  174. #ifdef DEBUG
  175. cmn_err(CE_PANIC,
  176. "Device %s - bad inode magic/vsn "
  177. "daddr %lld #%d (magic=%x)",
  178. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  179. (unsigned long long)imap->im_blkno, i,
  180. be16_to_cpu(dip->di_core.di_magic));
  181. #endif
  182. xfs_trans_brelse(tp, bp);
  183. return XFS_ERROR(EFSCORRUPTED);
  184. }
  185. }
  186. xfs_inobp_check(mp, bp);
  187. /*
  188. * Mark the buffer as an inode buffer now that it looks good
  189. */
  190. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  191. *bpp = bp;
  192. return 0;
  193. }
  194. /*
  195. * This routine is called to map an inode number within a file
  196. * system to the buffer containing the on-disk version of the
  197. * inode. It returns a pointer to the buffer containing the
  198. * on-disk inode in the bpp parameter, and in the dip parameter
  199. * it returns a pointer to the on-disk inode within that buffer.
  200. *
  201. * If a non-zero error is returned, then the contents of bpp and
  202. * dipp are undefined.
  203. *
  204. * Use xfs_imap() to determine the size and location of the
  205. * buffer to read from disk.
  206. */
  207. STATIC int
  208. xfs_inotobp(
  209. xfs_mount_t *mp,
  210. xfs_trans_t *tp,
  211. xfs_ino_t ino,
  212. xfs_dinode_t **dipp,
  213. xfs_buf_t **bpp,
  214. int *offset)
  215. {
  216. xfs_imap_t imap;
  217. xfs_buf_t *bp;
  218. int error;
  219. imap.im_blkno = 0;
  220. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  221. if (error)
  222. return error;
  223. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
  224. if (error)
  225. return error;
  226. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  227. *bpp = bp;
  228. *offset = imap.im_boffset;
  229. return 0;
  230. }
  231. /*
  232. * This routine is called to map an inode to the buffer containing
  233. * the on-disk version of the inode. It returns a pointer to the
  234. * buffer containing the on-disk inode in the bpp parameter, and in
  235. * the dip parameter it returns a pointer to the on-disk inode within
  236. * that buffer.
  237. *
  238. * If a non-zero error is returned, then the contents of bpp and
  239. * dipp are undefined.
  240. *
  241. * If the inode is new and has not yet been initialized, use xfs_imap()
  242. * to determine the size and location of the buffer to read from disk.
  243. * If the inode has already been mapped to its buffer and read in once,
  244. * then use the mapping information stored in the inode rather than
  245. * calling xfs_imap(). This allows us to avoid the overhead of looking
  246. * at the inode btree for small block file systems (see xfs_dilocate()).
  247. * We can tell whether the inode has been mapped in before by comparing
  248. * its disk block address to 0. Only uninitialized inodes will have
  249. * 0 for the disk block address.
  250. */
  251. int
  252. xfs_itobp(
  253. xfs_mount_t *mp,
  254. xfs_trans_t *tp,
  255. xfs_inode_t *ip,
  256. xfs_dinode_t **dipp,
  257. xfs_buf_t **bpp,
  258. xfs_daddr_t bno,
  259. uint imap_flags,
  260. uint buf_flags)
  261. {
  262. xfs_imap_t imap;
  263. xfs_buf_t *bp;
  264. int error;
  265. if (ip->i_blkno == (xfs_daddr_t)0) {
  266. imap.im_blkno = bno;
  267. error = xfs_imap(mp, tp, ip->i_ino, &imap,
  268. XFS_IMAP_LOOKUP | imap_flags);
  269. if (error)
  270. return error;
  271. /*
  272. * Fill in the fields in the inode that will be used to
  273. * map the inode to its buffer from now on.
  274. */
  275. ip->i_blkno = imap.im_blkno;
  276. ip->i_len = imap.im_len;
  277. ip->i_boffset = imap.im_boffset;
  278. } else {
  279. /*
  280. * We've already mapped the inode once, so just use the
  281. * mapping that we saved the first time.
  282. */
  283. imap.im_blkno = ip->i_blkno;
  284. imap.im_len = ip->i_len;
  285. imap.im_boffset = ip->i_boffset;
  286. }
  287. ASSERT(bno == 0 || bno == imap.im_blkno);
  288. error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
  289. if (error)
  290. return error;
  291. if (!bp) {
  292. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  293. ASSERT(tp == NULL);
  294. *bpp = NULL;
  295. return EAGAIN;
  296. }
  297. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  298. *bpp = bp;
  299. return 0;
  300. }
  301. /*
  302. * Move inode type and inode format specific information from the
  303. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  304. * this means set if_rdev to the proper value. For files, directories,
  305. * and symlinks this means to bring in the in-line data or extent
  306. * pointers. For a file in B-tree format, only the root is immediately
  307. * brought in-core. The rest will be in-lined in if_extents when it
  308. * is first referenced (see xfs_iread_extents()).
  309. */
  310. STATIC int
  311. xfs_iformat(
  312. xfs_inode_t *ip,
  313. xfs_dinode_t *dip)
  314. {
  315. xfs_attr_shortform_t *atp;
  316. int size;
  317. int error;
  318. xfs_fsize_t di_size;
  319. ip->i_df.if_ext_max =
  320. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  321. error = 0;
  322. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  323. be16_to_cpu(dip->di_core.di_anextents) >
  324. be64_to_cpu(dip->di_core.di_nblocks))) {
  325. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  326. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  327. (unsigned long long)ip->i_ino,
  328. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  329. be16_to_cpu(dip->di_core.di_anextents)),
  330. (unsigned long long)
  331. be64_to_cpu(dip->di_core.di_nblocks));
  332. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  333. ip->i_mount, dip);
  334. return XFS_ERROR(EFSCORRUPTED);
  335. }
  336. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  337. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  338. "corrupt dinode %Lu, forkoff = 0x%x.",
  339. (unsigned long long)ip->i_ino,
  340. dip->di_core.di_forkoff);
  341. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  342. ip->i_mount, dip);
  343. return XFS_ERROR(EFSCORRUPTED);
  344. }
  345. switch (ip->i_d.di_mode & S_IFMT) {
  346. case S_IFIFO:
  347. case S_IFCHR:
  348. case S_IFBLK:
  349. case S_IFSOCK:
  350. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  351. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  352. ip->i_mount, dip);
  353. return XFS_ERROR(EFSCORRUPTED);
  354. }
  355. ip->i_d.di_size = 0;
  356. ip->i_size = 0;
  357. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  358. break;
  359. case S_IFREG:
  360. case S_IFLNK:
  361. case S_IFDIR:
  362. switch (dip->di_core.di_format) {
  363. case XFS_DINODE_FMT_LOCAL:
  364. /*
  365. * no local regular files yet
  366. */
  367. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  368. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  369. "corrupt inode %Lu "
  370. "(local format for regular file).",
  371. (unsigned long long) ip->i_ino);
  372. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  373. XFS_ERRLEVEL_LOW,
  374. ip->i_mount, dip);
  375. return XFS_ERROR(EFSCORRUPTED);
  376. }
  377. di_size = be64_to_cpu(dip->di_core.di_size);
  378. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  379. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  380. "corrupt inode %Lu "
  381. "(bad size %Ld for local inode).",
  382. (unsigned long long) ip->i_ino,
  383. (long long) di_size);
  384. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  385. XFS_ERRLEVEL_LOW,
  386. ip->i_mount, dip);
  387. return XFS_ERROR(EFSCORRUPTED);
  388. }
  389. size = (int)di_size;
  390. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  391. break;
  392. case XFS_DINODE_FMT_EXTENTS:
  393. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  394. break;
  395. case XFS_DINODE_FMT_BTREE:
  396. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  397. break;
  398. default:
  399. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  400. ip->i_mount);
  401. return XFS_ERROR(EFSCORRUPTED);
  402. }
  403. break;
  404. default:
  405. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  406. return XFS_ERROR(EFSCORRUPTED);
  407. }
  408. if (error) {
  409. return error;
  410. }
  411. if (!XFS_DFORK_Q(dip))
  412. return 0;
  413. ASSERT(ip->i_afp == NULL);
  414. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  415. ip->i_afp->if_ext_max =
  416. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  417. switch (dip->di_core.di_aformat) {
  418. case XFS_DINODE_FMT_LOCAL:
  419. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  420. size = be16_to_cpu(atp->hdr.totsize);
  421. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  422. break;
  423. case XFS_DINODE_FMT_EXTENTS:
  424. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  425. break;
  426. case XFS_DINODE_FMT_BTREE:
  427. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  428. break;
  429. default:
  430. error = XFS_ERROR(EFSCORRUPTED);
  431. break;
  432. }
  433. if (error) {
  434. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  435. ip->i_afp = NULL;
  436. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  437. }
  438. return error;
  439. }
  440. /*
  441. * The file is in-lined in the on-disk inode.
  442. * If it fits into if_inline_data, then copy
  443. * it there, otherwise allocate a buffer for it
  444. * and copy the data there. Either way, set
  445. * if_data to point at the data.
  446. * If we allocate a buffer for the data, make
  447. * sure that its size is a multiple of 4 and
  448. * record the real size in i_real_bytes.
  449. */
  450. STATIC int
  451. xfs_iformat_local(
  452. xfs_inode_t *ip,
  453. xfs_dinode_t *dip,
  454. int whichfork,
  455. int size)
  456. {
  457. xfs_ifork_t *ifp;
  458. int real_size;
  459. /*
  460. * If the size is unreasonable, then something
  461. * is wrong and we just bail out rather than crash in
  462. * kmem_alloc() or memcpy() below.
  463. */
  464. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  465. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  466. "corrupt inode %Lu "
  467. "(bad size %d for local fork, size = %d).",
  468. (unsigned long long) ip->i_ino, size,
  469. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  470. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  471. ip->i_mount, dip);
  472. return XFS_ERROR(EFSCORRUPTED);
  473. }
  474. ifp = XFS_IFORK_PTR(ip, whichfork);
  475. real_size = 0;
  476. if (size == 0)
  477. ifp->if_u1.if_data = NULL;
  478. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  479. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  480. else {
  481. real_size = roundup(size, 4);
  482. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  483. }
  484. ifp->if_bytes = size;
  485. ifp->if_real_bytes = real_size;
  486. if (size)
  487. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  488. ifp->if_flags &= ~XFS_IFEXTENTS;
  489. ifp->if_flags |= XFS_IFINLINE;
  490. return 0;
  491. }
  492. /*
  493. * The file consists of a set of extents all
  494. * of which fit into the on-disk inode.
  495. * If there are few enough extents to fit into
  496. * the if_inline_ext, then copy them there.
  497. * Otherwise allocate a buffer for them and copy
  498. * them into it. Either way, set if_extents
  499. * to point at the extents.
  500. */
  501. STATIC int
  502. xfs_iformat_extents(
  503. xfs_inode_t *ip,
  504. xfs_dinode_t *dip,
  505. int whichfork)
  506. {
  507. xfs_bmbt_rec_t *dp;
  508. xfs_ifork_t *ifp;
  509. int nex;
  510. int size;
  511. int i;
  512. ifp = XFS_IFORK_PTR(ip, whichfork);
  513. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  514. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  515. /*
  516. * If the number of extents is unreasonable, then something
  517. * is wrong and we just bail out rather than crash in
  518. * kmem_alloc() or memcpy() below.
  519. */
  520. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  521. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  522. "corrupt inode %Lu ((a)extents = %d).",
  523. (unsigned long long) ip->i_ino, nex);
  524. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  525. ip->i_mount, dip);
  526. return XFS_ERROR(EFSCORRUPTED);
  527. }
  528. ifp->if_real_bytes = 0;
  529. if (nex == 0)
  530. ifp->if_u1.if_extents = NULL;
  531. else if (nex <= XFS_INLINE_EXTS)
  532. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  533. else
  534. xfs_iext_add(ifp, 0, nex);
  535. ifp->if_bytes = size;
  536. if (size) {
  537. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  538. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  539. for (i = 0; i < nex; i++, dp++) {
  540. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  541. ep->l0 = get_unaligned_be64(&dp->l0);
  542. ep->l1 = get_unaligned_be64(&dp->l1);
  543. }
  544. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  545. if (whichfork != XFS_DATA_FORK ||
  546. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  547. if (unlikely(xfs_check_nostate_extents(
  548. ifp, 0, nex))) {
  549. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  550. XFS_ERRLEVEL_LOW,
  551. ip->i_mount);
  552. return XFS_ERROR(EFSCORRUPTED);
  553. }
  554. }
  555. ifp->if_flags |= XFS_IFEXTENTS;
  556. return 0;
  557. }
  558. /*
  559. * The file has too many extents to fit into
  560. * the inode, so they are in B-tree format.
  561. * Allocate a buffer for the root of the B-tree
  562. * and copy the root into it. The i_extents
  563. * field will remain NULL until all of the
  564. * extents are read in (when they are needed).
  565. */
  566. STATIC int
  567. xfs_iformat_btree(
  568. xfs_inode_t *ip,
  569. xfs_dinode_t *dip,
  570. int whichfork)
  571. {
  572. xfs_bmdr_block_t *dfp;
  573. xfs_ifork_t *ifp;
  574. /* REFERENCED */
  575. int nrecs;
  576. int size;
  577. ifp = XFS_IFORK_PTR(ip, whichfork);
  578. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  579. size = XFS_BMAP_BROOT_SPACE(dfp);
  580. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  581. /*
  582. * blow out if -- fork has less extents than can fit in
  583. * fork (fork shouldn't be a btree format), root btree
  584. * block has more records than can fit into the fork,
  585. * or the number of extents is greater than the number of
  586. * blocks.
  587. */
  588. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  589. || XFS_BMDR_SPACE_CALC(nrecs) >
  590. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  591. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  592. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  593. "corrupt inode %Lu (btree).",
  594. (unsigned long long) ip->i_ino);
  595. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  596. ip->i_mount);
  597. return XFS_ERROR(EFSCORRUPTED);
  598. }
  599. ifp->if_broot_bytes = size;
  600. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  601. ASSERT(ifp->if_broot != NULL);
  602. /*
  603. * Copy and convert from the on-disk structure
  604. * to the in-memory structure.
  605. */
  606. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  607. ifp->if_broot, size);
  608. ifp->if_flags &= ~XFS_IFEXTENTS;
  609. ifp->if_flags |= XFS_IFBROOT;
  610. return 0;
  611. }
  612. void
  613. xfs_dinode_from_disk(
  614. xfs_icdinode_t *to,
  615. xfs_dinode_core_t *from)
  616. {
  617. to->di_magic = be16_to_cpu(from->di_magic);
  618. to->di_mode = be16_to_cpu(from->di_mode);
  619. to->di_version = from ->di_version;
  620. to->di_format = from->di_format;
  621. to->di_onlink = be16_to_cpu(from->di_onlink);
  622. to->di_uid = be32_to_cpu(from->di_uid);
  623. to->di_gid = be32_to_cpu(from->di_gid);
  624. to->di_nlink = be32_to_cpu(from->di_nlink);
  625. to->di_projid = be16_to_cpu(from->di_projid);
  626. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  627. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  628. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  629. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  630. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  631. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  632. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  633. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  634. to->di_size = be64_to_cpu(from->di_size);
  635. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  636. to->di_extsize = be32_to_cpu(from->di_extsize);
  637. to->di_nextents = be32_to_cpu(from->di_nextents);
  638. to->di_anextents = be16_to_cpu(from->di_anextents);
  639. to->di_forkoff = from->di_forkoff;
  640. to->di_aformat = from->di_aformat;
  641. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  642. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  643. to->di_flags = be16_to_cpu(from->di_flags);
  644. to->di_gen = be32_to_cpu(from->di_gen);
  645. }
  646. void
  647. xfs_dinode_to_disk(
  648. xfs_dinode_core_t *to,
  649. xfs_icdinode_t *from)
  650. {
  651. to->di_magic = cpu_to_be16(from->di_magic);
  652. to->di_mode = cpu_to_be16(from->di_mode);
  653. to->di_version = from ->di_version;
  654. to->di_format = from->di_format;
  655. to->di_onlink = cpu_to_be16(from->di_onlink);
  656. to->di_uid = cpu_to_be32(from->di_uid);
  657. to->di_gid = cpu_to_be32(from->di_gid);
  658. to->di_nlink = cpu_to_be32(from->di_nlink);
  659. to->di_projid = cpu_to_be16(from->di_projid);
  660. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  661. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  662. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  663. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  664. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  665. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  666. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  667. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  668. to->di_size = cpu_to_be64(from->di_size);
  669. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  670. to->di_extsize = cpu_to_be32(from->di_extsize);
  671. to->di_nextents = cpu_to_be32(from->di_nextents);
  672. to->di_anextents = cpu_to_be16(from->di_anextents);
  673. to->di_forkoff = from->di_forkoff;
  674. to->di_aformat = from->di_aformat;
  675. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  676. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  677. to->di_flags = cpu_to_be16(from->di_flags);
  678. to->di_gen = cpu_to_be32(from->di_gen);
  679. }
  680. STATIC uint
  681. _xfs_dic2xflags(
  682. __uint16_t di_flags)
  683. {
  684. uint flags = 0;
  685. if (di_flags & XFS_DIFLAG_ANY) {
  686. if (di_flags & XFS_DIFLAG_REALTIME)
  687. flags |= XFS_XFLAG_REALTIME;
  688. if (di_flags & XFS_DIFLAG_PREALLOC)
  689. flags |= XFS_XFLAG_PREALLOC;
  690. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  691. flags |= XFS_XFLAG_IMMUTABLE;
  692. if (di_flags & XFS_DIFLAG_APPEND)
  693. flags |= XFS_XFLAG_APPEND;
  694. if (di_flags & XFS_DIFLAG_SYNC)
  695. flags |= XFS_XFLAG_SYNC;
  696. if (di_flags & XFS_DIFLAG_NOATIME)
  697. flags |= XFS_XFLAG_NOATIME;
  698. if (di_flags & XFS_DIFLAG_NODUMP)
  699. flags |= XFS_XFLAG_NODUMP;
  700. if (di_flags & XFS_DIFLAG_RTINHERIT)
  701. flags |= XFS_XFLAG_RTINHERIT;
  702. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  703. flags |= XFS_XFLAG_PROJINHERIT;
  704. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  705. flags |= XFS_XFLAG_NOSYMLINKS;
  706. if (di_flags & XFS_DIFLAG_EXTSIZE)
  707. flags |= XFS_XFLAG_EXTSIZE;
  708. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  709. flags |= XFS_XFLAG_EXTSZINHERIT;
  710. if (di_flags & XFS_DIFLAG_NODEFRAG)
  711. flags |= XFS_XFLAG_NODEFRAG;
  712. if (di_flags & XFS_DIFLAG_FILESTREAM)
  713. flags |= XFS_XFLAG_FILESTREAM;
  714. }
  715. return flags;
  716. }
  717. uint
  718. xfs_ip2xflags(
  719. xfs_inode_t *ip)
  720. {
  721. xfs_icdinode_t *dic = &ip->i_d;
  722. return _xfs_dic2xflags(dic->di_flags) |
  723. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  724. }
  725. uint
  726. xfs_dic2xflags(
  727. xfs_dinode_t *dip)
  728. {
  729. xfs_dinode_core_t *dic = &dip->di_core;
  730. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  731. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  732. }
  733. /*
  734. * Allocate and initialise an xfs_inode.
