skbuff.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. /*
  2. * Routines having to do with the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
  5. * Florian La Roche <rzsfl@rz.uni-sb.de>
  6. *
  7. * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
  8. *
  9. * Fixes:
  10. * Alan Cox : Fixed the worst of the load
  11. * balancer bugs.
  12. * Dave Platt : Interrupt stacking fix.
  13. * Richard Kooijman : Timestamp fixes.
  14. * Alan Cox : Changed buffer format.
  15. * Alan Cox : destructor hook for AF_UNIX etc.
  16. * Linus Torvalds : Better skb_clone.
  17. * Alan Cox : Added skb_copy.
  18. * Alan Cox : Added all the changed routines Linus
  19. * only put in the headers
  20. * Ray VanTassle : Fixed --skb->lock in free
  21. * Alan Cox : skb_copy copy arp field
  22. * Andi Kleen : slabified it.
  23. * Robert Olsson : Removed skb_head_pool
  24. *
  25. * NOTE:
  26. * The __skb_ routines should be called with interrupts
  27. * disabled, or you better be *real* sure that the operation is atomic
  28. * with respect to whatever list is being frobbed (e.g. via lock_sock()
  29. * or via disabling bottom half handlers, etc).
  30. *
  31. * This program is free software; you can redistribute it and/or
  32. * modify it under the terms of the GNU General Public License
  33. * as published by the Free Software Foundation; either version
  34. * 2 of the License, or (at your option) any later version.
  35. */
  36. /*
  37. * The functions in this file will not compile correctly with gcc 2.4.x
  38. */
  39. #include <linux/config.h>
  40. #include <linux/module.h>
  41. #include <linux/types.h>
  42. #include <linux/kernel.h>
  43. #include <linux/sched.h>
  44. #include <linux/mm.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/in.h>
  47. #include <linux/inet.h>
  48. #include <linux/slab.h>
  49. #include <linux/netdevice.h>
  50. #ifdef CONFIG_NET_CLS_ACT
  51. #include <net/pkt_sched.h>
  52. #endif
  53. #include <linux/string.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/cache.h>
  56. #include <linux/rtnetlink.h>
  57. #include <linux/init.h>
  58. #include <linux/highmem.h>
  59. #include <net/protocol.h>
  60. #include <net/dst.h>
  61. #include <net/sock.h>
  62. #include <net/checksum.h>
  63. #include <net/xfrm.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/system.h>
  66. static kmem_cache_t *skbuff_head_cache __read_mostly;
  67. static kmem_cache_t *skbuff_fclone_cache __read_mostly;
  68. /*
  69. * Keep out-of-line to prevent kernel bloat.
  70. * __builtin_return_address is not used because it is not always
  71. * reliable.
  72. */
  73. /**
  74. * skb_over_panic - private function
  75. * @skb: buffer
  76. * @sz: size
  77. * @here: address
  78. *
  79. * Out of line support code for skb_put(). Not user callable.
  80. */
  81. void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  82. {
  83. printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
  84. "data:%p tail:%p end:%p dev:%s\n",
  85. here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
  86. skb->dev ? skb->dev->name : "<NULL>");
  87. BUG();
  88. }
  89. /**
  90. * skb_under_panic - private function
  91. * @skb: buffer
  92. * @sz: size
  93. * @here: address
  94. *
  95. * Out of line support code for skb_push(). Not user callable.
  96. */
  97. void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  98. {
  99. printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
  100. "data:%p tail:%p end:%p dev:%s\n",
  101. here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
  102. skb->dev ? skb->dev->name : "<NULL>");
  103. BUG();
  104. }
  105. /* Allocate a new skbuff. We do this ourselves so we can fill in a few
  106. * 'private' fields and also do memory statistics to find all the
  107. * [BEEP] leaks.
  108. *
  109. */
  110. /**
  111. * __alloc_skb - allocate a network buffer
  112. * @size: size to allocate
  113. * @gfp_mask: allocation mask
  114. * @fclone: allocate from fclone cache instead of head cache
  115. * and allocate a cloned (child) skb
  116. *
  117. * Allocate a new &sk_buff. The returned buffer has no headroom and a
  118. * tail room of size bytes. The object has a reference count of one.
  119. * The return is the buffer. On a failure the return is %NULL.
  120. *
  121. * Buffers may only be allocated from interrupts using a @gfp_mask of
  122. * %GFP_ATOMIC.
  123. */
  124. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  125. int fclone)
  126. {
  127. kmem_cache_t *cache;
  128. struct skb_shared_info *shinfo;
  129. struct sk_buff *skb;
  130. u8 *data;
  131. cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
  132. /* Get the HEAD */
  133. skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
  134. if (!skb)
  135. goto out;
  136. /* Get the DATA. Size must match skb_add_mtu(). */
  137. size = SKB_DATA_ALIGN(size);
  138. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  139. if (!data)
  140. goto nodata;
  141. memset(skb, 0, offsetof(struct sk_buff, truesize));
  142. skb->truesize = size + sizeof(struct sk_buff);
  143. atomic_set(&skb->users, 1);
  144. skb->head = data;
  145. skb->data = data;
  146. skb->tail = data;
  147. skb->end = data + size;
  148. /* make sure we initialize shinfo sequentially */
  149. shinfo = skb_shinfo(skb);
  150. atomic_set(&shinfo->dataref, 1);
  151. shinfo->nr_frags = 0;
  152. shinfo->tso_size = 0;
  153. shinfo->tso_segs = 0;
  154. shinfo->ufo_size = 0;
  155. shinfo->ip6_frag_id = 0;
  156. shinfo->frag_list = NULL;
  157. if (fclone) {
  158. struct sk_buff *child = skb + 1;
  159. atomic_t *fclone_ref = (atomic_t *) (child + 1);
  160. skb->fclone = SKB_FCLONE_ORIG;
  161. atomic_set(fclone_ref, 1);
  162. child->fclone = SKB_FCLONE_UNAVAILABLE;
  163. }
  164. out:
  165. return skb;
  166. nodata:
  167. kmem_cache_free(cache, skb);
  168. skb = NULL;
  169. goto out;
  170. }
  171. /**
  172. * alloc_skb_from_cache - allocate a network buffer
  173. * @cp: kmem_cache from which to allocate the data area
  174. * (object size must be big enough for @size bytes + skb overheads)
  175. * @size: size to allocate
  176. * @gfp_mask: allocation mask
  177. *
  178. * Allocate a new &sk_buff. The returned buffer has no headroom and
  179. * tail room of size bytes. The object has a reference count of one.