  735. */
  736. struct xfs_inode *
  737. xfs_inode_alloc(
  738. struct xfs_mount *mp,
  739. xfs_ino_t ino)
  740. {
  741. struct xfs_inode *ip;
  742. /*
  743. * if this didn't occur in transactions, we could use
  744. * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  745. * code up to do this anyway.
  746. */
  747. ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  748. if (!ip)
  749. return NULL;
  750. ASSERT(atomic_read(&ip->i_iocount) == 0);
  751. ASSERT(atomic_read(&ip->i_pincount) == 0);
  752. ASSERT(!spin_is_locked(&ip->i_flags_lock));
  753. ASSERT(list_empty(&ip->i_reclaim));
  754. ip->i_ino = ino;
  755. ip->i_mount = mp;
  756. ip->i_blkno = 0;
  757. ip->i_len = 0;
  758. ip->i_boffset =0;
  759. ip->i_afp = NULL;
  760. memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
  761. ip->i_flags = 0;
  762. ip->i_update_core = 0;
  763. ip->i_update_size = 0;
  764. ip->i_delayed_blks = 0;
  765. memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
  766. ip->i_size = 0;
  767. ip->i_new_size = 0;
  768. /*
  769. * Initialize inode's trace buffers.
  770. */
  771. #ifdef XFS_INODE_TRACE
  772. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
  773. #endif
  774. #ifdef XFS_BMAP_TRACE
  775. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
  776. #endif
  777. #ifdef XFS_BTREE_TRACE
  778. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
  779. #endif
  780. #ifdef XFS_RW_TRACE
  781. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
  782. #endif
  783. #ifdef XFS_ILOCK_TRACE
  784. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
  785. #endif
  786. #ifdef XFS_DIR2_TRACE
  787. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
  788. #endif
  789. return ip;
  790. }
  791. /*
  792. * Given a mount structure and an inode number, return a pointer
  793. * to a newly allocated in-core inode corresponding to the given
  794. * inode number.
  795. *
  796. * Initialize the inode's attributes and extent pointers if it
  797. * already has them (it will not if the inode has no links).
  798. */
  799. int
  800. xfs_iread(
  801. xfs_mount_t *mp,
  802. xfs_trans_t *tp,
  803. xfs_ino_t ino,
  804. xfs_inode_t **ipp,
  805. xfs_daddr_t bno,
  806. uint imap_flags)
  807. {
  808. xfs_buf_t *bp;
  809. xfs_dinode_t *dip;
  810. xfs_inode_t *ip;
  811. int error;
  812. ip = xfs_inode_alloc(mp, ino);
  813. if (!ip)
  814. return ENOMEM;
  815. /*
  816. * Get pointer's to the on-disk inode and the buffer containing it.
  817. * If the inode number refers to a block outside the file system
  818. * then xfs_itobp() will return NULL. In this case we should
  819. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  820. * know that this is a new incore inode.
  821. */
  822. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
  823. if (error) {
  824. xfs_idestroy(ip);
  825. return error;
  826. }
  827. /*
  828. * If we got something that isn't an inode it means someone
  829. * (nfs or dmi) has a stale handle.
  830. */
  831. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  832. xfs_idestroy(ip);
  833. xfs_trans_brelse(tp, bp);
  834. #ifdef DEBUG
  835. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  836. "dip->di_core.di_magic (0x%x) != "
  837. "XFS_DINODE_MAGIC (0x%x)",
  838. be16_to_cpu(dip->di_core.di_magic),
  839. XFS_DINODE_MAGIC);
  840. #endif /* DEBUG */
  841. return XFS_ERROR(EINVAL);
  842. }
  843. /*
  844. * If the on-disk inode is already linked to a directory
  845. * entry, copy all of the inode into the in-core inode.
  846. * xfs_iformat() handles copying in the inode format
  847. * specific information.
  848. * Otherwise, just get the truly permanent information.
  849. */
  850. if (dip->di_core.di_mode) {
  851. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  852. error = xfs_iformat(ip, dip);
  853. if (error) {
  854. xfs_idestroy(ip);
  855. xfs_trans_brelse(tp, bp);
  856. #ifdef DEBUG
  857. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  858. "xfs_iformat() returned error %d",
  859. error);
  860. #endif /* DEBUG */
  861. return error;
  862. }
  863. } else {
  864. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  865. ip->i_d.di_version = dip->di_core.di_version;
  866. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  867. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  868. /*
  869. * Make sure to pull in the mode here as well in
  870. * case the inode is released without being used.
  871. * This ensures that xfs_inactive() will see that
  872. * the inode is already free and not try to mess
  873. * with the uninitialized part of it.
  874. */
  875. ip->i_d.di_mode = 0;
  876. /*
  877. * Initialize the per-fork minima and maxima for a new
  878. * inode here. xfs_iformat will do it for old inodes.
  879. */
  880. ip->i_df.if_ext_max =
  881. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  882. }
  883. /*
  884. * The inode format changed when we moved the link count and
  885. * made it 32 bits long. If this is an old format inode,
  886. * convert it in memory to look like a new one. If it gets
  887. * flushed to disk we will convert back before flushing or
  888. * logging it. We zero out the new projid field and the old link
  889. * count field. We'll handle clearing the pad field (the remains
  890. * of the old uuid field) when we actually convert the inode to
  891. * the new format. We don't change the version number so that we
  892. * can distinguish this from a real new format inode.
  893. */
  894. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  895. ip->i_d.di_nlink = ip->i_d.di_onlink;
  896. ip->i_d.di_onlink = 0;
  897. ip->i_d.di_projid = 0;
  898. }
  899. ip->i_delayed_blks = 0;
  900. ip->i_size = ip->i_d.di_size;
  901. /*
  902. * Mark the buffer containing the inode as something to keep
  903. * around for a while. This helps to keep recently accessed
  904. * meta-data in-core longer.
  905. */
  906. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  907. /*
  908. * Use xfs_trans_brelse() to release the buffer containing the
  909. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  910. * in xfs_itobp() above. If tp is NULL, this is just a normal
  911. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  912. * will only release the buffer if it is not dirty within the
  913. * transaction. It will be OK to release the buffer in this case,
  914. * because inodes on disk are never destroyed and we will be
  915. * locking the new in-core inode before putting it in the hash
  916. * table where other processes can find it. Thus we don't have
  917. * to worry about the inode being changed just because we released
  918. * the buffer.
  919. */
  920. xfs_trans_brelse(tp, bp);
  921. *ipp = ip;
  922. return 0;
  923. }
  924. /*
  925. * Read in extents from a btree-format inode.
  926. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  927. */
  928. int
  929. xfs_iread_extents(
  930. xfs_trans_t *tp,
  931. xfs_inode_t *ip,
  932. int whichfork)
  933. {
  934. int error;
  935. xfs_ifork_t *ifp;
  936. xfs_extnum_t nextents;
  937. size_t size;
  938. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  939. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  940. ip->i_mount);
  941. return XFS_ERROR(EFSCORRUPTED);
  942. }
  943. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  944. size = nextents * sizeof(xfs_bmbt_rec_t);
  945. ifp = XFS_IFORK_PTR(ip, whichfork);
  946. /*
  947. * We know that the size is valid (it's checked in iformat_btree)
  948. */
  949. ifp->if_lastex = NULLEXTNUM;
  950. ifp->if_bytes = ifp->if_real_bytes = 0;
  951. ifp->if_flags |= XFS_IFEXTENTS;
  952. xfs_iext_add(ifp, 0, nextents);
  953. error = xfs_bmap_read_extents(tp, ip, whichfork);
  954. if (error) {
  955. xfs_iext_destroy(ifp);
  956. ifp->if_flags &= ~XFS_IFEXTENTS;
  957. return error;
  958. }
  959. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  960. return 0;
  961. }
  962. /*
  963. * Allocate an inode on disk and return a copy of its in-core version.
  964. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  965. * appropriately within the inode. The uid and gid for the inode are
  966. * set according to the contents of the given cred structure.
  967. *
  968. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  969. * has a free inode available, call xfs_iget()
  970. * to obtain the in-core version of the allocated inode. Finally,
  971. * fill in the inode and log its initial contents. In this case,
  972. * ialloc_context would be set to NULL and call_again set to false.
  973. *
  974. * If xfs_dialloc() does not have an available inode,
  975. * it will replenish its supply by doing an allocation. Since we can
  976. * only do one allocation within a transaction without deadlocks, we
  977. * must commit the current transaction before returning the inode itself.
  978. * In this case, therefore, we will set call_again to true and return.
  979. * The caller should then commit the current transaction, start a new
  980. * transaction, and call xfs_ialloc() again to actually get the inode.
  981. *
  982. * To ensure that some other process does not grab the inode that
  983. * was allocated during the first call to xfs_ialloc(), this routine
  984. * also returns the [locked] bp pointing to the head of the freelist
  985. * as ialloc_context. The caller should hold this buffer across
  986. * the commit and pass it back into this routine on the second call.
  987. *
  988. * If we are allocating quota inodes, we do not have a parent inode
  989. * to attach to or associate with (i.e. pip == NULL) because they
  990. * are not linked into the directory structure - they are attached
  991. * directly to the superblock - and so have no parent.
  992. */
  993. int
  994. xfs_ialloc(
  995. xfs_trans_t *tp,
  996. xfs_inode_t *pip,
  997. mode_t mode,
  998. xfs_nlink_t nlink,
  999. xfs_dev_t rdev,
  1000. cred_t *cr,
  1001. xfs_prid_t prid,
  1002. int okalloc,
  1003. xfs_buf_t **ialloc_context,
  1004. boolean_t *call_again,
  1005. xfs_inode_t **ipp)
  1006. {
  1007. xfs_ino_t ino;
  1008. xfs_inode_t *ip;
  1009. uint flags;
  1010. int error;
  1011. timespec_t tv;
  1012. /*
  1013. * Call the space management code to pick
  1014. * the on-disk inode to be allocated.
  1015. */
  1016. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1017. ialloc_context, call_again, &ino);
  1018. if (error != 0) {
  1019. return error;
  1020. }
  1021. if (*call_again || ino == NULLFSINO) {
  1022. *ipp = NULL;
  1023. return 0;
  1024. }
  1025. ASSERT(*ialloc_context == NULL);
  1026. /*
  1027. * Get the in-core inode with the lock held exclusively.
  1028. * This is because we're setting fields here we need
  1029. * to prevent others from looking at until we're done.
  1030. */
  1031. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1032. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1033. if (error != 0) {
  1034. return error;
  1035. }
  1036. ASSERT(ip != NULL);
  1037. ip->i_d.di_mode = (__uint16_t)mode;
  1038. ip->i_d.di_onlink = 0;
  1039. ip->i_d.di_nlink = nlink;
  1040. ASSERT(ip->i_d.di_nlink == nlink);
  1041. ip->i_d.di_uid = current_fsuid();
  1042. ip->i_d.di_gid = current_fsgid();
  1043. ip->i_d.di_projid = prid;
  1044. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1045. /*
  1046. * If the superblock version is up to where we support new format
  1047. * inodes and this is currently an old format inode, then change
  1048. * the inode version number now. This way we only do the conversion
  1049. * here rather than here and in the flush/logging code.
  1050. */
  1051. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  1052. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1053. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1054. /*
  1055. * We've already zeroed the old link count, the projid field,
  1056. * and the pad field.
  1057. */
  1058. }
  1059. /*
  1060. * Project ids won't be stored on disk if we are using a version 1 inode.
  1061. */
  1062. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1063. xfs_bump_ino_vers2(tp, ip);
  1064. if (pip && XFS_INHERIT_GID(pip)) {
  1065. ip->i_d.di_gid = pip->i_d.di_gid;
  1066. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1067. ip->i_d.di_mode |= S_ISGID;
  1068. }
  1069. }
  1070. /*
  1071. * If the group ID of the new file does not match the effective group
  1072. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1073. * (and only if the irix_sgid_inherit compatibility variable is set).
  1074. */
  1075. if ((irix_sgid_inherit) &&
  1076. (ip->i_d.di_mode & S_ISGID) &&
  1077. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1078. ip->i_d.di_mode &= ~S_ISGID;
  1079. }
  1080. ip->i_d.di_size = 0;
  1081. ip->i_size = 0;
  1082. ip->i_d.di_nextents = 0;
  1083. ASSERT(ip->i_d.di_nblocks == 0);
  1084. nanotime(&tv);
  1085. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1086. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1087. ip->i_d.di_atime = ip->i_d.di_mtime;
  1088. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1089. /*
  1090. * di_gen will have been taken care of in xfs_iread.
  1091. */
  1092. ip->i_d.di_extsize = 0;
  1093. ip->i_d.di_dmevmask = 0;
  1094. ip->i_d.di_dmstate = 0;
  1095. ip->i_d.di_flags = 0;
  1096. flags = XFS_ILOG_CORE;
  1097. switch (mode & S_IFMT) {
  1098. case S_IFIFO:
  1099. case S_IFCHR:
  1100. case S_IFBLK:
  1101. case S_IFSOCK:
  1102. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1103. ip->i_df.if_u2.if_rdev = rdev;
  1104. ip->i_df.if_flags = 0;
  1105. flags |= XFS_ILOG_DEV;
  1106. break;
  1107. case S_IFREG:
  1108. if (pip && xfs_inode_is_filestream(pip)) {
  1109. error = xfs_filestream_associate(pip, ip);
  1110. if (error < 0)
  1111. return -error;
  1112. if (!error)
  1113. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1114. }
  1115. /* fall through */
  1116. case S_IFDIR:
  1117. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1118. uint di_flags = 0;
  1119. if ((mode & S_IFMT) == S_IFDIR) {
  1120. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1121. di_flags |= XFS_DIFLAG_RTINHERIT;
  1122. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1123. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1124. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1125. }
  1126. } else if ((mode & S_IFMT) == S_IFREG) {
  1127. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1128. di_flags |= XFS_DIFLAG_REALTIME;
  1129. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1130. di_flags |= XFS_DIFLAG_EXTSIZE;
  1131. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1132. }
  1133. }
  1134. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1135. xfs_inherit_noatime)
  1136. di_flags |= XFS_DIFLAG_NOATIME;
  1137. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1138. xfs_inherit_nodump)
  1139. di_flags |= XFS_DIFLAG_NODUMP;
  1140. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1141. xfs_inherit_sync)
  1142. di_flags |= XFS_DIFLAG_SYNC;
  1143. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1144. xfs_inherit_nosymlinks)
  1145. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1146. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1147. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1148. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1149. xfs_inherit_nodefrag)
  1150. di_flags |= XFS_DIFLAG_NODEFRAG;
  1151. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1152. di_flags |= XFS_DIFLAG_FILESTREAM;
  1153. ip->i_d.di_flags |= di_flags;
  1154. }
  1155. /* FALLTHROUGH */
  1156. case S_IFLNK:
  1157. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1158. ip->i_df.if_flags = XFS_IFEXTENTS;
  1159. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1160. ip->i_df.if_u1.if_extents = NULL;
  1161. break;
  1162. default:
  1163. ASSERT(0);
  1164. }
  1165. /*
  1166. * Attribute fork settings for new inode.
  1167. */
  1168. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1169. ip->i_d.di_anextents = 0;
  1170. /*
  1171. * Log the new values stuffed into the inode.
  1172. */
  1173. xfs_trans_log_inode(tp, ip, flags);
  1174. /* now that we have an i_mode we can setup inode ops and unlock */
  1175. xfs_setup_inode(ip);
  1176. *ipp = ip;
  1177. return 0;
  1178. }
  1179. /*
  1180. * Check to make sure that there are no blocks allocated to the
  1181. * file beyond the size of the file. We don't check this for
  1182. * files with fixed size extents or real time extents, but we
  1183. * at least do it for regular files.
  1184. */
  1185. #ifdef DEBUG
  1186. void
  1187. xfs_isize_check(
  1188. xfs_mount_t *mp,
  1189. xfs_inode_t *ip,
  1190. xfs_fsize_t isize)
  1191. {
  1192. xfs_fileoff_t map_first;
  1193. int nimaps;
  1194. xfs_bmbt_irec_t imaps[2];
  1195. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1196. return;
  1197. if (XFS_IS_REALTIME_INODE(ip))
  1198. return;
  1199. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1200. return;
  1201. nimaps = 2;
  1202. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1203. /*
  1204. * The filesystem could be shutting down, so bmapi may return
  1205. * an error.
  1206. */
  1207. if (xfs_bmapi(NULL, ip, map_first,
  1208. (XFS_B_TO_FSB(mp,
  1209. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1210. map_first),
  1211. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1212. NULL, NULL))
  1213. return;
  1214. ASSERT(nimaps == 1);
  1215. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1216. }
  1217. #endif /* DEBUG */
  1218. /*
  1219. * Calculate the last possible buffered byte in a file. This must
  1220. * include data that was buffered beyond the EOF by the write code.
  1221. * This also needs to deal with overflowing the xfs_fsize_t type
  1222. * which can happen for sizes near the limit.
  1223. *
  1224. * We also need to take into account any blocks beyond the EOF. It
  1225. * may be the case that they were buffered by a write which failed.
  1226. * In that case the pages will still be in memory, but the inode size
  1227. * will never have been updated.
  1228. */
  1229. xfs_fsize_t
  1230. xfs_file_last_byte(
  1231. xfs_inode_t *ip)
  1232. {
  1233. xfs_mount_t *mp;
  1234. xfs_fsize_t last_byte;
  1235. xfs_fileoff_t last_block;
  1236. xfs_fileoff_t size_last_block;
  1237. int error;
  1238. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1239. mp = ip->i_mount;
  1240. /*
  1241. * Only check for blocks beyond the EOF if the extents have
  1242. * been read in. This eliminates the need for the inode lock,
  1243. * and it also saves us from looking when it really isn't
  1244. * necessary.
  1245. */
  1246. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1247. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1248. XFS_DATA_FORK);
  1249. if (error) {
  1250. last_block = 0;
  1251. }
  1252. } else {
  1253. last_block = 0;
  1254. }
  1255. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1256. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1257. last_byte = XFS_FSB_TO_B(mp, last_block);
  1258. if (last_byte < 0) {
  1259. return XFS_MAXIOFFSET(mp);
  1260. }
  1261. last_byte += (1 << mp->m_writeio_log);
  1262. if (last_byte < 0) {
  1263. return XFS_MAXIOFFSET(mp);
  1264. }
  1265. return last_byte;
  1266. }
  1267. #if defined(XFS_RW_TRACE)
  1268. STATIC void
  1269. xfs_itrunc_trace(
  1270. int tag,
  1271. xfs_inode_t *ip,
  1272. int flag,
  1273. xfs_fsize_t new_size,
  1274. xfs_off_t toss_start,
  1275. xfs_off_t toss_finish)
  1276. {
  1277. if (ip->i_rwtrace == NULL) {
  1278. return;
  1279. }
  1280. ktrace_enter(ip->i_rwtrace,
  1281. (void*)((long)tag),
  1282. (void*)ip,
  1283. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1284. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1285. (void*)((long)flag),
  1286. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1287. (void*)(unsigned long)(new_size & 0xffffffff),
  1288. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1289. (void*)(unsigned long)(toss_start & 0xffffffff),
  1290. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1291. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1292. (void*)(unsigned long)current_cpu(),
  1293. (void*)(unsigned long)current_pid(),
  1294. (void*)NULL,
  1295. (void*)NULL,
  1296. (void*)NULL);
  1297. }
  1298. #else
  1299. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1300. #endif
  1301. /*
  1302. * Start the truncation of the file to new_size. The new size
  1303. * must be smaller than the current size. This routine will
  1304. * clear the buffer and page caches of file data in the removed
  1305. * range, and xfs_itruncate_finish() will remove the underlying
  1306. * disk blocks.
  1307. *
  1308. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1309. * must NOT have the inode lock held at all. This is because we're
  1310. * calling into the buffer/page cache code and we can't hold the
  1311. * inode lock when we do so.
  1312. *
  1313. * We need to wait for any direct I/Os in flight to complete before we
  1314. * proceed with the truncate. This is needed to prevent the extents
  1315. * being read or written by the direct I/Os from being removed while the
  1316. * I/O is in flight as there is no other method of synchronising
  1317. * direct I/O with the truncate operation. Also, because we hold
  1318. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1319. * started until the truncate completes and drops the lock. Essentially,
  1320. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1321. * between direct I/Os and the truncate operation.
  1322. *
  1323. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1324. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1325. * in the case that the caller is locking things out of order and
  1326. * may not be able to call xfs_itruncate_finish() with the inode lock
  1327. * held without dropping the I/O lock. If the caller must drop the
  1328. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1329. * must be called again with all the same restrictions as the initial
  1330. * call.
  1331. */
  1332. int
  1333. xfs_itruncate_start(
  1334. xfs_inode_t *ip,
  1335. uint flags,
  1336. xfs_fsize_t new_size)
  1337. {
  1338. xfs_fsize_t last_byte;
  1339. xfs_off_t toss_start;
  1340. xfs_mount_t *mp;
  1341. int error = 0;
  1342. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1343. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1344. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1345. (flags == XFS_ITRUNC_MAYBE));
  1346. mp = ip->i_mount;
  1347. /* wait for the completion of any pending DIOs */
  1348. if (new_size < ip->i_size)
  1349. vn_iowait(ip);
  1350. /*
  1351. * Call toss_pages or flushinval_pages to get rid of pages
  1352. * overlapping the region being removed. We have to use
  1353. * the less efficient flushinval_pages in the case that the
  1354. * caller may not be able to finish the truncate without
  1355. * dropping the inode's I/O lock. Make sure
  1356. * to catch any pages brought in by buffers overlapping
  1357. * the EOF by searching out beyond the isize by our
  1358. * block size. We round new_size up to a block boundary
  1359. * so that we don't toss things on the same block as
  1360. * new_size but before it.
  1361. *
  1362. * Before calling toss_page or flushinval_pages, make sure to
  1363. * call remapf() over the same region if the file is mapped.
  1364. * This frees up mapped file references to the pages in the
  1365. * given range and for the flushinval_pages case it ensures
  1366. * that we get the latest mapped changes flushed out.
  1367. */
  1368. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1369. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1370. if (toss_start < 0) {
  1371. /*
  1372. * The place to start tossing is beyond our maximum
  1373. * file size, so there is no way that the data extended
  1374. * out there.
  1375. */
  1376. return 0;
  1377. }
  1378. last_byte = xfs_file_last_byte(ip);
  1379. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1380. last_byte);
  1381. if (last_byte > toss_start) {
  1382. if (flags & XFS_ITRUNC_DEFINITE) {
  1383. xfs_tosspages(ip, toss_start,
  1384. -1, FI_REMAPF_LOCKED);
  1385. } else {
  1386. error = xfs_flushinval_pages(ip, toss_start,
  1387. -1, FI_REMAPF_LOCKED);
  1388. }
  1389. }
  1390. #ifdef DEBUG
  1391. if (new_size == 0) {
  1392. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1393. }
  1394. #endif
  1395. return error;
  1396. }
  1397. /*
  1398. * Shrink the file to the given new_size. The new size must be smaller than
  1399. * the current size. This will free up the underlying blocks in the removed
  1400. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1401. *
  1402. * The transaction passed to this routine must have made a permanent log
  1403. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1404. * given transaction and start new ones, so make sure everything involved in
  1405. * the transaction is tidy before calling here. Some transaction will be
  1406. * returned to the caller to be committed. The incoming transaction must
  1407. * already include the inode, and both inode locks must be held exclusively.
  1408. * The inode must also be "held" within the transaction. On return the inode
  1409. * will be "held" within the returned transaction. This routine does NOT
  1410. * require any disk space to be reserved for it within the transaction.
  1411. *
  1412. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1413. * indicates the fork which is to be truncated. For the attribute fork we only
  1414. * support truncation to size 0.
  1415. *
  1416. * We use the sync parameter to indicate whether or not the first transaction
  1417. * we perform might have to be synchronous. For the attr fork, it needs to be
  1418. * so if the unlink of the inode is not yet known to be permanent in the log.
  1419. * This keeps us from freeing and reusing the blocks of the attribute fork
  1420. * before the unlink of the inode becomes permanent.
  1421. *
  1422. * For the data fork, we normally have to run synchronously if we're being
  1423. * called out of the inactive path or we're being called out of the create path
  1424. * where we're truncating an existing file. Either way, the truncate needs to
  1425. * be sync so blocks don't reappear in the file with altered data in case of a
  1426. * crash. wsync filesystems can run the first case async because anything that
  1427. * shrinks the inode has to run sync so by the time we're called here from
  1428. * inactive, the inode size is permanently set to 0.
  1429. *
  1430. * Calls from the truncate path always need to be sync unless we're in a wsync
  1431. * filesystem and the file has already been unlinked.
  1432. *
  1433. * The caller is responsible for correctly setting the sync parameter. It gets
  1434. * too hard for us to guess here which path we're being called out of just
  1435. * based on inode state.
  1436. *
  1437. * If we get an error, we must return with the inode locked and linked into the
  1438. * current transaction. This keeps things simple for the higher level code,
  1439. * because it always knows that the inode is locked and held in the transaction
  1440. * that returns to it whether errors occur or not. We don't mark the inode
  1441. * dirty on error so that transactions can be easily aborted if possible.
  1442. */
  1443. int
  1444. xfs_itruncate_finish(
  1445. xfs_trans_t **tp,
  1446. xfs_inode_t *ip,
  1447. xfs_fsize_t new_size,
  1448. int fork,
  1449. int sync)
  1450. {
  1451. xfs_fsblock_t first_block;
  1452. xfs_fileoff_t first_unmap_block;
  1453. xfs_fileoff_t last_block;
  1454. xfs_filblks_t unmap_len=0;
  1455. xfs_mount_t *mp;
  1456. xfs_trans_t *ntp;
  1457. int done;
  1458. int committed;
  1459. xfs_bmap_free_t free_list;
  1460. int error;
  1461. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1462. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1463. ASSERT(*tp != NULL);
  1464. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1465. ASSERT(ip->i_transp == *tp);
  1466. ASSERT(ip->i_itemp != NULL);
  1467. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1468. ntp = *tp;
  1469. mp = (ntp)->t_mountp;
  1470. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1471. /*
  1472. * We only support truncating the entire attribute fork.
  1473. */
  1474. if (fork == XFS_ATTR_FORK) {
  1475. new_size = 0LL;
  1476. }
  1477. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1478. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1479. /*
  1480. * The first thing we do is set the size to new_size permanently
  1481. * on disk. This way we don't have to worry about anyone ever
  1482. * being able to look at the data being freed even in the face
  1483. * of a crash. What we're getting around here is the case where
  1484. * we free a block, it is allocated to another file, it is written
  1485. * to, and then we crash. If the new data gets written to the
  1486. * file but the log buffers containing the free and reallocation
  1487. * don't, then we'd end up with garbage in the blocks being freed.
  1488. * As long as we make the new_size permanent before actually
  1489. * freeing any blocks it doesn't matter if they get writtten to.
  1490. *
  1491. * The callers must signal into us whether or not the size
  1492. * setting here must be synchronous. There are a few cases
  1493. * where it doesn't have to be synchronous. Those cases
  1494. * occur if the file is unlinked and we know the unlink is
  1495. * permanent or if the blocks being truncated are guaranteed
  1496. * to be beyond the inode eof (regardless of the link count)
  1497. * and the eof value is permanent. Both of these cases occur
  1498. * only on wsync-mounted filesystems. In those cases, we're
  1499. * guaranteed that no user will ever see the data in the blocks
  1500. * that are being truncated so the truncate can run async.
  1501. * In the free beyond eof case, the file may wind up with
  1502. * more blocks allocated to it than it needs if we crash
  1503. * and that won't get fixed until the next time the file
  1504. * is re-opened and closed but that's ok as that shouldn't
  1505. * be too many blocks.
  1506. *
  1507. * However, we can't just make all wsync xactions run async
  1508. * because there's one call out of the create path that needs
  1509. * to run sync where it's truncating an existing file to size
  1510. * 0 whose size is > 0.
  1511. *
  1512. * It's probably possible to come up with a test in this
  1513. * routine that would correctly distinguish all the above
  1514. * cases from the values of the function parameters and the
  1515. * inode state but for sanity's sake, I've decided to let the
  1516. * layers above just tell us. It's simpler to correctly figure
  1517. * out in the layer above exactly under what conditions we
  1518. * can run async and I think it's easier for others read and
  1519. * follow the logic in case something has to be changed.
  1520. * cscope is your friend -- rcc.
  1521. *
  1522. * The attribute fork is much simpler.
  1523. *
  1524. * For the attribute fork we allow the caller to tell us whether
  1525. * the unlink of the inode that led to this call is yet permanent
  1526. * in the on disk log. If it is not and we will be freeing extents
  1527. * in this inode then we make the first transaction synchronous
  1528. * to make sure that the unlink is permanent by the time we free
  1529. * the blocks.
  1530. */
  1531. if (fork == XFS_DATA_FORK) {
  1532. if (ip->i_d.di_nextents > 0) {
  1533. /*
  1534. * If we are not changing the file size then do
  1535. * not update the on-disk file size - we may be
  1536. * called from xfs_inactive_free_eofblocks(). If we
  1537. * update the on-disk file size and then the system
  1538. * crashes before the contents of the file are
  1539. * flushed to disk then the files may be full of
  1540. * holes (ie NULL files bug).
  1541. */
  1542. if (ip->i_size != new_size) {
  1543. ip->i_d.di_size = new_size;
  1544. ip->i_size = new_size;
  1545. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1546. }
  1547. }
  1548. } else if (sync) {
  1549. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1550. if (ip->i_d.di_anextents > 0)
  1551. xfs_trans_set_sync(ntp);
  1552. }
  1553. ASSERT(fork == XFS_DATA_FORK ||
  1554. (fork == XFS_ATTR_FORK &&
  1555. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1556. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1557. /*
  1558. * Since it is possible for space to become allocated beyond
  1559. * the end of the file (in a crash where the space is allocated
  1560. * but the inode size is not yet updated), simply remove any
  1561. * blocks which show up between the new EOF and the maximum
  1562. * possible file size. If the first block to be removed is
  1563. * beyond the maximum file size (ie it is the same as last_block),
  1564. * then there is nothing to do.
  1565. */
  1566. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1567. ASSERT(first_unmap_block <= last_block);
  1568. done = 0;
  1569. if (last_block == first_unmap_block) {
  1570. done = 1;
  1571. } else {
  1572. unmap_len = last_block - first_unmap_block + 1;
  1573. }
  1574. while (!done) {
  1575. /*
  1576. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1577. * will tell us whether it freed the entire range or
  1578. * not. If this is a synchronous mount (wsync),
  1579. * then we can tell bunmapi to keep all the
  1580. * transactions asynchronous since the unlink
  1581. * transaction that made this inode inactive has
  1582. * already hit the disk. There's no danger of
  1583. * the freed blocks being reused, there being a
  1584. * crash, and the reused blocks suddenly reappearing
  1585. * in this file with garbage in them once recovery
  1586. * runs.
  1587. */
  1588. XFS_BMAP_INIT(&free_list, &first_block);
  1589. error = xfs_bunmapi(ntp, ip,
  1590. first_unmap_block, unmap_len,
  1591. XFS_BMAPI_AFLAG(fork) |
  1592. (sync ? 0 : XFS_BMAPI_ASYNC),
  1593. XFS_ITRUNC_MAX_EXTENTS,
  1594. &first_block, &free_list,
  1595. NULL, &done);
  1596. if (error) {
  1597. /*
  1598. * If the bunmapi call encounters an error,
  1599. * return to the caller where the transaction
  1600. * can be properly aborted. We just need to
  1601. * make sure we're not holding any resources
  1602. * that we were not when we came in.
  1603. */
  1604. xfs_bmap_cancel(&free_list);
  1605. return error;
  1606. }
  1607. /*
  1608. * Duplicate the transaction that has the permanent
  1609. * reservation and commit the old transaction.
  1610. */
  1611. error = xfs_bmap_finish(tp, &free_list, &committed);
  1612. ntp = *tp;
  1613. if (committed) {
  1614. /* link the inode into the next xact in the chain */
  1615. xfs_trans_ijoin(ntp, ip,
  1616. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1617. xfs_trans_ihold(ntp, ip);
  1618. }
  1619. if (error) {
  1620. /*
  1621. * If the bmap finish call encounters an error, return
  1622. * to the caller where the transaction can be properly
  1623. * aborted. We just need to make sure we're not
  1624. * holding any resources that we were not when we came
  1625. * in.
  1626. *
  1627. * Aborting from this point might lose some blocks in
  1628. * the file system, but oh well.
  1629. */
  1630. xfs_bmap_cancel(&free_list);
  1631. return error;
  1632. }
  1633. if (committed) {
  1634. /*
  1635. * Mark the inode dirty so it will be logged and
  1636. * moved forward in the log as part of every commit.
  1637. */
  1638. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1639. }
  1640. ntp = xfs_trans_dup(ntp);
  1641. error = xfs_trans_commit(*tp, 0);
  1642. *tp = ntp;
  1643. /* link the inode into the next transaction in the chain */
  1644. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1645. xfs_trans_ihold(ntp, ip);
  1646. if (!error)
  1647. error = xfs_trans_reserve(ntp, 0,
  1648. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1649. XFS_TRANS_PERM_LOG_RES,
  1650. XFS_ITRUNCATE_LOG_COUNT);
  1651. if (error)
  1652. return error;
  1653. }
  1654. /*
  1655. * Only update the size in the case of the data fork, but
  1656. * always re-log the inode so that our permanent transaction
  1657. * can keep on rolling it forward in the log.