  180. * The return is the buffer. On a failure the return is %NULL.
  181. *
  182. * Buffers may only be allocated from interrupts using a @gfp_mask of
  183. * %GFP_ATOMIC.
  184. */
  185. struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
  186. unsigned int size,
  187. gfp_t gfp_mask)
  188. {
  189. struct sk_buff *skb;
  190. u8 *data;
  191. /* Get the HEAD */
  192. skb = kmem_cache_alloc(skbuff_head_cache,
  193. gfp_mask & ~__GFP_DMA);
  194. if (!skb)
  195. goto out;
  196. /* Get the DATA. */
  197. size = SKB_DATA_ALIGN(size);
  198. data = kmem_cache_alloc(cp, gfp_mask);
  199. if (!data)
  200. goto nodata;
  201. memset(skb, 0, offsetof(struct sk_buff, truesize));
  202. skb->truesize = size + sizeof(struct sk_buff);
  203. atomic_set(&skb->users, 1);
  204. skb->head = data;
  205. skb->data = data;
  206. skb->tail = data;
  207. skb->end = data + size;
  208. atomic_set(&(skb_shinfo(skb)->dataref), 1);
  209. skb_shinfo(skb)->nr_frags = 0;
  210. skb_shinfo(skb)->tso_size = 0;
  211. skb_shinfo(skb)->tso_segs = 0;
  212. skb_shinfo(skb)->frag_list = NULL;
  213. out:
  214. return skb;
  215. nodata:
  216. kmem_cache_free(skbuff_head_cache, skb);
  217. skb = NULL;
  218. goto out;
  219. }
  220. static void skb_drop_fraglist(struct sk_buff *skb)
  221. {
  222. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  223. skb_shinfo(skb)->frag_list = NULL;
  224. do {
  225. struct sk_buff *this = list;
  226. list = list->next;
  227. kfree_skb(this);
  228. } while (list);
  229. }
  230. static void skb_clone_fraglist(struct sk_buff *skb)
  231. {
  232. struct sk_buff *list;
  233. for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
  234. skb_get(list);
  235. }
  236. void skb_release_data(struct sk_buff *skb)
  237. {
  238. if (!skb->cloned ||
  239. !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  240. &skb_shinfo(skb)->dataref)) {
  241. if (skb_shinfo(skb)->nr_frags) {
  242. int i;
  243. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  244. put_page(skb_shinfo(skb)->frags[i].page);
  245. }
  246. if (skb_shinfo(skb)->frag_list)
  247. skb_drop_fraglist(skb);
  248. kfree(skb->head);
  249. }
  250. }
  251. /*
  252. * Free an skbuff by memory without cleaning the state.
  253. */
  254. void kfree_skbmem(struct sk_buff *skb)
  255. {
  256. struct sk_buff *other;
  257. atomic_t *fclone_ref;
  258. skb_release_data(skb);
  259. switch (skb->fclone) {
  260. case SKB_FCLONE_UNAVAILABLE:
  261. kmem_cache_free(skbuff_head_cache, skb);
  262. break;
  263. case SKB_FCLONE_ORIG:
  264. fclone_ref = (atomic_t *) (skb + 2);
  265. if (atomic_dec_and_test(fclone_ref))
  266. kmem_cache_free(skbuff_fclone_cache, skb);
  267. break;
  268. case SKB_FCLONE_CLONE:
  269. fclone_ref = (atomic_t *) (skb + 1);
  270. other = skb - 1;
  271. /* The clone portion is available for
  272. * fast-cloning again.
  273. */
  274. skb->fclone = SKB_FCLONE_UNAVAILABLE;
  275. if (atomic_dec_and_test(fclone_ref))
  276. kmem_cache_free(skbuff_fclone_cache, other);
  277. break;
  278. };
  279. }
  280. /**
  281. * __kfree_skb - private function
  282. * @skb: buffer
  283. *
  284. * Free an sk_buff. Release anything attached to the buffer.
  285. * Clean the state. This is an internal helper function. Users should
  286. * always call kfree_skb
  287. */
  288. void __kfree_skb(struct sk_buff *skb)
  289. {
  290. dst_release(skb->dst);
  291. #ifdef CONFIG_XFRM
  292. secpath_put(skb->sp);
  293. #endif
  294. if (skb->destructor) {
  295. WARN_ON(in_irq());
  296. skb->destructor(skb);
  297. }
  298. #ifdef CONFIG_NETFILTER
  299. nf_conntrack_put(skb->nfct);
  300. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  301. nf_conntrack_put_reasm(skb->nfct_reasm);
  302. #endif
  303. #ifdef CONFIG_BRIDGE_NETFILTER
  304. nf_bridge_put(skb->nf_bridge);
  305. #endif
  306. #endif
  307. /* XXX: IS this still necessary? - JHS */
  308. #ifdef CONFIG_NET_SCHED
  309. skb->tc_index = 0;
  310. #ifdef CONFIG_NET_CLS_ACT
  311. skb->tc_verd = 0;
  312. #endif
  313. #endif
  314. kfree_skbmem(skb);
  315. }
  316. /**
  317. * skb_clone - duplicate an sk_buff
  318. * @skb: buffer to clone
  319. * @gfp_mask: allocation priority
  320. *
  321. * Duplicate an &sk_buff. The new one is not owned by a socket. Both
  322. * copies share the same packet data but not structure. The new
  323. * buffer has a reference count of 1. If the allocation fails the
  324. * function returns %NULL otherwise the new buffer is returned.
  325. *
  326. * If this function is called from an interrupt gfp_mask() must be
  327. * %GFP_ATOMIC.
  328. */
  329. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  330. {
  331. struct sk_buff *n;
  332. n = skb + 1;
  333. if (skb->fclone == SKB_FCLONE_ORIG &&
  334. n->fclone == SKB_FCLONE_UNAVAILABLE) {
  335. atomic_t *fclone_ref = (atomic_t *) (n + 1);
  336. n->fclone = SKB_FCLONE_CLONE;
  337. atomic_inc(fclone_ref);
  338. } else {
  339. n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  340. if (!n)
  341. return NULL;
  342. n->fclone = SKB_FCLONE_UNAVAILABLE;
  343. }
  344. #define C(x) n->x = skb->x
  345. n->next = n->prev = NULL;
  346. n->sk = NULL;
  347. C(tstamp);
  348. C(dev);
  349. C(h);
  350. C(nh);
  351. C(mac);
  352. C(dst);
  353. dst_clone(skb->dst);
  354. C(sp);
  355. #ifdef CONFIG_INET
  356. secpath_get(skb->sp);
  357. #endif
  358. memcpy(n->cb, skb->cb, sizeof(skb->cb));
  359. C(len);
  360. C(data_len);
  361. C(csum);
  362. C(local_df);
  363. n->cloned = 1;
  364. n->nohdr = 0;
  365. C(pkt_type);
  366. C(ip_summed);
  367. C(priority);
  368. C(protocol);
  369. n->destructor = NULL;
  370. #ifdef CONFIG_NETFILTER
  371. C(nfmark);
  372. C(nfct);
  373. nf_conntrack_get(skb->nfct);
  374. C(nfctinfo);
  375. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  376. C(nfct_reasm);
  377. nf_conntrack_get_reasm(skb->nfct_reasm);
  378. #endif
  379. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  380. C(ipvs_property);
  381. #endif
  382. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  383. C(nfct_reasm);
  384. nf_conntrack_get_reasm(skb->nfct_reasm);
  385. #endif
  386. #ifdef CONFIG_BRIDGE_NETFILTER
  387. C(nf_bridge);
  388. nf_bridge_get(skb->nf_bridge);
  389. #endif
  390. #endif /*CONFIG_NETFILTER*/
  391. #ifdef CONFIG_NET_SCHED
  392. C(tc_index);
  393. #ifdef CONFIG_NET_CLS_ACT
  394. n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
  395. n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
  396. n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
  397. C(input_dev);
  398. #endif
  399. #endif
  400. C(truesize);
  401. atomic_set(&n->users, 1);
  402. C(head);
  403. C(data);
  404. C(tail);
  405. C(end);
  406. atomic_inc(&(skb_shinfo(skb)->dataref));
  407. skb->cloned = 1;
  408. return n;
  409. }
  410. static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  411. {
  412. /*
  413. * Shift between the two data areas in bytes
  414. */
  415. unsigned long offset = new->data - old->data;
  416. new->sk = NULL;
  417. new->dev = old->dev;
  418. new->priority = old->priority;
  419. new->protocol = old->protocol;
  420. new->dst = dst_clone(old->dst);
  421. #ifdef CONFIG_INET
  422. new->sp = secpath_get(old->sp);
  423. #endif
  424. new->h.raw = old->h.raw + offset;
  425. new->nh.raw = old->nh.raw + offset;
  426. new->mac.raw = old->mac.raw + offset;
  427. memcpy(new->cb, old->cb, sizeof(old->cb));
  428. new->local_df = old->local_df;
  429. new->fclone = SKB_FCLONE_UNAVAILABLE;
  430. new->pkt_type = old->pkt_type;
  431. new->tstamp = old->tstamp;
  432. new->destructor = NULL;
  433. #ifdef CONFIG_NETFILTER
  434. new->nfmark = old->nfmark;
  435. new->nfct = old->nfct;
  436. nf_conntrack_get(old->nfct);
  437. new->nfctinfo = old->nfctinfo;
  438. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  439. new->nfct_reasm = old->nfct_reasm;
  440. nf_conntrack_get_reasm(old->nfct_reasm);
  441. #endif
  442. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  443. new->ipvs_property = old->ipvs_property;
  444. #endif
  445. #ifdef CONFIG_BRIDGE_NETFILTER
  446. new->nf_bridge = old->nf_bridge;
  447. nf_bridge_get(old->nf_bridge);
  448. #endif
  449. #endif
  450. #ifdef CONFIG_NET_SCHED
  451. #ifdef CONFIG_NET_CLS_ACT
  452. new->tc_verd = old->tc_verd;
  453. #endif
  454. new->tc_index = old->tc_index;
  455. #endif
  456. atomic_set(&new->users, 1);
  457. skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
  458. skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
  459. }
  460. /**
  461. * skb_copy - create private copy of an sk_buff
  462. * @skb: buffer to copy
  463. * @gfp_mask: allocation priority
  464. *
  465. * Make a copy of both an &sk_buff and its data. This is used when the
  466. * caller wishes to modify the data and needs a private copy of the
  467. * data to alter. Returns %NULL on failure or the pointer to the buffer
  468. * on success. The returned buffer has a reference count of 1.
  469. *
  470. * As by-product this function converts non-linear &sk_buff to linear
  471. * one, so that &sk_buff becomes completely private and caller is allowed
  472. * to modify all the data of returned buffer. This means that this
  473. * function is not recommended for use in circumstances when only
  474. * header is going to be modified. Use pskb_copy() instead.
  475. */
  476. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  477. {
  478. int headerlen = skb->data - skb->head;
  479. /*
  480. * Allocate the copy buffer
  481. */
  482. struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
  483. gfp_mask);
  484. if (!n)
  485. return NULL;
  486. /* Set the data pointer */
  487. skb_reserve(n, headerlen);
  488. /* Set the tail pointer and length */
  489. skb_put(n, skb->len);
  490. n->csum = skb->csum;
  491. n->ip_summed = skb->ip_summed;
  492. if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  493. BUG();
  494. copy_skb_header(n, skb);
  495. return n;
  496. }
  497. /**
  498. * pskb_copy - create copy of an sk_buff with private head.
  499. * @skb: buffer to copy
  500. * @gfp_mask: allocation priority
  501. *
  502. * Make a copy of both an &sk_buff and part of its data, located
  503. * in header. Fragmented data remain shared. This is used when
  504. * the caller wishes to modify only header of &sk_buff and needs
  505. * private copy of the header to alter. Returns %NULL on failure
  506. * or the pointer to the buffer on success.
  507. * The returned buffer has a reference count of 1.
  508. */
  509. struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
  510. {
  511. /*
  512. * Allocate the copy buffer
  513. */
  514. struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
  515. if (!n)
  516. goto out;
  517. /* Set the data pointer */
  518. skb_reserve(n, skb->data - skb->head);
  519. /* Set the tail pointer and length */
  520. skb_put(n, skb_headlen(skb));
  521. /* Copy the bytes */
  522. memcpy(n->data, skb->data, n->len);
  523. n->csum = skb->csum;
  524. n->ip_summed = skb->ip_summed;
  525. n->data_len = skb->data_len;
  526. n->len = skb->len;
  527. if (skb_shinfo(skb)->nr_frags) {
  528. int i;
  529. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  530. skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  531. get_page(skb_shinfo(n)->frags[i].page);
  532. }
  533. skb_shinfo(n)->nr_frags = i;
  534. }
  535. if (skb_shinfo(skb)->frag_list) {
  536. skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
  537. skb_clone_fraglist(n);
  538. }
  539. copy_skb_header(n, skb);
  540. out:
  541. return n;
  542. }
  543. /**
  544. * pskb_expand_head - reallocate header of &sk_buff
  545. * @skb: buffer to reallocate
  546. * @nhead: room to add at head
  547. * @ntail: room to add at tail
  548. * @gfp_mask: allocation priority
  549. *
  550. * Expands (or creates identical copy, if &nhead and &ntail are zero)
  551. * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
  552. * reference count of 1. Returns zero in the case of success or error,
  553. * if expansion failed. In the last case, &sk_buff is not changed.