  1658. */
  1659. if (fork == XFS_DATA_FORK) {
  1660. xfs_isize_check(mp, ip, new_size);
  1661. /*
  1662. * If we are not changing the file size then do
  1663. * not update the on-disk file size - we may be
  1664. * called from xfs_inactive_free_eofblocks(). If we
  1665. * update the on-disk file size and then the system
  1666. * crashes before the contents of the file are
  1667. * flushed to disk then the files may be full of
  1668. * holes (ie NULL files bug).
  1669. */
  1670. if (ip->i_size != new_size) {
  1671. ip->i_d.di_size = new_size;
  1672. ip->i_size = new_size;
  1673. }
  1674. }
  1675. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1676. ASSERT((new_size != 0) ||
  1677. (fork == XFS_ATTR_FORK) ||
  1678. (ip->i_delayed_blks == 0));
  1679. ASSERT((new_size != 0) ||
  1680. (fork == XFS_ATTR_FORK) ||
  1681. (ip->i_d.di_nextents == 0));
  1682. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1683. return 0;
  1684. }
  1685. /*
  1686. * This is called when the inode's link count goes to 0.
  1687. * We place the on-disk inode on a list in the AGI. It
  1688. * will be pulled from this list when the inode is freed.
  1689. */
  1690. int
  1691. xfs_iunlink(
  1692. xfs_trans_t *tp,
  1693. xfs_inode_t *ip)
  1694. {
  1695. xfs_mount_t *mp;
  1696. xfs_agi_t *agi;
  1697. xfs_dinode_t *dip;
  1698. xfs_buf_t *agibp;
  1699. xfs_buf_t *ibp;
  1700. xfs_agnumber_t agno;
  1701. xfs_daddr_t agdaddr;
  1702. xfs_agino_t agino;
  1703. short bucket_index;
  1704. int offset;
  1705. int error;
  1706. int agi_ok;
  1707. ASSERT(ip->i_d.di_nlink == 0);
  1708. ASSERT(ip->i_d.di_mode != 0);
  1709. ASSERT(ip->i_transp == tp);
  1710. mp = tp->t_mountp;
  1711. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1712. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1713. /*
  1714. * Get the agi buffer first. It ensures lock ordering
  1715. * on the list.
  1716. */
  1717. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1718. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1719. if (error)
  1720. return error;
  1721. /*
  1722. * Validate the magic number of the agi block.
  1723. */
  1724. agi = XFS_BUF_TO_AGI(agibp);
  1725. agi_ok =
  1726. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1727. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1728. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1729. XFS_RANDOM_IUNLINK))) {
  1730. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1731. xfs_trans_brelse(tp, agibp);
  1732. return XFS_ERROR(EFSCORRUPTED);
  1733. }
  1734. /*
  1735. * Get the index into the agi hash table for the
  1736. * list this inode will go on.
  1737. */
  1738. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1739. ASSERT(agino != 0);
  1740. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1741. ASSERT(agi->agi_unlinked[bucket_index]);
  1742. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1743. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1744. /*
  1745. * There is already another inode in the bucket we need
  1746. * to add ourselves to. Add us at the front of the list.
  1747. * Here we put the head pointer into our next pointer,
  1748. * and then we fall through to point the head at us.
  1749. */
  1750. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1751. if (error)
  1752. return error;
  1753. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1754. /* both on-disk, don't endian flip twice */
  1755. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1756. offset = ip->i_boffset +
  1757. offsetof(xfs_dinode_t, di_next_unlinked);
  1758. xfs_trans_inode_buf(tp, ibp);
  1759. xfs_trans_log_buf(tp, ibp, offset,
  1760. (offset + sizeof(xfs_agino_t) - 1));
  1761. xfs_inobp_check(mp, ibp);
  1762. }
  1763. /*
  1764. * Point the bucket head pointer at the inode being inserted.
  1765. */
  1766. ASSERT(agino != 0);
  1767. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1768. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1769. (sizeof(xfs_agino_t) * bucket_index);
  1770. xfs_trans_log_buf(tp, agibp, offset,
  1771. (offset + sizeof(xfs_agino_t) - 1));
  1772. return 0;
  1773. }
  1774. /*
  1775. * Pull the on-disk inode from the AGI unlinked list.
  1776. */
  1777. STATIC int
  1778. xfs_iunlink_remove(
  1779. xfs_trans_t *tp,
  1780. xfs_inode_t *ip)
  1781. {
  1782. xfs_ino_t next_ino;
  1783. xfs_mount_t *mp;
  1784. xfs_agi_t *agi;
  1785. xfs_dinode_t *dip;
  1786. xfs_buf_t *agibp;
  1787. xfs_buf_t *ibp;
  1788. xfs_agnumber_t agno;
  1789. xfs_daddr_t agdaddr;
  1790. xfs_agino_t agino;
  1791. xfs_agino_t next_agino;
  1792. xfs_buf_t *last_ibp;
  1793. xfs_dinode_t *last_dip = NULL;
  1794. short bucket_index;
  1795. int offset, last_offset = 0;
  1796. int error;
  1797. int agi_ok;
  1798. /*
  1799. * First pull the on-disk inode from the AGI unlinked list.
  1800. */
  1801. mp = tp->t_mountp;
  1802. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1803. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1804. /*
  1805. * Get the agi buffer first. It ensures lock ordering
  1806. * on the list.
  1807. */
  1808. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1809. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1810. if (error) {
  1811. cmn_err(CE_WARN,
  1812. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1813. error, mp->m_fsname);
  1814. return error;
  1815. }
  1816. /*
  1817. * Validate the magic number of the agi block.
  1818. */
  1819. agi = XFS_BUF_TO_AGI(agibp);
  1820. agi_ok =
  1821. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1822. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1823. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1824. XFS_RANDOM_IUNLINK_REMOVE))) {
  1825. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1826. mp, agi);
  1827. xfs_trans_brelse(tp, agibp);
  1828. cmn_err(CE_WARN,
  1829. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1830. mp->m_fsname);
  1831. return XFS_ERROR(EFSCORRUPTED);
  1832. }
  1833. /*
  1834. * Get the index into the agi hash table for the
  1835. * list this inode will go on.
  1836. */
  1837. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1838. ASSERT(agino != 0);
  1839. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1840. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1841. ASSERT(agi->agi_unlinked[bucket_index]);
  1842. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1843. /*
  1844. * We're at the head of the list. Get the inode's
  1845. * on-disk buffer to see if there is anyone after us
  1846. * on the list. Only modify our next pointer if it
  1847. * is not already NULLAGINO. This saves us the overhead
  1848. * of dealing with the buffer when there is no need to
  1849. * change it.
  1850. */
  1851. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1852. if (error) {
  1853. cmn_err(CE_WARN,
  1854. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1855. error, mp->m_fsname);
  1856. return error;
  1857. }
  1858. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1859. ASSERT(next_agino != 0);
  1860. if (next_agino != NULLAGINO) {
  1861. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1862. offset = ip->i_boffset +
  1863. offsetof(xfs_dinode_t, di_next_unlinked);
  1864. xfs_trans_inode_buf(tp, ibp);
  1865. xfs_trans_log_buf(tp, ibp, offset,
  1866. (offset + sizeof(xfs_agino_t) - 1));
  1867. xfs_inobp_check(mp, ibp);
  1868. } else {
  1869. xfs_trans_brelse(tp, ibp);
  1870. }
  1871. /*
  1872. * Point the bucket head pointer at the next inode.
  1873. */
  1874. ASSERT(next_agino != 0);
  1875. ASSERT(next_agino != agino);
  1876. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1877. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1878. (sizeof(xfs_agino_t) * bucket_index);
  1879. xfs_trans_log_buf(tp, agibp, offset,
  1880. (offset + sizeof(xfs_agino_t) - 1));
  1881. } else {
  1882. /*
  1883. * We need to search the list for the inode being freed.
  1884. */
  1885. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1886. last_ibp = NULL;
  1887. while (next_agino != agino) {
  1888. /*
  1889. * If the last inode wasn't the one pointing to
  1890. * us, then release its buffer since we're not
  1891. * going to do anything with it.
  1892. */
  1893. if (last_ibp != NULL) {
  1894. xfs_trans_brelse(tp, last_ibp);
  1895. }
  1896. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1897. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1898. &last_ibp, &last_offset);
  1899. if (error) {
  1900. cmn_err(CE_WARN,
  1901. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1902. error, mp->m_fsname);
  1903. return error;
  1904. }
  1905. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1906. ASSERT(next_agino != NULLAGINO);
  1907. ASSERT(next_agino != 0);
  1908. }
  1909. /*
  1910. * Now last_ibp points to the buffer previous to us on
  1911. * the unlinked list. Pull us from the list.
  1912. */
  1913. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1914. if (error) {
  1915. cmn_err(CE_WARN,
  1916. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1917. error, mp->m_fsname);
  1918. return error;
  1919. }
  1920. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1921. ASSERT(next_agino != 0);
  1922. ASSERT(next_agino != agino);
  1923. if (next_agino != NULLAGINO) {
  1924. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1925. offset = ip->i_boffset +
  1926. offsetof(xfs_dinode_t, di_next_unlinked);
  1927. xfs_trans_inode_buf(tp, ibp);
  1928. xfs_trans_log_buf(tp, ibp, offset,
  1929. (offset + sizeof(xfs_agino_t) - 1));
  1930. xfs_inobp_check(mp, ibp);
  1931. } else {
  1932. xfs_trans_brelse(tp, ibp);
  1933. }
  1934. /*
  1935. * Point the previous inode on the list to the next inode.
  1936. */
  1937. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1938. ASSERT(next_agino != 0);
  1939. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1940. xfs_trans_inode_buf(tp, last_ibp);
  1941. xfs_trans_log_buf(tp, last_ibp, offset,
  1942. (offset + sizeof(xfs_agino_t) - 1));
  1943. xfs_inobp_check(mp, last_ibp);
  1944. }
  1945. return 0;
  1946. }
  1947. STATIC void
  1948. xfs_ifree_cluster(
  1949. xfs_inode_t *free_ip,
  1950. xfs_trans_t *tp,
  1951. xfs_ino_t inum)
  1952. {
  1953. xfs_mount_t *mp = free_ip->i_mount;
  1954. int blks_per_cluster;
  1955. int nbufs;
  1956. int ninodes;
  1957. int i, j, found, pre_flushed;
  1958. xfs_daddr_t blkno;
  1959. xfs_buf_t *bp;
  1960. xfs_inode_t *ip, **ip_found;
  1961. xfs_inode_log_item_t *iip;
  1962. xfs_log_item_t *lip;
  1963. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1964. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1965. blks_per_cluster = 1;
  1966. ninodes = mp->m_sb.sb_inopblock;
  1967. nbufs = XFS_IALLOC_BLOCKS(mp);
  1968. } else {
  1969. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1970. mp->m_sb.sb_blocksize;
  1971. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1972. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1973. }
  1974. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1975. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1976. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1977. XFS_INO_TO_AGBNO(mp, inum));
  1978. /*
  1979. * Look for each inode in memory and attempt to lock it,
  1980. * we can be racing with flush and tail pushing here.
  1981. * any inode we get the locks on, add to an array of
  1982. * inode items to process later.
  1983. *
  1984. * The get the buffer lock, we could beat a flush
  1985. * or tail pushing thread to the lock here, in which
  1986. * case they will go looking for the inode buffer
  1987. * and fail, we need some other form of interlock
  1988. * here.
  1989. */
  1990. found = 0;
  1991. for (i = 0; i < ninodes; i++) {
  1992. read_lock(&pag->pag_ici_lock);
  1993. ip = radix_tree_lookup(&pag->pag_ici_root,
  1994. XFS_INO_TO_AGINO(mp, (inum + i)));
  1995. /* Inode not in memory or we found it already,
  1996. * nothing to do
  1997. */
  1998. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1999. read_unlock(&pag->pag_ici_lock);
  2000. continue;
  2001. }
  2002. if (xfs_inode_clean(ip)) {
  2003. read_unlock(&pag->pag_ici_lock);
  2004. continue;
  2005. }
  2006. /* If we can get the locks then add it to the
  2007. * list, otherwise by the time we get the bp lock
  2008. * below it will already be attached to the
  2009. * inode buffer.
  2010. */
  2011. /* This inode will already be locked - by us, lets
  2012. * keep it that way.
  2013. */
  2014. if (ip == free_ip) {
  2015. if (xfs_iflock_nowait(ip)) {
  2016. xfs_iflags_set(ip, XFS_ISTALE);
  2017. if (xfs_inode_clean(ip)) {
  2018. xfs_ifunlock(ip);
  2019. } else {
  2020. ip_found[found++] = ip;
  2021. }
  2022. }
  2023. read_unlock(&pag->pag_ici_lock);
  2024. continue;
  2025. }
  2026. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2027. if (xfs_iflock_nowait(ip)) {
  2028. xfs_iflags_set(ip, XFS_ISTALE);
  2029. if (xfs_inode_clean(ip)) {
  2030. xfs_ifunlock(ip);
  2031. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2032. } else {
  2033. ip_found[found++] = ip;
  2034. }
  2035. } else {
  2036. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2037. }
  2038. }
  2039. read_unlock(&pag->pag_ici_lock);
  2040. }
  2041. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2042. mp->m_bsize * blks_per_cluster,
  2043. XFS_BUF_LOCK);
  2044. pre_flushed = 0;
  2045. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2046. while (lip) {
  2047. if (lip->li_type == XFS_LI_INODE) {
  2048. iip = (xfs_inode_log_item_t *)lip;
  2049. ASSERT(iip->ili_logged == 1);
  2050. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2051. spin_lock(&mp->m_ail_lock);
  2052. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2053. spin_unlock(&mp->m_ail_lock);
  2054. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2055. pre_flushed++;
  2056. }
  2057. lip = lip->li_bio_list;
  2058. }
  2059. for (i = 0; i < found; i++) {
  2060. ip = ip_found[i];
  2061. iip = ip->i_itemp;
  2062. if (!iip) {
  2063. ip->i_update_core = 0;
  2064. xfs_ifunlock(ip);
  2065. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2066. continue;
  2067. }
  2068. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2069. iip->ili_format.ilf_fields = 0;
  2070. iip->ili_logged = 1;
  2071. spin_lock(&mp->m_ail_lock);
  2072. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2073. spin_unlock(&mp->m_ail_lock);
  2074. xfs_buf_attach_iodone(bp,
  2075. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2076. xfs_istale_done, (xfs_log_item_t *)iip);
  2077. if (ip != free_ip) {
  2078. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2079. }
  2080. }
  2081. if (found || pre_flushed)
  2082. xfs_trans_stale_inode_buf(tp, bp);
  2083. xfs_trans_binval(tp, bp);
  2084. }
  2085. kmem_free(ip_found);
  2086. xfs_put_perag(mp, pag);
  2087. }
  2088. /*
  2089. * This is called to return an inode to the inode free list.
  2090. * The inode should already be truncated to 0 length and have
  2091. * no pages associated with it. This routine also assumes that
  2092. * the inode is already a part of the transaction.
  2093. *
  2094. * The on-disk copy of the inode will have been added to the list
  2095. * of unlinked inodes in the AGI. We need to remove the inode from
  2096. * that list atomically with respect to freeing it here.
  2097. */
  2098. int
  2099. xfs_ifree(
  2100. xfs_trans_t *tp,
  2101. xfs_inode_t *ip,
  2102. xfs_bmap_free_t *flist)
  2103. {
  2104. int error;
  2105. int delete;
  2106. xfs_ino_t first_ino;
  2107. xfs_dinode_t *dip;
  2108. xfs_buf_t *ibp;
  2109. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2110. ASSERT(ip->i_transp == tp);
  2111. ASSERT(ip->i_d.di_nlink == 0);
  2112. ASSERT(ip->i_d.di_nextents == 0);
  2113. ASSERT(ip->i_d.di_anextents == 0);
  2114. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2115. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2116. ASSERT(ip->i_d.di_nblocks == 0);
  2117. /*
  2118. * Pull the on-disk inode from the AGI unlinked list.
  2119. */
  2120. error = xfs_iunlink_remove(tp, ip);
  2121. if (error != 0) {
  2122. return error;
  2123. }
  2124. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2125. if (error != 0) {
  2126. return error;
  2127. }
  2128. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2129. ip->i_d.di_flags = 0;
  2130. ip->i_d.di_dmevmask = 0;
  2131. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2132. ip->i_df.if_ext_max =
  2133. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2134. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2135. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2136. /*
  2137. * Bump the generation count so no one will be confused
  2138. * by reincarnations of this inode.
  2139. */
  2140. ip->i_d.di_gen++;
  2141. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2142. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  2143. if (error)
  2144. return error;
  2145. /*
  2146. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2147. * from picking up this inode when it is reclaimed (its incore state
  2148. * initialzed but not flushed to disk yet). The in-core di_mode is
  2149. * already cleared and a corresponding transaction logged.
  2150. * The hack here just synchronizes the in-core to on-disk
  2151. * di_mode value in advance before the actual inode sync to disk.
  2152. * This is OK because the inode is already unlinked and would never
  2153. * change its di_mode again for this inode generation.
  2154. * This is a temporary hack that would require a proper fix
  2155. * in the future.
  2156. */
  2157. dip->di_core.di_mode = 0;
  2158. if (delete) {
  2159. xfs_ifree_cluster(ip, tp, first_ino);
  2160. }
  2161. return 0;
  2162. }
  2163. /*
  2164. * Reallocate the space for if_broot based on the number of records
  2165. * being added or deleted as indicated in rec_diff. Move the records
  2166. * and pointers in if_broot to fit the new size. When shrinking this
  2167. * will eliminate holes between the records and pointers created by
  2168. * the caller. When growing this will create holes to be filled in
  2169. * by the caller.
  2170. *
  2171. * The caller must not request to add more records than would fit in
  2172. * the on-disk inode root. If the if_broot is currently NULL, then
  2173. * if we adding records one will be allocated. The caller must also
  2174. * not request that the number of records go below zero, although
  2175. * it can go to zero.