  554. *
  555. * All the pointers pointing into skb header may change and must be
  556. * reloaded after call to this function.
  557. */
  558. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
  559. gfp_t gfp_mask)
  560. {
  561. int i;
  562. u8 *data;
  563. int size = nhead + (skb->end - skb->head) + ntail;
  564. long off;
  565. if (skb_shared(skb))
  566. BUG();
  567. size = SKB_DATA_ALIGN(size);
  568. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  569. if (!data)
  570. goto nodata;
  571. /* Copy only real data... and, alas, header. This should be
  572. * optimized for the cases when header is void. */
  573. memcpy(data + nhead, skb->head, skb->tail - skb->head);
  574. memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
  575. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  576. get_page(skb_shinfo(skb)->frags[i].page);
  577. if (skb_shinfo(skb)->frag_list)
  578. skb_clone_fraglist(skb);
  579. skb_release_data(skb);
  580. off = (data + nhead) - skb->head;
  581. skb->head = data;
  582. skb->end = data + size;
  583. skb->data += off;
  584. skb->tail += off;
  585. skb->mac.raw += off;
  586. skb->h.raw += off;
  587. skb->nh.raw += off;
  588. skb->cloned = 0;
  589. skb->nohdr = 0;
  590. atomic_set(&skb_shinfo(skb)->dataref, 1);
  591. return 0;
  592. nodata:
  593. return -ENOMEM;
  594. }
  595. /* Make private copy of skb with writable head and some headroom */
  596. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
  597. {
  598. struct sk_buff *skb2;
  599. int delta = headroom - skb_headroom(skb);
  600. if (delta <= 0)
  601. skb2 = pskb_copy(skb, GFP_ATOMIC);
  602. else {
  603. skb2 = skb_clone(skb, GFP_ATOMIC);
  604. if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
  605. GFP_ATOMIC)) {
  606. kfree_skb(skb2);
  607. skb2 = NULL;
  608. }
  609. }
  610. return skb2;
  611. }
  612. /**
  613. * skb_copy_expand - copy and expand sk_buff
  614. * @skb: buffer to copy
  615. * @newheadroom: new free bytes at head
  616. * @newtailroom: new free bytes at tail
  617. * @gfp_mask: allocation priority
  618. *
  619. * Make a copy of both an &sk_buff and its data and while doing so
  620. * allocate additional space.
  621. *
  622. * This is used when the caller wishes to modify the data and needs a
  623. * private copy of the data to alter as well as more space for new fields.
  624. * Returns %NULL on failure or the pointer to the buffer
  625. * on success. The returned buffer has a reference count of 1.
  626. *
  627. * You must pass %GFP_ATOMIC as the allocation priority if this function
  628. * is called from an interrupt.
  629. *
  630. * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
  631. * only by netfilter in the cases when checksum is recalculated? --ANK
  632. */
  633. struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  634. int newheadroom, int newtailroom,
  635. gfp_t gfp_mask)
  636. {
  637. /*
  638. * Allocate the copy buffer
  639. */
  640. struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
  641. gfp_mask);
  642. int head_copy_len, head_copy_off;
  643. if (!n)
  644. return NULL;
  645. skb_reserve(n, newheadroom);
  646. /* Set the tail pointer and length */
  647. skb_put(n, skb->len);
  648. head_copy_len = skb_headroom(skb);
  649. head_copy_off = 0;
  650. if (newheadroom <= head_copy_len)
  651. head_copy_len = newheadroom;
  652. else
  653. head_copy_off = newheadroom - head_copy_len;
  654. /* Copy the linear header and data. */
  655. if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
  656. skb->len + head_copy_len))
  657. BUG();
  658. copy_skb_header(n, skb);
  659. return n;
  660. }
  661. /**
  662. * skb_pad - zero pad the tail of an skb
  663. * @skb: buffer to pad
  664. * @pad: space to pad
  665. *
  666. * Ensure that a buffer is followed by a padding area that is zero
  667. * filled. Used by network drivers which may DMA or transfer data
  668. * beyond the buffer end onto the wire.
  669. *
  670. * May return NULL in out of memory cases.
  671. */
  672. struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
  673. {
  674. struct sk_buff *nskb;
  675. /* If the skbuff is non linear tailroom is always zero.. */
  676. if (skb_tailroom(skb) >= pad) {
  677. memset(skb->data+skb->len, 0, pad);
  678. return skb;
  679. }
  680. nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
  681. kfree_skb(skb);
  682. if (nskb)
  683. memset(nskb->data+nskb->len, 0, pad);
  684. return nskb;
  685. }
  686. /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
  687. * If realloc==0 and trimming is impossible without change of data,
  688. * it is BUG().
  689. */
  690. int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
  691. {
  692. int offset = skb_headlen(skb);
  693. int nfrags = skb_shinfo(skb)->nr_frags;
  694. int i;
  695. for (i = 0; i < nfrags; i++) {
  696. int end = offset + skb_shinfo(skb)->frags[i].size;
  697. if (end > len) {
  698. if (skb_cloned(skb)) {
  699. BUG_ON(!realloc);
  700. if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
  701. return -ENOMEM;
  702. }
  703. if (len <= offset) {
  704. put_page(skb_shinfo(skb)->frags[i].page);
  705. skb_shinfo(skb)->nr_frags--;
  706. } else {
  707. skb_shinfo(skb)->frags[i].size = len - offset;
  708. }
  709. }
  710. offset = end;
  711. }
  712. if (offset < len) {
  713. skb->data_len -= skb->len - len;
  714. skb->len = len;
  715. } else {
  716. if (len <= skb_headlen(skb)) {
  717. skb->len = len;
  718. skb->data_len = 0;
  719. skb->tail = skb->data + len;
  720. if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
  721. skb_drop_fraglist(skb);
  722. } else {
  723. skb->data_len -= skb->len - len;
  724. skb->len = len;
  725. }
  726. }
  727. return 0;
  728. }
  729. /**
  730. * __pskb_pull_tail - advance tail of skb header
  731. * @skb: buffer to reallocate
  732. * @delta: number of bytes to advance tail
  733. *
  734. * The function makes a sense only on a fragmented &sk_buff,
  735. * it expands header moving its tail forward and copying necessary
  736. * data from fragmented part.