  2176. *
  2177. * ip -- the inode whose if_broot area is changing
  2178. * ext_diff -- the change in the number of records, positive or negative,
  2179. * requested for the if_broot array.
  2180. */
  2181. void
  2182. xfs_iroot_realloc(
  2183. xfs_inode_t *ip,
  2184. int rec_diff,
  2185. int whichfork)
  2186. {
  2187. int cur_max;
  2188. xfs_ifork_t *ifp;
  2189. xfs_bmbt_block_t *new_broot;
  2190. int new_max;
  2191. size_t new_size;
  2192. char *np;
  2193. char *op;
  2194. /*
  2195. * Handle the degenerate case quietly.
  2196. */
  2197. if (rec_diff == 0) {
  2198. return;
  2199. }
  2200. ifp = XFS_IFORK_PTR(ip, whichfork);
  2201. if (rec_diff > 0) {
  2202. /*
  2203. * If there wasn't any memory allocated before, just
  2204. * allocate it now and get out.
  2205. */
  2206. if (ifp->if_broot_bytes == 0) {
  2207. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2208. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2209. KM_SLEEP);
  2210. ifp->if_broot_bytes = (int)new_size;
  2211. return;
  2212. }
  2213. /*
  2214. * If there is already an existing if_broot, then we need
  2215. * to realloc() it and shift the pointers to their new
  2216. * location. The records don't change location because
  2217. * they are kept butted up against the btree block header.
  2218. */
  2219. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2220. new_max = cur_max + rec_diff;
  2221. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2222. ifp->if_broot = (xfs_bmbt_block_t *)
  2223. kmem_realloc(ifp->if_broot,
  2224. new_size,
  2225. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2226. KM_SLEEP);
  2227. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2228. ifp->if_broot_bytes);
  2229. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2230. (int)new_size);
  2231. ifp->if_broot_bytes = (int)new_size;
  2232. ASSERT(ifp->if_broot_bytes <=
  2233. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2234. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2235. return;
  2236. }
  2237. /*
  2238. * rec_diff is less than 0. In this case, we are shrinking the
  2239. * if_broot buffer. It must already exist. If we go to zero
  2240. * records, just get rid of the root and clear the status bit.
  2241. */
  2242. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2243. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2244. new_max = cur_max + rec_diff;
  2245. ASSERT(new_max >= 0);
  2246. if (new_max > 0)
  2247. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2248. else
  2249. new_size = 0;
  2250. if (new_size > 0) {
  2251. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2252. /*
  2253. * First copy over the btree block header.
  2254. */
  2255. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2256. } else {
  2257. new_broot = NULL;
  2258. ifp->if_flags &= ~XFS_IFBROOT;
  2259. }
  2260. /*
  2261. * Only copy the records and pointers if there are any.
  2262. */
  2263. if (new_max > 0) {
  2264. /*
  2265. * First copy the records.
  2266. */
  2267. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2268. ifp->if_broot_bytes);
  2269. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2270. (int)new_size);
  2271. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2272. /*
  2273. * Then copy the pointers.
  2274. */
  2275. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2276. ifp->if_broot_bytes);
  2277. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2278. (int)new_size);
  2279. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2280. }
  2281. kmem_free(ifp->if_broot);
  2282. ifp->if_broot = new_broot;
  2283. ifp->if_broot_bytes = (int)new_size;
  2284. ASSERT(ifp->if_broot_bytes <=
  2285. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2286. return;
  2287. }
  2288. /*
  2289. * This is called when the amount of space needed for if_data
  2290. * is increased or decreased. The change in size is indicated by
  2291. * the number of bytes that need to be added or deleted in the
  2292. * byte_diff parameter.
  2293. *
  2294. * If the amount of space needed has decreased below the size of the
  2295. * inline buffer, then switch to using the inline buffer. Otherwise,
  2296. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2297. * to what is needed.
  2298. *
  2299. * ip -- the inode whose if_data area is changing
  2300. * byte_diff -- the change in the number of bytes, positive or negative,
  2301. * requested for the if_data array.
  2302. */
  2303. void
  2304. xfs_idata_realloc(
  2305. xfs_inode_t *ip,
  2306. int byte_diff,
  2307. int whichfork)
  2308. {
  2309. xfs_ifork_t *ifp;
  2310. int new_size;
  2311. int real_size;
  2312. if (byte_diff == 0) {
  2313. return;
  2314. }
  2315. ifp = XFS_IFORK_PTR(ip, whichfork);
  2316. new_size = (int)ifp->if_bytes + byte_diff;
  2317. ASSERT(new_size >= 0);
  2318. if (new_size == 0) {
  2319. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2320. kmem_free(ifp->if_u1.if_data);
  2321. }
  2322. ifp->if_u1.if_data = NULL;
  2323. real_size = 0;
  2324. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2325. /*
  2326. * If the valid extents/data can fit in if_inline_ext/data,
  2327. * copy them from the malloc'd vector and free it.
  2328. */
  2329. if (ifp->if_u1.if_data == NULL) {
  2330. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2331. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2332. ASSERT(ifp->if_real_bytes != 0);
  2333. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2334. new_size);
  2335. kmem_free(ifp->if_u1.if_data);
  2336. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2337. }
  2338. real_size = 0;
  2339. } else {
  2340. /*
  2341. * Stuck with malloc/realloc.
  2342. * For inline data, the underlying buffer must be
  2343. * a multiple of 4 bytes in size so that it can be
  2344. * logged and stay on word boundaries. We enforce
  2345. * that here.
  2346. */
  2347. real_size = roundup(new_size, 4);
  2348. if (ifp->if_u1.if_data == NULL) {
  2349. ASSERT(ifp->if_real_bytes == 0);
  2350. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2351. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2352. /*
  2353. * Only do the realloc if the underlying size
  2354. * is really changing.
  2355. */
  2356. if (ifp->if_real_bytes != real_size) {
  2357. ifp->if_u1.if_data =
  2358. kmem_realloc(ifp->if_u1.if_data,
  2359. real_size,
  2360. ifp->if_real_bytes,
  2361. KM_SLEEP);
  2362. }
  2363. } else {
  2364. ASSERT(ifp->if_real_bytes == 0);
  2365. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2366. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2367. ifp->if_bytes);
  2368. }
  2369. }
  2370. ifp->if_real_bytes = real_size;
  2371. ifp->if_bytes = new_size;
  2372. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2373. }
  2374. /*
  2375. * Map inode to disk block and offset.
  2376. *
  2377. * mp -- the mount point structure for the current file system
  2378. * tp -- the current transaction
  2379. * ino -- the inode number of the inode to be located
  2380. * imap -- this structure is filled in with the information necessary
  2381. * to retrieve the given inode from disk
  2382. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2383. * lookups in the inode btree were OK or not
  2384. */
  2385. int
  2386. xfs_imap(
  2387. xfs_mount_t *mp,
  2388. xfs_trans_t *tp,
  2389. xfs_ino_t ino,
  2390. xfs_imap_t *imap,
  2391. uint flags)
  2392. {
  2393. xfs_fsblock_t fsbno;
  2394. int len;
  2395. int off;
  2396. int error;
  2397. fsbno = imap->im_blkno ?
  2398. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2399. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2400. if (error)
  2401. return error;
  2402. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2403. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2404. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2405. imap->im_ioffset = (ushort)off;
  2406. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2407. /*
  2408. * If the inode number maps to a block outside the bounds
  2409. * of the file system then return NULL rather than calling
  2410. * read_buf and panicing when we get an error from the
  2411. * driver.
  2412. */
  2413. if ((imap->im_blkno + imap->im_len) >
  2414. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2415. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
  2416. "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
  2417. " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
  2418. (unsigned long long) imap->im_blkno,
  2419. (unsigned long long) imap->im_len,
  2420. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2421. return EINVAL;
  2422. }
  2423. return 0;
  2424. }
  2425. void
  2426. xfs_idestroy_fork(
  2427. xfs_inode_t *ip,
  2428. int whichfork)
  2429. {
  2430. xfs_ifork_t *ifp;
  2431. ifp = XFS_IFORK_PTR(ip, whichfork);
  2432. if (ifp->if_broot != NULL) {
  2433. kmem_free(ifp->if_broot);
  2434. ifp->if_broot = NULL;
  2435. }
  2436. /*
  2437. * If the format is local, then we can't have an extents
  2438. * array so just look for an inline data array. If we're
  2439. * not local then we may or may not have an extents list,
  2440. * so check and free it up if we do.
  2441. */
  2442. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2443. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2444. (ifp->if_u1.if_data != NULL)) {
  2445. ASSERT(ifp->if_real_bytes != 0);
  2446. kmem_free(ifp->if_u1.if_data);
  2447. ifp->if_u1.if_data = NULL;
  2448. ifp->if_real_bytes = 0;
  2449. }
  2450. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2451. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2452. ((ifp->if_u1.if_extents != NULL) &&
  2453. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2454. ASSERT(ifp->if_real_bytes != 0);
  2455. xfs_iext_destroy(ifp);
  2456. }
  2457. ASSERT(ifp->if_u1.if_extents == NULL ||
  2458. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2459. ASSERT(ifp->if_real_bytes == 0);
  2460. if (whichfork == XFS_ATTR_FORK) {
  2461. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2462. ip->i_afp = NULL;
  2463. }
  2464. }
  2465. /*
  2466. * This is called free all the memory associated with an inode.
  2467. * It must free the inode itself and any buffers allocated for
  2468. * if_extents/if_data and if_broot. It must also free the lock
  2469. * associated with the inode.
  2470. */
  2471. void
  2472. xfs_idestroy(
  2473. xfs_inode_t *ip)
  2474. {
  2475. switch (ip->i_d.di_mode & S_IFMT) {
  2476. case S_IFREG:
  2477. case S_IFDIR:
  2478. case S_IFLNK:
  2479. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2480. break;
  2481. }
  2482. if (ip->i_afp)
  2483. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2484. #ifdef XFS_INODE_TRACE
  2485. ktrace_free(ip->i_trace);
  2486. #endif
  2487. #ifdef XFS_BMAP_TRACE
  2488. ktrace_free(ip->i_xtrace);
  2489. #endif
  2490. #ifdef XFS_BTREE_TRACE
  2491. ktrace_free(ip->i_btrace);
  2492. #endif
  2493. #ifdef XFS_RW_TRACE
  2494. ktrace_free(ip->i_rwtrace);
  2495. #endif
  2496. #ifdef XFS_ILOCK_TRACE
  2497. ktrace_free(ip->i_lock_trace);
  2498. #endif
  2499. #ifdef XFS_DIR2_TRACE
  2500. ktrace_free(ip->i_dir_trace);
  2501. #endif
  2502. if (ip->i_itemp) {
  2503. /*
  2504. * Only if we are shutting down the fs will we see an
  2505. * inode still in the AIL. If it is there, we should remove
  2506. * it to prevent a use-after-free from occurring.
  2507. */
  2508. xfs_mount_t *mp = ip->i_mount;
  2509. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2510. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2511. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2512. if (lip->li_flags & XFS_LI_IN_AIL) {
  2513. spin_lock(&mp->m_ail_lock);
  2514. if (lip->li_flags & XFS_LI_IN_AIL)
  2515. xfs_trans_delete_ail(mp, lip);
  2516. else
  2517. spin_unlock(&mp->m_ail_lock);
  2518. }
  2519. xfs_inode_item_destroy(ip);
  2520. ip->i_itemp = NULL;
  2521. }
  2522. /* asserts to verify all state is correct here */
  2523. ASSERT(atomic_read(&ip->i_iocount) == 0);
  2524. ASSERT(atomic_read(&ip->i_pincount) == 0);
  2525. ASSERT(!spin_is_locked(&ip->i_flags_lock));
  2526. ASSERT(list_empty(&ip->i_reclaim));
  2527. kmem_zone_free(xfs_inode_zone, ip);
  2528. }
  2529. /*
  2530. * Increment the pin count of the given buffer.
  2531. * This value is protected by ipinlock spinlock in the mount structure.
  2532. */
  2533. void
  2534. xfs_ipin(
  2535. xfs_inode_t *ip)
  2536. {
  2537. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2538. atomic_inc(&ip->i_pincount);
  2539. }
  2540. /*
  2541. * Decrement the pin count of the given inode, and wake up
  2542. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2543. * inode must have been previously pinned with a call to xfs_ipin().
  2544. */
  2545. void
  2546. xfs_iunpin(
  2547. xfs_inode_t *ip)
  2548. {
  2549. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2550. if (atomic_dec_and_test(&ip->i_pincount))
  2551. wake_up(&ip->i_ipin_wait);
  2552. }
  2553. /*
  2554. * This is called to unpin an inode. It can be directed to wait or to return
  2555. * immediately without waiting for the inode to be unpinned. The caller must
  2556. * have the inode locked in at least shared mode so that the buffer cannot be
  2557. * subsequently pinned once someone is waiting for it to be unpinned.
  2558. */
  2559. STATIC void
  2560. __xfs_iunpin_wait(
  2561. xfs_inode_t *ip,
  2562. int wait)
  2563. {
  2564. xfs_inode_log_item_t *iip = ip->i_itemp;
  2565. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2566. if (atomic_read(&ip->i_pincount) == 0)
  2567. return;
  2568. /* Give the log a push to start the unpinning I/O */
  2569. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2570. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2571. if (wait)
  2572. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2573. }
  2574. static inline void
  2575. xfs_iunpin_wait(
  2576. xfs_inode_t *ip)
  2577. {
  2578. __xfs_iunpin_wait(ip, 1);
  2579. }
  2580. static inline void
  2581. xfs_iunpin_nowait(
  2582. xfs_inode_t *ip)
  2583. {
  2584. __xfs_iunpin_wait(ip, 0);
  2585. }
  2586. /*
  2587. * xfs_iextents_copy()
  2588. *
  2589. * This is called to copy the REAL extents (as opposed to the delayed
  2590. * allocation extents) from the inode into the given buffer. It
  2591. * returns the number of bytes copied into the buffer.
  2592. *
  2593. * If there are no delayed allocation extents, then we can just
  2594. * memcpy() the extents into the buffer. Otherwise, we need to
  2595. * examine each extent in turn and skip those which are delayed.
  2596. */
  2597. int
  2598. xfs_iextents_copy(
  2599. xfs_inode_t *ip,
  2600. xfs_bmbt_rec_t *dp,
  2601. int whichfork)
  2602. {
  2603. int copied;
  2604. int i;
  2605. xfs_ifork_t *ifp;
  2606. int nrecs;
  2607. xfs_fsblock_t start_block;
  2608. ifp = XFS_IFORK_PTR(ip, whichfork);
  2609. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2610. ASSERT(ifp->if_bytes > 0);
  2611. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2612. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2613. ASSERT(nrecs > 0);
  2614. /*
  2615. * There are some delayed allocation extents in the
  2616. * inode, so copy the extents one at a time and skip
  2617. * the delayed ones. There must be at least one
  2618. * non-delayed extent.
  2619. */
  2620. copied = 0;
  2621. for (i = 0; i < nrecs; i++) {
  2622. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2623. start_block = xfs_bmbt_get_startblock(ep);
  2624. if (ISNULLSTARTBLOCK(start_block)) {
  2625. /*
  2626. * It's a delayed allocation extent, so skip it.
  2627. */
  2628. continue;
  2629. }
  2630. /* Translate to on disk format */
  2631. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2632. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2633. dp++;
  2634. copied++;
  2635. }
  2636. ASSERT(copied != 0);
  2637. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2638. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2639. }
  2640. /*
  2641. * Each of the following cases stores data into the same region
  2642. * of the on-disk inode, so only one of them can be valid at
  2643. * any given time. While it is possible to have conflicting formats
  2644. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2645. * in EXTENTS format, this can only happen when the fork has
  2646. * changed formats after being modified but before being flushed.
  2647. * In these cases, the format always takes precedence, because the
  2648. * format indicates the current state of the fork.
  2649. */
  2650. /*ARGSUSED*/
  2651. STATIC void
  2652. xfs_iflush_fork(
  2653. xfs_inode_t *ip,
  2654. xfs_dinode_t *dip,
  2655. xfs_inode_log_item_t *iip,
  2656. int whichfork,
  2657. xfs_buf_t *bp)
  2658. {
  2659. char *cp;
  2660. xfs_ifork_t *ifp;
  2661. xfs_mount_t *mp;
  2662. #ifdef XFS_TRANS_DEBUG
  2663. int first;
  2664. #endif
  2665. static const short brootflag[2] =
  2666. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2667. static const short dataflag[2] =
  2668. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2669. static const short extflag[2] =
  2670. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2671. if (!iip)
  2672. return;
  2673. ifp = XFS_IFORK_PTR(ip, whichfork);
  2674. /*
  2675. * This can happen if we gave up in iformat in an error path,
  2676. * for the attribute fork.
  2677. */
  2678. if (!ifp) {
  2679. ASSERT(whichfork == XFS_ATTR_FORK);
  2680. return;
  2681. }
  2682. cp = XFS_DFORK_PTR(dip, whichfork);
  2683. mp = ip->i_mount;
  2684. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2685. case XFS_DINODE_FMT_LOCAL:
  2686. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2687. (ifp->if_bytes > 0)) {
  2688. ASSERT(ifp->if_u1.if_data != NULL);
  2689. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2690. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2691. }
  2692. break;
  2693. case XFS_DINODE_FMT_EXTENTS:
  2694. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2695. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2696. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2697. (ifp->if_bytes == 0));
  2698. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2699. (ifp->if_bytes > 0));
  2700. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2701. (ifp->if_bytes > 0)) {
  2702. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2703. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2704. whichfork);
  2705. }
  2706. break;
  2707. case XFS_DINODE_FMT_BTREE:
  2708. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2709. (ifp->if_broot_bytes > 0)) {
  2710. ASSERT(ifp->if_broot != NULL);
  2711. ASSERT(ifp->if_broot_bytes <=
  2712. (XFS_IFORK_SIZE(ip, whichfork) +
  2713. XFS_BROOT_SIZE_ADJ));
  2714. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2715. (xfs_bmdr_block_t *)cp,
  2716. XFS_DFORK_SIZE(dip, mp, whichfork));
  2717. }
  2718. break;
  2719. case XFS_DINODE_FMT_DEV:
  2720. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2721. ASSERT(whichfork == XFS_DATA_FORK);
  2722. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2723. }
  2724. break;
  2725. case XFS_DINODE_FMT_UUID:
  2726. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2727. ASSERT(whichfork == XFS_DATA_FORK);
  2728. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2729. sizeof(uuid_t));
  2730. }
  2731. break;
  2732. default:
  2733. ASSERT(0);
  2734. break;
  2735. }
  2736. }
  2737. STATIC int
  2738. xfs_iflush_cluster(
  2739. xfs_inode_t *ip,
  2740. xfs_buf_t *bp)
  2741. {
  2742. xfs_mount_t *mp = ip->i_mount;
  2743. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2744. unsigned long first_index, mask;
  2745. unsigned long inodes_per_cluster;
  2746. int ilist_size;
  2747. xfs_inode_t **ilist;
  2748. xfs_inode_t *iq;
  2749. int nr_found;
  2750. int clcount = 0;
  2751. int bufwasdelwri;
  2752. int i;
  2753. ASSERT(pag->pagi_inodeok);
  2754. ASSERT(pag->pag_ici_init);
  2755. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2756. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2757. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2758. if (!ilist)
  2759. return 0;
  2760. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2761. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2762. read_lock(&pag->pag_ici_lock);
  2763. /* really need a gang lookup range call here */
  2764. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2765. first_index, inodes_per_cluster);
  2766. if (nr_found == 0)
  2767. goto out_free;
  2768. for (i = 0; i < nr_found; i++) {
  2769. iq = ilist[i];
  2770. if (iq == ip)
  2771. continue;
  2772. /* if the inode lies outside this cluster, we're done. */
  2773. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2774. break;
  2775. /*
  2776. * Do an un-protected check to see if the inode is dirty and
  2777. * is a candidate for flushing. These checks will be repeated
  2778. * later after the appropriate locks are acquired.
  2779. */
  2780. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2781. continue;
  2782. /*
  2783. * Try to get locks. If any are unavailable or it is pinned,
  2784. * then this inode cannot be flushed and is skipped.
  2785. */
  2786. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2787. continue;
  2788. if (!xfs_iflock_nowait(iq)) {
  2789. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2790. continue;
  2791. }
  2792. if (xfs_ipincount(iq)) {
  2793. xfs_ifunlock(iq);
  2794. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2795. continue;
  2796. }
  2797. /*
  2798. * arriving here means that this inode can be flushed. First
  2799. * re-check that it's dirty before flushing.
  2800. */
  2801. if (!xfs_inode_clean(iq)) {
  2802. int error;
  2803. error = xfs_iflush_int(iq, bp);
  2804. if (error) {
  2805. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2806. goto cluster_corrupt_out;
  2807. }
  2808. clcount++;
  2809. } else {
  2810. xfs_ifunlock(iq);
  2811. }
  2812. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2813. }
  2814. if (clcount) {
  2815. XFS_STATS_INC(xs_icluster_flushcnt);
  2816. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2817. }
  2818. out_free:
  2819. read_unlock(&pag->pag_ici_lock);
  2820. kmem_free(ilist);
  2821. return 0;
  2822. cluster_corrupt_out:
  2823. /*
  2824. * Corruption detected in the clustering loop. Invalidate the
  2825. * inode buffer and shut down the filesystem.
  2826. */
  2827. read_unlock(&pag->pag_ici_lock);
  2828. /*
  2829. * Clean up the buffer. If it was B_DELWRI, just release it --
  2830. * brelse can handle it with no problems. If not, shut down the
  2831. * filesystem before releasing the buffer.
  2832. */
  2833. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2834. if (bufwasdelwri)
  2835. xfs_buf_relse(bp);
  2836. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2837. if (!bufwasdelwri) {
  2838. /*
  2839. * Just like incore_relse: if we have b_iodone functions,
  2840. * mark the buffer as an error and call them. Otherwise
  2841. * mark it as stale and brelse.
  2842. */
  2843. if (XFS_BUF_IODONE_FUNC(bp)) {
  2844. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2845. XFS_BUF_UNDONE(bp);
  2846. XFS_BUF_STALE(bp);
  2847. XFS_BUF_SHUT(bp);
  2848. XFS_BUF_ERROR(bp,EIO);
  2849. xfs_biodone(bp);
  2850. } else {
  2851. XFS_BUF_STALE(bp);
  2852. xfs_buf_relse(bp);
  2853. }
  2854. }
  2855. /*
  2856. * Unlocks the flush lock
  2857. */
  2858. xfs_iflush_abort(iq);
  2859. kmem_free(ilist);
  2860. return XFS_ERROR(EFSCORRUPTED);
  2861. }
  2862. /*
  2863. * xfs_iflush() will write a modified inode's changes out to the
  2864. * inode's on disk home. The caller must have the inode lock held
  2865. * in at least shared mode and the inode flush completion must be
  2866. * active as well. The inode lock will still be held upon return from
  2867. * the call and the caller is free to unlock it.
  2868. * The inode flush will be completed when the inode reaches the disk.
  2869. * The flags indicate how the inode's buffer should be written out.
  2870. */
  2871. int
  2872. xfs_iflush(
  2873. xfs_inode_t *ip,
  2874. uint flags)
  2875. {
  2876. xfs_inode_log_item_t *iip;
  2877. xfs_buf_t *bp;
  2878. xfs_dinode_t *dip;
  2879. xfs_mount_t *mp;
  2880. int error;
  2881. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2882. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2883. XFS_STATS_INC(xs_iflush_count);
  2884. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2885. ASSERT(!completion_done(&ip->i_flush));
  2886. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2887. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2888. iip = ip->i_itemp;
  2889. mp = ip->i_mount;
  2890. /*
  2891. * If the inode isn't dirty, then just release the inode
  2892. * flush lock and do nothing.
  2893. */
  2894. if (xfs_inode_clean(ip)) {
  2895. xfs_ifunlock(ip);
  2896. return 0;
  2897. }
  2898. /*
  2899. * We can't flush the inode until it is unpinned, so wait for it if we
  2900. * are allowed to block. We know noone new can pin it, because we are
  2901. * holding the inode lock shared and you need to hold it exclusively to
  2902. * pin the inode.
  2903. *
  2904. * If we are not allowed to block, force the log out asynchronously so
  2905. * that when we come back the inode will be unpinned. If other inodes
  2906. * in the same cluster are dirty, they will probably write the inode
  2907. * out for us if they occur after the log force completes.
  2908. */
  2909. if (noblock && xfs_ipincount(ip)) {
  2910. xfs_iunpin_nowait(ip);
  2911. xfs_ifunlock(ip);
  2912. return EAGAIN;
  2913. }
  2914. xfs_iunpin_wait(ip);
  2915. /*
  2916. * This may have been unpinned because the filesystem is shutting
  2917. * down forcibly. If that's the case we must not write this inode
  2918. * to disk, because the log record didn't make it to disk!
  2919. */
  2920. if (XFS_FORCED_SHUTDOWN(mp)) {
  2921. ip->i_update_core = 0;
  2922. if (iip)
  2923. iip->ili_format.ilf_fields = 0;
  2924. xfs_ifunlock(ip);
  2925. return XFS_ERROR(EIO);
  2926. }
  2927. /*
  2928. * Decide how buffer will be flushed out. This is done before
  2929. * the call to xfs_iflush_int because this field is zeroed by it.
  2930. */
  2931. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2932. /*
  2933. * Flush out the inode buffer according to the directions
  2934. * of the caller. In the cases where the caller has given
  2935. * us a choice choose the non-delwri case. This is because
  2936. * the inode is in the AIL and we need to get it out soon.
  2937. */
  2938. switch (flags) {
  2939. case XFS_IFLUSH_SYNC:
  2940. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2941. flags = 0;
  2942. break;
  2943. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2944. case XFS_IFLUSH_ASYNC:
  2945. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2946. flags = INT_ASYNC;
  2947. break;
  2948. case XFS_IFLUSH_DELWRI:
  2949. flags = INT_DELWRI;
  2950. break;
  2951. default:
  2952. ASSERT(0);
  2953. flags = 0;
  2954. break;
  2955. }
  2956. } else {
  2957. switch (flags) {
  2958. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2959. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2960. case XFS_IFLUSH_DELWRI:
  2961. flags = INT_DELWRI;
  2962. break;
  2963. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2964. case XFS_IFLUSH_ASYNC:
  2965. flags = INT_ASYNC;
  2966. break;
  2967. case XFS_IFLUSH_SYNC:
  2968. flags = 0;
  2969. break;
  2970. default:
  2971. ASSERT(0);
  2972. flags = 0;
  2973. break;
  2974. }
  2975. }
  2976. /*
  2977. * Get the buffer containing the on-disk inode.
  2978. */
  2979. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
  2980. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2981. if (error || !bp) {
  2982. xfs_ifunlock(ip);
  2983. return error;
  2984. }
  2985. /*
  2986. * First flush out the inode that xfs_iflush was called with.
  2987. */
  2988. error = xfs_iflush_int(ip, bp);
  2989. if (error)
  2990. goto corrupt_out;
  2991. /*
  2992. * If the buffer is pinned then push on the log now so we won't
  2993. * get stuck waiting in the write for too long.
  2994. */
  2995. if (XFS_BUF_ISPINNED(bp))
  2996. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2997. /*
  2998. * inode clustering:
  2999. * see if other inodes can be gathered into this write
  3000. */
  3001. error = xfs_iflush_cluster(ip, bp);
  3002. if (error)
  3003. goto cluster_corrupt_out;
  3004. if (flags & INT_DELWRI) {
  3005. xfs_bdwrite(mp, bp);
  3006. } else if (flags & INT_ASYNC) {
  3007. error = xfs_bawrite(mp, bp);
  3008. } else {
  3009. error = xfs_bwrite(mp, bp);
  3010. }
  3011. return error;
  3012. corrupt_out:
  3013. xfs_buf_relse(bp);
  3014. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3015. cluster_corrupt_out:
  3016. /*
  3017. * Unlocks the flush lock
  3018. */
  3019. xfs_iflush_abort(ip);
  3020. return XFS_ERROR(EFSCORRUPTED);
  3021. }
  3022. STATIC int
  3023. xfs_iflush_int(
  3024. xfs_inode_t *ip,
  3025. xfs_buf_t *bp)
  3026. {
  3027. xfs_inode_log_item_t *iip;
  3028. xfs_dinode_t *dip;
  3029. xfs_mount_t *mp;
  3030. #ifdef XFS_TRANS_DEBUG
  3031. int first;
  3032. #endif
  3033. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  3034. ASSERT(!completion_done(&ip->i_flush));
  3035. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3036. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3037. iip = ip->i_itemp;
  3038. mp = ip->i_mount;
  3039. /*
  3040. * If the inode isn't dirty, then just release the inode
  3041. * flush lock and do nothing.
  3042. */
  3043. if (xfs_inode_clean(ip)) {
  3044. xfs_ifunlock(ip);
  3045. return 0;
  3046. }
  3047. /* set *dip = inode's place in the buffer */
  3048. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3049. /*
  3050. * Clear i_update_core before copying out the data.
  3051. * This is for coordination with our timestamp updates
  3052. * that don't hold the inode lock. They will always
  3053. * update the timestamps BEFORE setting i_update_core,
  3054. * so if we clear i_update_core after they set it we
  3055. * are guaranteed to see their updates to the timestamps.
  3056. * I believe that this depends on strongly ordered memory
  3057. * semantics, but we have that. We use the SYNCHRONIZE
  3058. * macro to make sure that the compiler does not reorder
  3059. * the i_update_core access below the data copy below.
  3060. */
  3061. ip->i_update_core = 0;
  3062. SYNCHRONIZE();
  3063. /*
  3064. * Make sure to get the latest atime from the Linux inode.
  3065. */
  3066. xfs_synchronize_atime(ip);
  3067. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3068. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3069. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3070. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3071. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3072. goto corrupt_out;
  3073. }
  3074. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3075. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3076. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3077. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3078. ip->i_ino, ip, ip->i_d.di_magic);
  3079. goto corrupt_out;
  3080. }
  3081. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3082. if (XFS_TEST_ERROR(
  3083. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3084. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3085. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3086. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3087. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3088. ip->i_ino, ip);
  3089. goto corrupt_out;
  3090. }
  3091. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3092. if (XFS_TEST_ERROR(
  3093. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3094. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3095. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3096. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3097. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3098. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3099. ip->i_ino, ip);
  3100. goto corrupt_out;
  3101. }
  3102. }
  3103. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3104. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3105. XFS_RANDOM_IFLUSH_5)) {
  3106. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3107. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3108. ip->i_ino,
  3109. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3110. ip->i_d.di_nblocks,
  3111. ip);
  3112. goto corrupt_out;
  3113. }
  3114. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3115. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3116. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3117. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3118. ip->i_ino, ip->i_d.di_forkoff, ip);
  3119. goto corrupt_out;
  3120. }
  3121. /*
  3122. * bump the flush iteration count, used to detect flushes which
  3123. * postdate a log record during recovery.
  3124. */
  3125. ip->i_d.di_flushiter++;
  3126. /*
  3127. * Copy the dirty parts of the inode into the on-disk
  3128. * inode. We always copy out the core of the inode,
  3129. * because if the inode is dirty at all the core must
  3130. * be.
  3131. */
  3132. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3133. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3134. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3135. ip->i_d.di_flushiter = 0;
  3136. /*
  3137. * If this is really an old format inode and the superblock version
  3138. * has not been updated to support only new format inodes, then
  3139. * convert back to the old inode format. If the superblock version
  3140. * has been updated, then make the conversion permanent.
  3141. */
  3142. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3143. xfs_sb_version_hasnlink(&mp->m_sb));
  3144. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3145. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  3146. /*
  3147. * Convert it back.
  3148. */
  3149. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3150. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3151. } else {
  3152. /*
  3153. * The superblock version has already been bumped,
  3154. * so just make the conversion to the new inode
  3155. * format permanent.
  3156. */
  3157. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3158. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3159. ip->i_d.di_onlink = 0;
  3160. dip->di_core.di_onlink = 0;
  3161. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3162. memset(&(dip->di_core.di_pad[0]), 0,
  3163. sizeof(dip->di_core.di_pad));
  3164. ASSERT(ip->i_d.di_projid == 0);
  3165. }
  3166. }
  3167. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  3168. if (XFS_IFORK_Q(ip))
  3169. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3170. xfs_inobp_check(mp, bp);
  3171. /*
  3172. * We've recorded everything logged in the inode, so we'd
  3173. * like to clear the ilf_fields bits so we don't log and
  3174. * flush things unnecessarily. However, we can't stop
  3175. * logging all this information until the data we've copied
  3176. * into the disk buffer is written to disk. If we did we might
  3177. * overwrite the copy of the inode in the log with all the
  3178. * data after re-logging only part of it, and in the face of
  3179. * a crash we wouldn't have all the data we need to recover.
  3180. *
  3181. * What we do is move the bits to the ili_last_fields field.
  3182. * When logging the inode, these bits are moved back to the
  3183. * ilf_fields field. In the xfs_iflush_done() routine we
  3184. * clear ili_last_fields, since we know that the information
  3185. * those bits represent is permanently on disk. As long as
  3186. * the flush completes before the inode is logged again, then
  3187. * both ilf_fields and ili_last_fields will be cleared.
  3188. *
  3189. * We can play with the ilf_fields bits here, because the inode
  3190. * lock must be held exclusively in order to set bits there
  3191. * and the flush lock protects the ili_last_fields bits.
  3192. * Set ili_logged so the flush done
  3193. * routine can tell whether or not to look in the AIL.
  3194. * Also, store the current LSN of the inode so that we can tell
  3195. * whether the item has moved in the AIL from xfs_iflush_done().
  3196. * In order to read the lsn we need the AIL lock, because
  3197. * it is a 64 bit value that cannot be read atomically.
  3198. */
  3199. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3200. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3201. iip->ili_format.ilf_fields = 0;
  3202. iip->ili_logged = 1;
  3203. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3204. spin_lock(&mp->m_ail_lock);
  3205. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3206. spin_unlock(&mp->m_ail_lock);
  3207. /*
  3208. * Attach the function xfs_iflush_done to the inode's
  3209. * buffer. This will remove the inode from the AIL
  3210. * and unlock the inode's flush lock when the inode is
  3211. * completely written to disk.
  3212. */
  3213. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3214. xfs_iflush_done, (xfs_log_item_t *)iip);
  3215. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3216. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3217. } else {
  3218. /*
  3219. * We're flushing an inode which is not in the AIL and has
  3220. * not been logged but has i_update_core set. For this
  3221. * case we can use a B_DELWRI flush and immediately drop
  3222. * the inode flush lock because we can avoid the whole
  3223. * AIL state thing. It's OK to drop the flush lock now,
  3224. * because we've already locked the buffer and to do anything
  3225. * you really need both.
  3226. */
  3227. if (iip != NULL) {
  3228. ASSERT(iip->ili_logged == 0);
  3229. ASSERT(iip->ili_last_fields == 0);
  3230. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3231. }
  3232. xfs_ifunlock(ip);
  3233. }
  3234. return 0;
  3235. corrupt_out:
  3236. return XFS_ERROR(EFSCORRUPTED);
  3237. }
  3238. /*
  3239. * Flush all inactive inodes in mp.