  737. *
  738. * &sk_buff MUST have reference count of 1.
  739. *
  740. * Returns %NULL (and &sk_buff does not change) if pull failed
  741. * or value of new tail of skb in the case of success.
  742. *
  743. * All the pointers pointing into skb header may change and must be
  744. * reloaded after call to this function.
  745. */
  746. /* Moves tail of skb head forward, copying data from fragmented part,
  747. * when it is necessary.
  748. * 1. It may fail due to malloc failure.
  749. * 2. It may change skb pointers.
  750. *
  751. * It is pretty complicated. Luckily, it is called only in exceptional cases.
  752. */
  753. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
  754. {
  755. /* If skb has not enough free space at tail, get new one
  756. * plus 128 bytes for future expansions. If we have enough
  757. * room at tail, reallocate without expansion only if skb is cloned.
  758. */
  759. int i, k, eat = (skb->tail + delta) - skb->end;
  760. if (eat > 0 || skb_cloned(skb)) {
  761. if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
  762. GFP_ATOMIC))
  763. return NULL;
  764. }
  765. if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
  766. BUG();
  767. /* Optimization: no fragments, no reasons to preestimate
  768. * size of pulled pages. Superb.
  769. */
  770. if (!skb_shinfo(skb)->frag_list)
  771. goto pull_pages;
  772. /* Estimate size of pulled pages. */
  773. eat = delta;
  774. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  775. if (skb_shinfo(skb)->frags[i].size >= eat)
  776. goto pull_pages;
  777. eat -= skb_shinfo(skb)->frags[i].size;
  778. }
  779. /* If we need update frag list, we are in troubles.
  780. * Certainly, it possible to add an offset to skb data,
  781. * but taking into account that pulling is expected to
  782. * be very rare operation, it is worth to fight against
  783. * further bloating skb head and crucify ourselves here instead.
  784. * Pure masohism, indeed. 8)8)
  785. */
  786. if (eat) {
  787. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  788. struct sk_buff *clone = NULL;
  789. struct sk_buff *insp = NULL;
  790. do {
  791. BUG_ON(!list);
  792. if (list->len <= eat) {
  793. /* Eaten as whole. */
  794. eat -= list->len;
  795. list = list->next;
  796. insp = list;
  797. } else {
  798. /* Eaten partially. */
  799. if (skb_shared(list)) {
  800. /* Sucks! We need to fork list. :-( */
  801. clone = skb_clone(list, GFP_ATOMIC);
  802. if (!clone)
  803. return NULL;
  804. insp = list->next;
  805. list = clone;
  806. } else {
  807. /* This may be pulled without
  808. * problems. */
  809. insp = list;
  810. }
  811. if (!pskb_pull(list, eat)) {
  812. if (clone)
  813. kfree_skb(clone);
  814. return NULL;
  815. }
  816. break;
  817. }
  818. } while (eat);
  819. /* Free pulled out fragments. */
  820. while ((list = skb_shinfo(skb)->frag_list) != insp) {
  821. skb_shinfo(skb)->frag_list = list->next;
  822. kfree_skb(list);
  823. }
  824. /* And insert new clone at head. */
  825. if (clone) {
  826. clone->next = list;
  827. skb_shinfo(skb)->frag_list = clone;
  828. }
  829. }
  830. /* Success! Now we may commit changes to skb data. */
  831. pull_pages:
  832. eat = delta;
  833. k = 0;
  834. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  835. if (skb_shinfo(skb)->frags[i].size <= eat) {
  836. put_page(skb_shinfo(skb)->frags[i].page);
  837. eat -= skb_shinfo(skb)->frags[i].size;
  838. } else {
  839. skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
  840. if (eat) {
  841. skb_shinfo(skb)->frags[k].page_offset += eat;
  842. skb_shinfo(skb)->frags[k].size -= eat;
  843. eat = 0;
  844. }
  845. k++;
  846. }
  847. }
  848. skb_shinfo(skb)->nr_frags = k;
  849. skb->tail += delta;
  850. skb->data_len -= delta;
  851. return skb->tail;
  852. }
  853. /* Copy some data bits from skb to kernel buffer. */
  854. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
  855. {
  856. int i, copy;
  857. int start = skb_headlen(skb);
  858. if (offset > (int)skb->len - len)
  859. goto fault;
  860. /* Copy header. */
  861. if ((copy = start - offset) > 0) {
  862. if (copy > len)
  863. copy = len;
  864. memcpy(to, skb->data + offset, copy);
  865. if ((len -= copy) == 0)
  866. return 0;
  867. offset += copy;
  868. to += copy;
  869. }
  870. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  871. int end;
  872. BUG_TRAP(start <= offset + len);
  873. end = start + skb_shinfo(skb)->frags[i].size;
  874. if ((copy = end - offset) > 0) {
  875. u8 *vaddr;
  876. if (copy > len)
  877. copy = len;
  878. vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
  879. memcpy(to,
  880. vaddr + skb_shinfo(skb)->frags[i].page_offset+
  881. offset - start, copy);
  882. kunmap_skb_frag(vaddr);
  883. if ((len -= copy) == 0)
  884. return 0;
  885. offset += copy;
  886. to += copy;
  887. }
  888. start = end;
  889. }
  890. if (skb_shinfo(skb)->frag_list) {
  891. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  892. for (; list; list = list->next) {
  893. int end;
  894. BUG_TRAP(start <= offset + len);
  895. end = start + list->len;
  896. if ((copy = end - offset) > 0) {
  897. if (copy > len)
  898. copy = len;
  899. if (skb_copy_bits(list, offset - start,
  900. to, copy))
  901. goto fault;
  902. if ((len -= copy) == 0)
  903. return 0;
  904. offset += copy;
  905. to += copy;
  906. }
  907. start = end;
  908. }
  909. }
  910. if (!len)
  911. return 0;
  912. fault:
  913. return -EFAULT;
  914. }
  915. /**
  916. * skb_store_bits - store bits from kernel buffer to skb
  917. * @skb: destination buffer
  918. * @offset: offset in destination
  919. * @from: source buffer
  920. * @len: number of bytes to copy
  921. *
  922. * Copy the specified number of bytes from the source buffer to the
  923. * destination skb. This function handles all the messy bits of
  924. * traversing fragment lists and such.