  3240. */
  3241. void
  3242. xfs_iflush_all(
  3243. xfs_mount_t *mp)
  3244. {
  3245. xfs_inode_t *ip;
  3246. again:
  3247. XFS_MOUNT_ILOCK(mp);
  3248. ip = mp->m_inodes;
  3249. if (ip == NULL)
  3250. goto out;
  3251. do {
  3252. /* Make sure we skip markers inserted by sync */
  3253. if (ip->i_mount == NULL) {
  3254. ip = ip->i_mnext;
  3255. continue;
  3256. }
  3257. if (!VFS_I(ip)) {
  3258. XFS_MOUNT_IUNLOCK(mp);
  3259. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3260. goto again;
  3261. }
  3262. ASSERT(vn_count(VFS_I(ip)) == 0);
  3263. ip = ip->i_mnext;
  3264. } while (ip != mp->m_inodes);
  3265. out:
  3266. XFS_MOUNT_IUNLOCK(mp);
  3267. }
  3268. #ifdef XFS_ILOCK_TRACE
  3269. ktrace_t *xfs_ilock_trace_buf;
  3270. void
  3271. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3272. {
  3273. ktrace_enter(ip->i_lock_trace,
  3274. (void *)ip,
  3275. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3276. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3277. (void *)ra, /* caller of ilock */
  3278. (void *)(unsigned long)current_cpu(),
  3279. (void *)(unsigned long)current_pid(),
  3280. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3281. }
  3282. #endif
  3283. /*
  3284. * Return a pointer to the extent record at file index idx.
  3285. */
  3286. xfs_bmbt_rec_host_t *
  3287. xfs_iext_get_ext(
  3288. xfs_ifork_t *ifp, /* inode fork pointer */
  3289. xfs_extnum_t idx) /* index of target extent */
  3290. {
  3291. ASSERT(idx >= 0);
  3292. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3293. return ifp->if_u1.if_ext_irec->er_extbuf;
  3294. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3295. xfs_ext_irec_t *erp; /* irec pointer */
  3296. int erp_idx = 0; /* irec index */
  3297. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3298. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3299. return &erp->er_extbuf[page_idx];
  3300. } else if (ifp->if_bytes) {
  3301. return &ifp->if_u1.if_extents[idx];
  3302. } else {
  3303. return NULL;
  3304. }
  3305. }
  3306. /*
  3307. * Insert new item(s) into the extent records for incore inode
  3308. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3309. */
  3310. void
  3311. xfs_iext_insert(
  3312. xfs_ifork_t *ifp, /* inode fork pointer */
  3313. xfs_extnum_t idx, /* starting index of new items */
  3314. xfs_extnum_t count, /* number of inserted items */
  3315. xfs_bmbt_irec_t *new) /* items to insert */
  3316. {
  3317. xfs_extnum_t i; /* extent record index */
  3318. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3319. xfs_iext_add(ifp, idx, count);
  3320. for (i = idx; i < idx + count; i++, new++)
  3321. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3322. }
  3323. /*
  3324. * This is called when the amount of space required for incore file
  3325. * extents needs to be increased. The ext_diff parameter stores the
  3326. * number of new extents being added and the idx parameter contains
  3327. * the extent index where the new extents will be added. If the new
  3328. * extents are being appended, then we just need to (re)allocate and
  3329. * initialize the space. Otherwise, if the new extents are being
  3330. * inserted into the middle of the existing entries, a bit more work
  3331. * is required to make room for the new extents to be inserted. The
  3332. * caller is responsible for filling in the new extent entries upon
  3333. * return.
  3334. */
  3335. void
  3336. xfs_iext_add(
  3337. xfs_ifork_t *ifp, /* inode fork pointer */
  3338. xfs_extnum_t idx, /* index to begin adding exts */
  3339. int ext_diff) /* number of extents to add */
  3340. {
  3341. int byte_diff; /* new bytes being added */
  3342. int new_size; /* size of extents after adding */
  3343. xfs_extnum_t nextents; /* number of extents in file */
  3344. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3345. ASSERT((idx >= 0) && (idx <= nextents));
  3346. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3347. new_size = ifp->if_bytes + byte_diff;
  3348. /*
  3349. * If the new number of extents (nextents + ext_diff)
  3350. * fits inside the inode, then continue to use the inline
  3351. * extent buffer.
  3352. */
  3353. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3354. if (idx < nextents) {
  3355. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3356. &ifp->if_u2.if_inline_ext[idx],
  3357. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3358. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3359. }
  3360. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3361. ifp->if_real_bytes = 0;
  3362. ifp->if_lastex = nextents + ext_diff;
  3363. }
  3364. /*
  3365. * Otherwise use a linear (direct) extent list.
  3366. * If the extents are currently inside the inode,
  3367. * xfs_iext_realloc_direct will switch us from
  3368. * inline to direct extent allocation mode.
  3369. */
  3370. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3371. xfs_iext_realloc_direct(ifp, new_size);
  3372. if (idx < nextents) {
  3373. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3374. &ifp->if_u1.if_extents[idx],
  3375. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3376. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3377. }
  3378. }
  3379. /* Indirection array */
  3380. else {
  3381. xfs_ext_irec_t *erp;
  3382. int erp_idx = 0;
  3383. int page_idx = idx;
  3384. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3385. if (ifp->if_flags & XFS_IFEXTIREC) {
  3386. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3387. } else {
  3388. xfs_iext_irec_init(ifp);
  3389. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3390. erp = ifp->if_u1.if_ext_irec;
  3391. }
  3392. /* Extents fit in target extent page */
  3393. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3394. if (page_idx < erp->er_extcount) {
  3395. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3396. &erp->er_extbuf[page_idx],
  3397. (erp->er_extcount - page_idx) *
  3398. sizeof(xfs_bmbt_rec_t));
  3399. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3400. }
  3401. erp->er_extcount += ext_diff;
  3402. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3403. }
  3404. /* Insert a new extent page */
  3405. else if (erp) {
  3406. xfs_iext_add_indirect_multi(ifp,
  3407. erp_idx, page_idx, ext_diff);
  3408. }
  3409. /*
  3410. * If extent(s) are being appended to the last page in
  3411. * the indirection array and the new extent(s) don't fit
  3412. * in the page, then erp is NULL and erp_idx is set to
  3413. * the next index needed in the indirection array.
  3414. */
  3415. else {
  3416. int count = ext_diff;
  3417. while (count) {
  3418. erp = xfs_iext_irec_new(ifp, erp_idx);
  3419. erp->er_extcount = count;
  3420. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3421. if (count) {
  3422. erp_idx++;
  3423. }
  3424. }
  3425. }
  3426. }
  3427. ifp->if_bytes = new_size;
  3428. }
  3429. /*
  3430. * This is called when incore extents are being added to the indirection
  3431. * array and the new extents do not fit in the target extent list. The
  3432. * erp_idx parameter contains the irec index for the target extent list
  3433. * in the indirection array, and the idx parameter contains the extent
  3434. * index within the list. The number of extents being added is stored
  3435. * in the count parameter.
  3436. *
  3437. * |-------| |-------|
  3438. * | | | | idx - number of extents before idx
  3439. * | idx | | count |
  3440. * | | | | count - number of extents being inserted at idx
  3441. * |-------| |-------|
  3442. * | count | | nex2 | nex2 - number of extents after idx + count
  3443. * |-------| |-------|
  3444. */
  3445. void
  3446. xfs_iext_add_indirect_multi(
  3447. xfs_ifork_t *ifp, /* inode fork pointer */
  3448. int erp_idx, /* target extent irec index */
  3449. xfs_extnum_t idx, /* index within target list */
  3450. int count) /* new extents being added */
  3451. {
  3452. int byte_diff; /* new bytes being added */
  3453. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3454. xfs_extnum_t ext_diff; /* number of extents to add */
  3455. xfs_extnum_t ext_cnt; /* new extents still needed */
  3456. xfs_extnum_t nex2; /* extents after idx + count */
  3457. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3458. int nlists; /* number of irec's (lists) */
  3459. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3460. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3461. nex2 = erp->er_extcount - idx;
  3462. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3463. /*
  3464. * Save second part of target extent list
  3465. * (all extents past */
  3466. if (nex2) {
  3467. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3468. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3469. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3470. erp->er_extcount -= nex2;
  3471. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3472. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3473. }
  3474. /*
  3475. * Add the new extents to the end of the target
  3476. * list, then allocate new irec record(s) and
  3477. * extent buffer(s) as needed to store the rest
  3478. * of the new extents.
  3479. */
  3480. ext_cnt = count;
  3481. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3482. if (ext_diff) {
  3483. erp->er_extcount += ext_diff;
  3484. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3485. ext_cnt -= ext_diff;
  3486. }
  3487. while (ext_cnt) {
  3488. erp_idx++;
  3489. erp = xfs_iext_irec_new(ifp, erp_idx);
  3490. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3491. erp->er_extcount = ext_diff;
  3492. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3493. ext_cnt -= ext_diff;
  3494. }
  3495. /* Add nex2 extents back to indirection array */
  3496. if (nex2) {
  3497. xfs_extnum_t ext_avail;
  3498. int i;
  3499. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3500. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3501. i = 0;
  3502. /*
  3503. * If nex2 extents fit in the current page, append
  3504. * nex2_ep after the new extents.
  3505. */
  3506. if (nex2 <= ext_avail) {
  3507. i = erp->er_extcount;
  3508. }
  3509. /*
  3510. * Otherwise, check if space is available in the
  3511. * next page.
  3512. */
  3513. else if ((erp_idx < nlists - 1) &&
  3514. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3515. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3516. erp_idx++;
  3517. erp++;
  3518. /* Create a hole for nex2 extents */
  3519. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3520. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3521. }
  3522. /*
  3523. * Final choice, create a new extent page for
  3524. * nex2 extents.
  3525. */
  3526. else {
  3527. erp_idx++;
  3528. erp = xfs_iext_irec_new(ifp, erp_idx);
  3529. }
  3530. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3531. kmem_free(nex2_ep);
  3532. erp->er_extcount += nex2;
  3533. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3534. }
  3535. }
  3536. /*
  3537. * This is called when the amount of space required for incore file
  3538. * extents needs to be decreased. The ext_diff parameter stores the
  3539. * number of extents to be removed and the idx parameter contains
  3540. * the extent index where the extents will be removed from.
  3541. *
  3542. * If the amount of space needed has decreased below the linear
  3543. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3544. * extent array. Otherwise, use kmem_realloc() to adjust the
  3545. * size to what is needed.
  3546. */
  3547. void
  3548. xfs_iext_remove(
  3549. xfs_ifork_t *ifp, /* inode fork pointer */
  3550. xfs_extnum_t idx, /* index to begin removing exts */
  3551. int ext_diff) /* number of extents to remove */
  3552. {
  3553. xfs_extnum_t nextents; /* number of extents in file */
  3554. int new_size; /* size of extents after removal */
  3555. ASSERT(ext_diff > 0);
  3556. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3557. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3558. if (new_size == 0) {
  3559. xfs_iext_destroy(ifp);
  3560. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3561. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3562. } else if (ifp->if_real_bytes) {
  3563. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3564. } else {
  3565. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3566. }
  3567. ifp->if_bytes = new_size;
  3568. }
  3569. /*
  3570. * This removes ext_diff extents from the inline buffer, beginning
  3571. * at extent index idx.
  3572. */
  3573. void
  3574. xfs_iext_remove_inline(
  3575. xfs_ifork_t *ifp, /* inode fork pointer */
  3576. xfs_extnum_t idx, /* index to begin removing exts */
  3577. int ext_diff) /* number of extents to remove */
  3578. {
  3579. int nextents; /* number of extents in file */
  3580. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3581. ASSERT(idx < XFS_INLINE_EXTS);
  3582. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3583. ASSERT(((nextents - ext_diff) > 0) &&
  3584. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3585. if (idx + ext_diff < nextents) {
  3586. memmove(&ifp->if_u2.if_inline_ext[idx],
  3587. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3588. (nextents - (idx + ext_diff)) *
  3589. sizeof(xfs_bmbt_rec_t));
  3590. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3591. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3592. } else {
  3593. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3594. ext_diff * sizeof(xfs_bmbt_rec_t));
  3595. }
  3596. }
  3597. /*
  3598. * This removes ext_diff extents from a linear (direct) extent list,
  3599. * beginning at extent index idx. If the extents are being removed
  3600. * from the end of the list (ie. truncate) then we just need to re-
  3601. * allocate the list to remove the extra space. Otherwise, if the
  3602. * extents are being removed from the middle of the existing extent
  3603. * entries, then we first need to move the extent records beginning
  3604. * at idx + ext_diff up in the list to overwrite the records being
  3605. * removed, then remove the extra space via kmem_realloc.
  3606. */
  3607. void
  3608. xfs_iext_remove_direct(
  3609. xfs_ifork_t *ifp, /* inode fork pointer */
  3610. xfs_extnum_t idx, /* index to begin removing exts */
  3611. int ext_diff) /* number of extents to remove */
  3612. {
  3613. xfs_extnum_t nextents; /* number of extents in file */
  3614. int new_size; /* size of extents after removal */
  3615. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3616. new_size = ifp->if_bytes -
  3617. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3618. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3619. if (new_size == 0) {
  3620. xfs_iext_destroy(ifp);
  3621. return;
  3622. }
  3623. /* Move extents up in the list (if needed) */
  3624. if (idx + ext_diff < nextents) {
  3625. memmove(&ifp->if_u1.if_extents[idx],
  3626. &ifp->if_u1.if_extents[idx + ext_diff],
  3627. (nextents - (idx + ext_diff)) *
  3628. sizeof(xfs_bmbt_rec_t));
  3629. }
  3630. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3631. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3632. /*
  3633. * Reallocate the direct extent list. If the extents
  3634. * will fit inside the inode then xfs_iext_realloc_direct
  3635. * will switch from direct to inline extent allocation
  3636. * mode for us.
  3637. */
  3638. xfs_iext_realloc_direct(ifp, new_size);
  3639. ifp->if_bytes = new_size;
  3640. }
  3641. /*
  3642. * This is called when incore extents are being removed from the
  3643. * indirection array and the extents being removed span multiple extent
  3644. * buffers. The idx parameter contains the file extent index where we
  3645. * want to begin removing extents, and the count parameter contains
  3646. * how many extents need to be removed.
  3647. *
  3648. * |-------| |-------|
  3649. * | nex1 | | | nex1 - number of extents before idx
  3650. * |-------| | count |
  3651. * | | | | count - number of extents being removed at idx
  3652. * | count | |-------|
  3653. * | | | nex2 | nex2 - number of extents after idx + count
  3654. * |-------| |-------|
  3655. */
  3656. void
  3657. xfs_iext_remove_indirect(
  3658. xfs_ifork_t *ifp, /* inode fork pointer */
  3659. xfs_extnum_t idx, /* index to begin removing extents */
  3660. int count) /* number of extents to remove */
  3661. {
  3662. xfs_ext_irec_t *erp; /* indirection array pointer */
  3663. int erp_idx = 0; /* indirection array index */
  3664. xfs_extnum_t ext_cnt; /* extents left to remove */
  3665. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3666. xfs_extnum_t nex1; /* number of extents before idx */
  3667. xfs_extnum_t nex2; /* extents after idx + count */
  3668. int nlists; /* entries in indirection array */
  3669. int page_idx = idx; /* index in target extent list */
  3670. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3671. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3672. ASSERT(erp != NULL);
  3673. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3674. nex1 = page_idx;
  3675. ext_cnt = count;
  3676. while (ext_cnt) {
  3677. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3678. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3679. /*
  3680. * Check for deletion of entire list;
  3681. * xfs_iext_irec_remove() updates extent offsets.
  3682. */
  3683. if (ext_diff == erp->er_extcount) {
  3684. xfs_iext_irec_remove(ifp, erp_idx);
  3685. ext_cnt -= ext_diff;
  3686. nex1 = 0;
  3687. if (ext_cnt) {
  3688. ASSERT(erp_idx < ifp->if_real_bytes /
  3689. XFS_IEXT_BUFSZ);
  3690. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3691. nex1 = 0;
  3692. continue;
  3693. } else {
  3694. break;
  3695. }
  3696. }
  3697. /* Move extents up (if needed) */
  3698. if (nex2) {
  3699. memmove(&erp->er_extbuf[nex1],
  3700. &erp->er_extbuf[nex1 + ext_diff],
  3701. nex2 * sizeof(xfs_bmbt_rec_t));
  3702. }
  3703. /* Zero out rest of page */
  3704. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3705. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3706. /* Update remaining counters */
  3707. erp->er_extcount -= ext_diff;
  3708. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3709. ext_cnt -= ext_diff;
  3710. nex1 = 0;
  3711. erp_idx++;
  3712. erp++;
  3713. }
  3714. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3715. xfs_iext_irec_compact(ifp);
  3716. }
  3717. /*
  3718. * Create, destroy, or resize a linear (direct) block of extents.
  3719. */
  3720. void
  3721. xfs_iext_realloc_direct(
  3722. xfs_ifork_t *ifp, /* inode fork pointer */
  3723. int new_size) /* new size of extents */
  3724. {
  3725. int rnew_size; /* real new size of extents */
  3726. rnew_size = new_size;
  3727. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3728. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3729. (new_size != ifp->if_real_bytes)));
  3730. /* Free extent records */
  3731. if (new_size == 0) {
  3732. xfs_iext_destroy(ifp);
  3733. }
  3734. /* Resize direct extent list and zero any new bytes */
  3735. else if (ifp->if_real_bytes) {
  3736. /* Check if extents will fit inside the inode */
  3737. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3738. xfs_iext_direct_to_inline(ifp, new_size /
  3739. (uint)sizeof(xfs_bmbt_rec_t));
  3740. ifp->if_bytes = new_size;
  3741. return;
  3742. }
  3743. if (!is_power_of_2(new_size)){
  3744. rnew_size = roundup_pow_of_two(new_size);
  3745. }
  3746. if (rnew_size != ifp->if_real_bytes) {
  3747. ifp->if_u1.if_extents =
  3748. kmem_realloc(ifp->if_u1.if_extents,
  3749. rnew_size,
  3750. ifp->if_real_bytes, KM_NOFS);
  3751. }
  3752. if (rnew_size > ifp->if_real_bytes) {
  3753. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3754. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3755. rnew_size - ifp->if_real_bytes);
  3756. }
  3757. }
  3758. /*
  3759. * Switch from the inline extent buffer to a direct
  3760. * extent list. Be sure to include the inline extent
  3761. * bytes in new_size.