  925. */
  926. int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
  927. {
  928. int i, copy;
  929. int start = skb_headlen(skb);
  930. if (offset > (int)skb->len - len)
  931. goto fault;
  932. if ((copy = start - offset) > 0) {
  933. if (copy > len)
  934. copy = len;
  935. memcpy(skb->data + offset, from, copy);
  936. if ((len -= copy) == 0)
  937. return 0;
  938. offset += copy;
  939. from += copy;
  940. }
  941. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  942. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  943. int end;
  944. BUG_TRAP(start <= offset + len);
  945. end = start + frag->size;
  946. if ((copy = end - offset) > 0) {
  947. u8 *vaddr;
  948. if (copy > len)
  949. copy = len;
  950. vaddr = kmap_skb_frag(frag);
  951. memcpy(vaddr + frag->page_offset + offset - start,
  952. from, copy);
  953. kunmap_skb_frag(vaddr);
  954. if ((len -= copy) == 0)
  955. return 0;
  956. offset += copy;
  957. from += copy;
  958. }
  959. start = end;
  960. }
  961. if (skb_shinfo(skb)->frag_list) {
  962. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  963. for (; list; list = list->next) {
  964. int end;
  965. BUG_TRAP(start <= offset + len);
  966. end = start + list->len;
  967. if ((copy = end - offset) > 0) {
  968. if (copy > len)
  969. copy = len;
  970. if (skb_store_bits(list, offset - start,
  971. from, copy))
  972. goto fault;
  973. if ((len -= copy) == 0)
  974. return 0;
  975. offset += copy;
  976. from += copy;
  977. }
  978. start = end;
  979. }
  980. }
  981. if (!len)
  982. return 0;
  983. fault:
  984. return -EFAULT;
  985. }
  986. EXPORT_SYMBOL(skb_store_bits);
  987. /* Checksum skb data. */
  988. unsigned int skb_checksum(const struct sk_buff *skb, int offset,
  989. int len, unsigned int csum)
  990. {
  991. int start = skb_headlen(skb);
  992. int i, copy = start - offset;
  993. int pos = 0;
  994. /* Checksum header. */
  995. if (copy > 0) {
  996. if (copy > len)
  997. copy = len;
  998. csum = csum_partial(skb->data + offset, copy, csum);
  999. if ((len -= copy) == 0)
  1000. return csum;
  1001. offset += copy;
  1002. pos = copy;
  1003. }
  1004. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1005. int end;
  1006. BUG_TRAP(start <= offset + len);
  1007. end = start + skb_shinfo(skb)->frags[i].size;
  1008. if ((copy = end - offset) > 0) {
  1009. unsigned int csum2;
  1010. u8 *vaddr;
  1011. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1012. if (copy > len)
  1013. copy = len;
  1014. vaddr = kmap_skb_frag(frag);
  1015. csum2 = csum_partial(vaddr + frag->page_offset +
  1016. offset - start, copy, 0);
  1017. kunmap_skb_frag(vaddr);
  1018. csum = csum_block_add(csum, csum2, pos);
  1019. if (!(len -= copy))
  1020. return csum;
  1021. offset += copy;
  1022. pos += copy;
  1023. }
  1024. start = end;
  1025. }
  1026. if (skb_shinfo(skb)->frag_list) {
  1027. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1028. for (; list; list = list->next) {
  1029. int end;
  1030. BUG_TRAP(start <= offset + len);
  1031. end = start + list->len;
  1032. if ((copy = end - offset) > 0) {
  1033. unsigned int csum2;
  1034. if (copy > len)
  1035. copy = len;
  1036. csum2 = skb_checksum(list, offset - start,
  1037. copy, 0);
  1038. csum = csum_block_add(csum, csum2, pos);
  1039. if ((len -= copy) == 0)
  1040. return csum;
  1041. offset += copy;
  1042. pos += copy;
  1043. }
  1044. start = end;
  1045. }
  1046. }
  1047. BUG_ON(len);
  1048. return csum;
  1049. }
  1050. /* Both of above in one bottle. */
  1051. unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
  1052. u8 *to, int len, unsigned int csum)
  1053. {
  1054. int start = skb_headlen(skb);
  1055. int i, copy = start - offset;
  1056. int pos = 0;
  1057. /* Copy header. */
  1058. if (copy > 0) {
  1059. if (copy > len)
  1060. copy = len;
  1061. csum = csum_partial_copy_nocheck(skb->data + offset, to,
  1062. copy, csum);
  1063. if ((len -= copy) == 0)
  1064. return csum;
  1065. offset += copy;
  1066. to += copy;
  1067. pos = copy;
  1068. }
  1069. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1070. int end;
  1071. BUG_TRAP(start <= offset + len);
  1072. end = start + skb_shinfo(skb)->frags[i].size;
  1073. if ((copy = end - offset) > 0) {
  1074. unsigned int csum2;
  1075. u8 *vaddr;
  1076. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1077. if (copy > len)
  1078. copy = len;
  1079. vaddr = kmap_skb_frag(frag);
  1080. csum2 = csum_partial_copy_nocheck(vaddr +
  1081. frag->page_offset +
  1082. offset - start, to,
  1083. copy, 0);
  1084. kunmap_skb_frag(vaddr);
  1085. csum = csum_block_add(csum, csum2, pos);
  1086. if (!(len -= copy))
  1087. return csum;
  1088. offset += copy;
  1089. to += copy;
  1090. pos += copy;
  1091. }
  1092. start = end;
  1093. }
  1094. if (skb_shinfo(skb)->frag_list) {
  1095. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1096. for (; list; list = list->next) {
  1097. unsigned int csum2;
  1098. int end;
  1099. BUG_TRAP(start <= offset + len);
  1100. end = start + list->len;
  1101. if ((copy = end - offset) > 0) {
  1102. if (copy > len)
  1103. copy = len;
  1104. csum2 = skb_copy_and_csum_bits(list,
  1105. offset - start,
  1106. to, copy, 0);
  1107. csum = csum_block_add(csum, csum2, pos);
  1108. if ((len -= copy) == 0)
  1109. return csum;
  1110. offset += copy;
  1111. to += copy;
  1112. pos += copy;
  1113. }
  1114. start = end;
  1115. }
  1116. }
  1117. BUG_ON(len);
  1118. return csum;
  1119. }
  1120. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
  1121. {
  1122. unsigned int csum;
  1123. long csstart;
  1124. if (skb->ip_summed == CHECKSUM_HW)
  1125. csstart = skb->h.raw - skb->data;
  1126. else
  1127. csstart = skb_headlen(skb);
  1128. BUG_ON(csstart > skb_headlen(skb));
  1129. memcpy(to, skb->data, csstart);
  1130. csum = 0;
  1131. if (csstart != skb->len)
  1132. csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
  1133. skb->len - csstart, 0);
  1134. if (skb->ip_summed == CHECKSUM_HW) {
  1135. long csstuff = csstart + skb->csum;
  1136. *((unsigned short *)(to + csstuff)) = csum_fold(csum);
  1137. }
  1138. }
  1139. /**
  1140. * skb_dequeue - remove from the head of the queue
  1141. * @list: list to dequeue from
  1142. *
  1143. * Remove the head of the list. The list lock is taken so the function
  1144. * may be used safely with other locking list functions. The head item is
  1145. * returned or %NULL if the list is empty.
  1146. */
  1147. struct sk_buff *skb_dequeue(struct sk_buff_head *list)
  1148. {
  1149. unsigned long flags;
  1150. struct sk_buff *result;
  1151. spin_lock_irqsave(&list->lock, flags);
  1152. result = __skb_dequeue(list);
  1153. spin_unlock_irqrestore(&list->lock, flags);
  1154. return result;
  1155. }
  1156. /**
  1157. * skb_dequeue_tail - remove from the tail of the queue
  1158. * @list: list to dequeue from
  1159. *
  1160. * Remove the tail of the list. The list lock is taken so the function
  1161. * may be used safely with other locking list functions. The tail item is
  1162. * returned or %NULL if the list is empty.
  1163. */
  1164. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
  1165. {
  1166. unsigned long flags;
  1167. struct sk_buff *result;
  1168. spin_lock_irqsave(&list->lock, flags);
  1169. result = __skb_dequeue_tail(list);
  1170. spin_unlock_irqrestore(&list->lock, flags);
  1171. return result;
  1172. }
  1173. /**
  1174. * skb_queue_purge - empty a list
  1175. * @list: list to empty
  1176. *
  1177. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1178. * the list and one reference dropped. This function takes the list
  1179. * lock and is atomic with respect to other list locking functions.
  1180. */
  1181. void skb_queue_purge(struct sk_buff_head *list)
  1182. {
  1183. struct sk_buff *skb;
  1184. while ((skb = skb_dequeue(list)) != NULL)
  1185. kfree_skb(skb);
  1186. }
  1187. /**
  1188. * skb_queue_head - queue a buffer at the list head
  1189. * @list: list to use
  1190. * @newsk: buffer to queue
  1191. *
  1192. * Queue a buffer at the start of the list. This function takes the
  1193. * list lock and can be used safely with other locking &sk_buff functions
  1194. * safely.
  1195. *
  1196. * A buffer cannot be placed on two lists at the same time.
  1197. */
  1198. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
  1199. {
  1200. unsigned long flags;
  1201. spin_lock_irqsave(&list->lock, flags);
  1202. __skb_queue_head(list, newsk);
  1203. spin_unlock_irqrestore(&list->lock, flags);
  1204. }
  1205. /**
  1206. * skb_queue_tail - queue a buffer at the list tail
  1207. * @list: list to use
  1208. * @newsk: buffer to queue
  1209. *
  1210. * Queue a buffer at the tail of the list. This function takes the
  1211. * list lock and can be used safely with other locking &sk_buff functions
  1212. * safely.
  1213. *
  1214. * A buffer cannot be placed on two lists at the same time.
  1215. */
  1216. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
  1217. {
  1218. unsigned long flags;
  1219. spin_lock_irqsave(&list->lock, flags);
  1220. __skb_queue_tail(list, newsk);
  1221. spin_unlock_irqrestore(&list->lock, flags);
  1222. }
  1223. /**
  1224. * skb_unlink - remove a buffer from a list
  1225. * @skb: buffer to remove
  1226. * @list: list to use
  1227. *
  1228. * Remove a packet from a list. The list locks are taken and this
  1229. * function is atomic with respect to other list locked calls
  1230. *
  1231. * You must know what list the SKB is on.
  1232. */
  1233. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1234. {
  1235. unsigned long flags;
  1236. spin_lock_irqsave(&list->lock, flags);
  1237. __skb_unlink(skb, list);
  1238. spin_unlock_irqrestore(&list->lock, flags);
  1239. }
  1240. /**
  1241. * skb_append - append a buffer
  1242. * @old: buffer to insert after
  1243. * @newsk: buffer to insert
  1244. * @list: list to use
  1245. *
  1246. * Place a packet after a given packet in a list. The list locks are taken
  1247. * and this function is atomic with respect to other list locked calls.
  1248. * A buffer cannot be placed on two lists at the same time.
  1249. */
  1250. void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1251. {
  1252. unsigned long flags;
  1253. spin_lock_irqsave(&list->lock, flags);
  1254. __skb_append(old, newsk, list);
  1255. spin_unlock_irqrestore(&list->lock, flags);
  1256. }
  1257. /**
  1258. * skb_insert - insert a buffer
  1259. * @old: buffer to insert before
  1260. * @newsk: buffer to insert
  1261. * @list: list to use
  1262. *
  1263. * Place a packet before a given packet in a list. The list locks are
  1264. * taken and this function is atomic with respect to other list locked
  1265. * calls.
  1266. *
  1267. * A buffer cannot be placed on two lists at the same time.
  1268. */
  1269. void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1270. {
  1271. unsigned long flags;
  1272. spin_lock_irqsave(&list->lock, flags);
  1273. __skb_insert(newsk, old->prev, old, list);
  1274. spin_unlock_irqrestore(&list->lock, flags);
  1275. }
  1276. #if 0
  1277. /*
  1278. * Tune the memory allocator for a new MTU size.
  1279. */
  1280. void skb_add_mtu(int mtu)
  1281. {
  1282. /* Must match allocation in alloc_skb */
  1283. mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
  1284. kmem_add_cache_size(mtu);
  1285. }
  1286. #endif
  1287. static inline void skb_split_inside_header(struct sk_buff *skb,
  1288. struct sk_buff* skb1,
  1289. const u32 len, const int pos)
  1290. {
  1291. int i;
  1292. memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
  1293. /* And move data appendix as is. */
  1294. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  1295. skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
  1296. skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
  1297. skb_shinfo(skb)->nr_frags = 0;
  1298. skb1->data_len = skb->data_len;
  1299. skb1->len += skb1->data_len;
  1300. skb->data_len = 0;
  1301. skb->len = len;
  1302. skb->tail = skb->data + len;
  1303. }
  1304. static inline void skb_split_no_header(struct sk_buff *skb,
  1305. struct sk_buff* skb1,
  1306. const u32 len, int pos)
  1307. {
  1308. int i, k = 0;
  1309. const int nfrags = skb_shinfo(skb)->nr_frags;
  1310. skb_shinfo(skb)->nr_frags = 0;
  1311. skb1->len = skb1->data_len = skb->len - len;
  1312. skb->len = len;
  1313. skb->data_len = len - pos;
  1314. for (i = 0; i < nfrags; i++) {
  1315. int size = skb_shinfo(skb)->frags[i].size;
  1316. if (pos + size > len) {
  1317. skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
  1318. if (pos < len) {
  1319. /* Split frag.