  3762. */
  3763. else {
  3764. new_size += ifp->if_bytes;
  3765. if (!is_power_of_2(new_size)) {
  3766. rnew_size = roundup_pow_of_two(new_size);
  3767. }
  3768. xfs_iext_inline_to_direct(ifp, rnew_size);
  3769. }
  3770. ifp->if_real_bytes = rnew_size;
  3771. ifp->if_bytes = new_size;
  3772. }
  3773. /*
  3774. * Switch from linear (direct) extent records to inline buffer.
  3775. */
  3776. void
  3777. xfs_iext_direct_to_inline(
  3778. xfs_ifork_t *ifp, /* inode fork pointer */
  3779. xfs_extnum_t nextents) /* number of extents in file */
  3780. {
  3781. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3782. ASSERT(nextents <= XFS_INLINE_EXTS);
  3783. /*
  3784. * The inline buffer was zeroed when we switched
  3785. * from inline to direct extent allocation mode,
  3786. * so we don't need to clear it here.
  3787. */
  3788. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3789. nextents * sizeof(xfs_bmbt_rec_t));
  3790. kmem_free(ifp->if_u1.if_extents);
  3791. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3792. ifp->if_real_bytes = 0;
  3793. }
  3794. /*
  3795. * Switch from inline buffer to linear (direct) extent records.
  3796. * new_size should already be rounded up to the next power of 2
  3797. * by the caller (when appropriate), so use new_size as it is.
  3798. * However, since new_size may be rounded up, we can't update
  3799. * if_bytes here. It is the caller's responsibility to update
  3800. * if_bytes upon return.
  3801. */
  3802. void
  3803. xfs_iext_inline_to_direct(
  3804. xfs_ifork_t *ifp, /* inode fork pointer */
  3805. int new_size) /* number of extents in file */
  3806. {
  3807. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3808. memset(ifp->if_u1.if_extents, 0, new_size);
  3809. if (ifp->if_bytes) {
  3810. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3811. ifp->if_bytes);
  3812. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3813. sizeof(xfs_bmbt_rec_t));
  3814. }
  3815. ifp->if_real_bytes = new_size;
  3816. }
  3817. /*
  3818. * Resize an extent indirection array to new_size bytes.
  3819. */
  3820. void
  3821. xfs_iext_realloc_indirect(
  3822. xfs_ifork_t *ifp, /* inode fork pointer */
  3823. int new_size) /* new indirection array size */
  3824. {
  3825. int nlists; /* number of irec's (ex lists) */
  3826. int size; /* current indirection array size */
  3827. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3828. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3829. size = nlists * sizeof(xfs_ext_irec_t);
  3830. ASSERT(ifp->if_real_bytes);
  3831. ASSERT((new_size >= 0) && (new_size != size));
  3832. if (new_size == 0) {
  3833. xfs_iext_destroy(ifp);
  3834. } else {
  3835. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3836. kmem_realloc(ifp->if_u1.if_ext_irec,
  3837. new_size, size, KM_NOFS);
  3838. }
  3839. }
  3840. /*
  3841. * Switch from indirection array to linear (direct) extent allocations.
  3842. */
  3843. void
  3844. xfs_iext_indirect_to_direct(
  3845. xfs_ifork_t *ifp) /* inode fork pointer */
  3846. {
  3847. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3848. xfs_extnum_t nextents; /* number of extents in file */
  3849. int size; /* size of file extents */
  3850. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3851. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3852. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3853. size = nextents * sizeof(xfs_bmbt_rec_t);
  3854. xfs_iext_irec_compact_pages(ifp);
  3855. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3856. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3857. kmem_free(ifp->if_u1.if_ext_irec);
  3858. ifp->if_flags &= ~XFS_IFEXTIREC;
  3859. ifp->if_u1.if_extents = ep;
  3860. ifp->if_bytes = size;
  3861. if (nextents < XFS_LINEAR_EXTS) {
  3862. xfs_iext_realloc_direct(ifp, size);
  3863. }
  3864. }
  3865. /*
  3866. * Free incore file extents.
  3867. */
  3868. void
  3869. xfs_iext_destroy(
  3870. xfs_ifork_t *ifp) /* inode fork pointer */
  3871. {
  3872. if (ifp->if_flags & XFS_IFEXTIREC) {
  3873. int erp_idx;
  3874. int nlists;
  3875. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3876. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3877. xfs_iext_irec_remove(ifp, erp_idx);
  3878. }
  3879. ifp->if_flags &= ~XFS_IFEXTIREC;
  3880. } else if (ifp->if_real_bytes) {
  3881. kmem_free(ifp->if_u1.if_extents);
  3882. } else if (ifp->if_bytes) {
  3883. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3884. sizeof(xfs_bmbt_rec_t));
  3885. }
  3886. ifp->if_u1.if_extents = NULL;
  3887. ifp->if_real_bytes = 0;
  3888. ifp->if_bytes = 0;
  3889. }
  3890. /*
  3891. * Return a pointer to the extent record for file system block bno.
  3892. */
  3893. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3894. xfs_iext_bno_to_ext(
  3895. xfs_ifork_t *ifp, /* inode fork pointer */
  3896. xfs_fileoff_t bno, /* block number to search for */
  3897. xfs_extnum_t *idxp) /* index of target extent */
  3898. {
  3899. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3900. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3901. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3902. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3903. int high; /* upper boundary in search */
  3904. xfs_extnum_t idx = 0; /* index of target extent */
  3905. int low; /* lower boundary in search */
  3906. xfs_extnum_t nextents; /* number of file extents */
  3907. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3908. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3909. if (nextents == 0) {
  3910. *idxp = 0;
  3911. return NULL;
  3912. }
  3913. low = 0;
  3914. if (ifp->if_flags & XFS_IFEXTIREC) {
  3915. /* Find target extent list */
  3916. int erp_idx = 0;
  3917. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3918. base = erp->er_extbuf;
  3919. high = erp->er_extcount - 1;
  3920. } else {
  3921. base = ifp->if_u1.if_extents;
  3922. high = nextents - 1;
  3923. }
  3924. /* Binary search extent records */
  3925. while (low <= high) {
  3926. idx = (low + high) >> 1;
  3927. ep = base + idx;
  3928. startoff = xfs_bmbt_get_startoff(ep);
  3929. blockcount = xfs_bmbt_get_blockcount(ep);
  3930. if (bno < startoff) {
  3931. high = idx - 1;
  3932. } else if (bno >= startoff + blockcount) {
  3933. low = idx + 1;
  3934. } else {
  3935. /* Convert back to file-based extent index */
  3936. if (ifp->if_flags & XFS_IFEXTIREC) {
  3937. idx += erp->er_extoff;
  3938. }
  3939. *idxp = idx;
  3940. return ep;
  3941. }
  3942. }
  3943. /* Convert back to file-based extent index */
  3944. if (ifp->if_flags & XFS_IFEXTIREC) {
  3945. idx += erp->er_extoff;
  3946. }
  3947. if (bno >= startoff + blockcount) {
  3948. if (++idx == nextents) {
  3949. ep = NULL;
  3950. } else {
  3951. ep = xfs_iext_get_ext(ifp, idx);
  3952. }
  3953. }
  3954. *idxp = idx;
  3955. return ep;
  3956. }
  3957. /*
  3958. * Return a pointer to the indirection array entry containing the
  3959. * extent record for filesystem block bno. Store the index of the
  3960. * target irec in *erp_idxp.
  3961. */
  3962. xfs_ext_irec_t * /* pointer to found extent record */
  3963. xfs_iext_bno_to_irec(
  3964. xfs_ifork_t *ifp, /* inode fork pointer */
  3965. xfs_fileoff_t bno, /* block number to search for */
  3966. int *erp_idxp) /* irec index of target ext list */
  3967. {
  3968. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3969. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3970. int erp_idx; /* indirection array index */
  3971. int nlists; /* number of extent irec's (lists) */
  3972. int high; /* binary search upper limit */
  3973. int low; /* binary search lower limit */
  3974. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3975. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3976. erp_idx = 0;
  3977. low = 0;
  3978. high = nlists - 1;
  3979. while (low <= high) {
  3980. erp_idx = (low + high) >> 1;
  3981. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3982. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3983. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3984. high = erp_idx - 1;
  3985. } else if (erp_next && bno >=
  3986. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3987. low = erp_idx + 1;
  3988. } else {
  3989. break;
  3990. }
  3991. }
  3992. *erp_idxp = erp_idx;
  3993. return erp;
  3994. }
  3995. /*
  3996. * Return a pointer to the indirection array entry containing the
  3997. * extent record at file extent index *idxp. Store the index of the
  3998. * target irec in *erp_idxp and store the page index of the target
  3999. * extent record in *idxp.
  4000. */
  4001. xfs_ext_irec_t *
  4002. xfs_iext_idx_to_irec(
  4003. xfs_ifork_t *ifp, /* inode fork pointer */
  4004. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4005. int *erp_idxp, /* pointer to target irec */
  4006. int realloc) /* new bytes were just added */
  4007. {
  4008. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4009. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4010. int erp_idx; /* indirection array index */
  4011. int nlists; /* number of irec's (ex lists) */
  4012. int high; /* binary search upper limit */
  4013. int low; /* binary search lower limit */
  4014. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4015. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4016. ASSERT(page_idx >= 0 && page_idx <=
  4017. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4018. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4019. erp_idx = 0;
  4020. low = 0;
  4021. high = nlists - 1;
  4022. /* Binary search extent irec's */
  4023. while (low <= high) {
  4024. erp_idx = (low + high) >> 1;
  4025. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4026. prev = erp_idx > 0 ? erp - 1 : NULL;
  4027. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4028. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4029. high = erp_idx - 1;
  4030. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4031. (page_idx == erp->er_extoff + erp->er_extcount &&
  4032. !realloc)) {
  4033. low = erp_idx + 1;
  4034. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4035. erp->er_extcount == XFS_LINEAR_EXTS) {
  4036. ASSERT(realloc);
  4037. page_idx = 0;
  4038. erp_idx++;
  4039. erp = erp_idx < nlists ? erp + 1 : NULL;
  4040. break;
  4041. } else {
  4042. page_idx -= erp->er_extoff;
  4043. break;
  4044. }
  4045. }
  4046. *idxp = page_idx;
  4047. *erp_idxp = erp_idx;
  4048. return(erp);
  4049. }
  4050. /*
  4051. * Allocate and initialize an indirection array once the space needed
  4052. * for incore extents increases above XFS_IEXT_BUFSZ.
  4053. */
  4054. void
  4055. xfs_iext_irec_init(
  4056. xfs_ifork_t *ifp) /* inode fork pointer */
  4057. {
  4058. xfs_ext_irec_t *erp; /* indirection array pointer */
  4059. xfs_extnum_t nextents; /* number of extents in file */
  4060. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4061. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4062. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4063. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  4064. if (nextents == 0) {
  4065. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4066. } else if (!ifp->if_real_bytes) {
  4067. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4068. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4069. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4070. }
  4071. erp->er_extbuf = ifp->if_u1.if_extents;
  4072. erp->er_extcount = nextents;
  4073. erp->er_extoff = 0;
  4074. ifp->if_flags |= XFS_IFEXTIREC;
  4075. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4076. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4077. ifp->if_u1.if_ext_irec = erp;
  4078. return;
  4079. }
  4080. /*
  4081. * Allocate and initialize a new entry in the indirection array.
  4082. */
  4083. xfs_ext_irec_t *
  4084. xfs_iext_irec_new(
  4085. xfs_ifork_t *ifp, /* inode fork pointer */
  4086. int erp_idx) /* index for new irec */
  4087. {
  4088. xfs_ext_irec_t *erp; /* indirection array pointer */
  4089. int i; /* loop counter */
  4090. int nlists; /* number of irec's (ex lists) */
  4091. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4092. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4093. /* Resize indirection array */
  4094. xfs_iext_realloc_indirect(ifp, ++nlists *
  4095. sizeof(xfs_ext_irec_t));
  4096. /*
  4097. * Move records down in the array so the
  4098. * new page can use erp_idx.
  4099. */
  4100. erp = ifp->if_u1.if_ext_irec;
  4101. for (i = nlists - 1; i > erp_idx; i--) {
  4102. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4103. }
  4104. ASSERT(i == erp_idx);
  4105. /* Initialize new extent record */
  4106. erp = ifp->if_u1.if_ext_irec;
  4107. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4108. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4109. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4110. erp[erp_idx].er_extcount = 0;
  4111. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4112. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4113. return (&erp[erp_idx]);
  4114. }
  4115. /*
  4116. * Remove a record from the indirection array.
  4117. */
  4118. void
  4119. xfs_iext_irec_remove(
  4120. xfs_ifork_t *ifp, /* inode fork pointer */
  4121. int erp_idx) /* irec index to remove */
  4122. {
  4123. xfs_ext_irec_t *erp; /* indirection array pointer */
  4124. int i; /* loop counter */
  4125. int nlists; /* number of irec's (ex lists) */
  4126. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4127. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4128. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4129. if (erp->er_extbuf) {
  4130. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4131. -erp->er_extcount);
  4132. kmem_free(erp->er_extbuf);
  4133. }
  4134. /* Compact extent records */
  4135. erp = ifp->if_u1.if_ext_irec;
  4136. for (i = erp_idx; i < nlists - 1; i++) {
  4137. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4138. }
  4139. /*
  4140. * Manually free the last extent record from the indirection
  4141. * array. A call to xfs_iext_realloc_indirect() with a size
  4142. * of zero would result in a call to xfs_iext_destroy() which
  4143. * would in turn call this function again, creating a nasty
  4144. * infinite loop.
  4145. */
  4146. if (--nlists) {
  4147. xfs_iext_realloc_indirect(ifp,
  4148. nlists * sizeof(xfs_ext_irec_t));
  4149. } else {
  4150. kmem_free(ifp->if_u1.if_ext_irec);
  4151. }
  4152. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4153. }
  4154. /*
  4155. * This is called to clean up large amounts of unused memory allocated
  4156. * by the indirection array. Before compacting anything though, verify
  4157. * that the indirection array is still needed and switch back to the
  4158. * linear extent list (or even the inline buffer) if possible. The
  4159. * compaction policy is as follows:
  4160. *
  4161. * Full Compaction: Extents fit into a single page (or inline buffer)
  4162. * Partial Compaction: Extents occupy less than 50% of allocated space
  4163. * No Compaction: Extents occupy at least 50% of allocated space
  4164. */
  4165. void
  4166. xfs_iext_irec_compact(
  4167. xfs_ifork_t *ifp) /* inode fork pointer */
  4168. {
  4169. xfs_extnum_t nextents; /* number of extents in file */
  4170. int nlists; /* number of irec's (ex lists) */
  4171. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4172. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4173. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4174. if (nextents == 0) {
  4175. xfs_iext_destroy(ifp);
  4176. } else if (nextents <= XFS_INLINE_EXTS) {
  4177. xfs_iext_indirect_to_direct(ifp);
  4178. xfs_iext_direct_to_inline(ifp, nextents);
  4179. } else if (nextents <= XFS_LINEAR_EXTS) {
  4180. xfs_iext_indirect_to_direct(ifp);
  4181. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4182. xfs_iext_irec_compact_pages(ifp);
  4183. }
  4184. }
  4185. /*
  4186. * Combine extents from neighboring extent pages.
  4187. */
  4188. void
  4189. xfs_iext_irec_compact_pages(
  4190. xfs_ifork_t *ifp) /* inode fork pointer */
  4191. {
  4192. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4193. int erp_idx = 0; /* indirection array index */
  4194. int nlists; /* number of irec's (ex lists) */
  4195. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4196. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4197. while (erp_idx < nlists - 1) {
  4198. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4199. erp_next = erp + 1;
  4200. if (erp_next->er_extcount <=
  4201. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4202. memcpy(&erp->er_extbuf[erp->er_extcount],
  4203. erp_next->er_extbuf, erp_next->er_extcount *
  4204. sizeof(xfs_bmbt_rec_t));
  4205. erp->er_extcount += erp_next->er_extcount;
  4206. /*
  4207. * Free page before removing extent record
  4208. * so er_extoffs don't get modified in
  4209. * xfs_iext_irec_remove.
  4210. */
  4211. kmem_free(erp_next->er_extbuf);
  4212. erp_next->er_extbuf = NULL;
  4213. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4214. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4215. } else {
  4216. erp_idx++;
  4217. }
  4218. }
  4219. }
  4220. /*
  4221. * This is called to update the er_extoff field in the indirection
  4222. * array when extents have been added or removed from one of the
  4223. * extent lists. erp_idx contains the irec index to begin updating
  4224. * at and ext_diff contains the number of extents that were added
  4225. * or removed.
  4226. */
  4227. void
  4228. xfs_iext_irec_update_extoffs(
  4229. xfs_ifork_t *ifp, /* inode fork pointer */
  4230. int erp_idx, /* irec index to update */
  4231. int ext_diff) /* number of new extents */
  4232. {
  4233. int i; /* loop counter */
  4234. int nlists; /* number of irec's (ex lists */
  4235. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4236. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4237. for (i = erp_idx; i < nlists; i++) {
  4238. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4239. }
  4240. }