  1320. * We have two variants in this case:
  1321. * 1. Move all the frag to the second
  1322. * part, if it is possible. F.e.
  1323. * this approach is mandatory for TUX,
  1324. * where splitting is expensive.
  1325. * 2. Split is accurately. We make this.
  1326. */
  1327. get_page(skb_shinfo(skb)->frags[i].page);
  1328. skb_shinfo(skb1)->frags[0].page_offset += len - pos;
  1329. skb_shinfo(skb1)->frags[0].size -= len - pos;
  1330. skb_shinfo(skb)->frags[i].size = len - pos;
  1331. skb_shinfo(skb)->nr_frags++;
  1332. }
  1333. k++;
  1334. } else
  1335. skb_shinfo(skb)->nr_frags++;
  1336. pos += size;
  1337. }
  1338. skb_shinfo(skb1)->nr_frags = k;
  1339. }
  1340. /**
  1341. * skb_split - Split fragmented skb to two parts at length len.
  1342. * @skb: the buffer to split
  1343. * @skb1: the buffer to receive the second part
  1344. * @len: new length for skb
  1345. */
  1346. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
  1347. {
  1348. int pos = skb_headlen(skb);
  1349. if (len < pos) /* Split line is inside header. */
  1350. skb_split_inside_header(skb, skb1, len, pos);
  1351. else /* Second chunk has no header, nothing to copy. */
  1352. skb_split_no_header(skb, skb1, len, pos);
  1353. }
  1354. /**
  1355. * skb_prepare_seq_read - Prepare a sequential read of skb data
  1356. * @skb: the buffer to read
  1357. * @from: lower offset of data to be read
  1358. * @to: upper offset of data to be read
  1359. * @st: state variable
  1360. *
  1361. * Initializes the specified state variable. Must be called before
  1362. * invoking skb_seq_read() for the first time.
  1363. */
  1364. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  1365. unsigned int to, struct skb_seq_state *st)
  1366. {
  1367. st->lower_offset = from;
  1368. st->upper_offset = to;
  1369. st->root_skb = st->cur_skb = skb;
  1370. st->frag_idx = st->stepped_offset = 0;
  1371. st->frag_data = NULL;
  1372. }
  1373. /**
  1374. * skb_seq_read - Sequentially read skb data
  1375. * @consumed: number of bytes consumed by the caller so far
  1376. * @data: destination pointer for data to be returned
  1377. * @st: state variable
  1378. *
  1379. * Reads a block of skb data at &consumed relative to the
  1380. * lower offset specified to skb_prepare_seq_read(). Assigns
  1381. * the head of the data block to &data and returns the length
  1382. * of the block or 0 if the end of the skb data or the upper
  1383. * offset has been reached.
  1384. *
  1385. * The caller is not required to consume all of the data
  1386. * returned, i.e. &consumed is typically set to the number
  1387. * of bytes already consumed and the next call to
  1388. * skb_seq_read() will return the remaining part of the block.
  1389. *
  1390. * Note: The size of each block of data returned can be arbitary,
  1391. * this limitation is the cost for zerocopy seqeuental
  1392. * reads of potentially non linear data.
  1393. *
  1394. * Note: Fragment lists within fragments are not implemented
  1395. * at the moment, state->root_skb could be replaced with
  1396. * a stack for this purpose.
  1397. */
  1398. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  1399. struct skb_seq_state *st)
  1400. {
  1401. unsigned int block_limit, abs_offset = consumed + st->lower_offset;
  1402. skb_frag_t *frag;
  1403. if (unlikely(abs_offset >= st->upper_offset))
  1404. return 0;
  1405. next_skb:
  1406. block_limit = skb_headlen(st->cur_skb);
  1407. if (abs_offset < block_limit) {
  1408. *data = st->cur_skb->data + abs_offset;
  1409. return block_limit - abs_offset;
  1410. }
  1411. if (st->frag_idx == 0 && !st->frag_data)
  1412. st->stepped_offset += skb_headlen(st->cur_skb);
  1413. while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
  1414. frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
  1415. block_limit = frag->size + st->stepped_offset;
  1416. if (abs_offset < block_limit) {
  1417. if (!st->frag_data)
  1418. st->frag_data = kmap_skb_frag(frag);
  1419. *data = (u8 *) st->frag_data + frag->page_offset +
  1420. (abs_offset - st->stepped_offset);
  1421. return block_limit - abs_offset;
  1422. }
  1423. if (st->frag_data) {
  1424. kunmap_skb_frag(st->frag_data);
  1425. st->frag_data = NULL;
  1426. }
  1427. st->frag_idx++;
  1428. st->stepped_offset += frag->size;
  1429. }
  1430. if (st->cur_skb->next) {
  1431. st->cur_skb = st->cur_skb->next;
  1432. st->frag_idx = 0;
  1433. goto next_skb;
  1434. } else if (st->root_skb == st->cur_skb &&
  1435. skb_shinfo(st->root_skb)->frag_list) {
  1436. st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
  1437. goto next_skb;
  1438. }
  1439. return 0;
  1440. }
  1441. /**
  1442. * skb_abort_seq_read - Abort a sequential read of skb data
  1443. * @st: state variable
  1444. *
  1445. * Must be called if skb_seq_read() was not called until it
  1446. * returned 0.
  1447. */
  1448. void skb_abort_seq_read(struct skb_seq_state *st)
  1449. {
  1450. if (st->frag_data)
  1451. kunmap_skb_frag(st->frag_data);
  1452. }
  1453. #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
  1454. static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
  1455. struct ts_config *conf,
  1456. struct ts_state *state)
  1457. {
  1458. return skb_seq_read(offset, text, TS_SKB_CB(state));
  1459. }
  1460. static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
  1461. {
  1462. skb_abort_seq_read(TS_SKB_CB(state));
  1463. }
  1464. /**
  1465. * skb_find_text - Find a text pattern in skb data
  1466. * @skb: the buffer to look in
  1467. * @from: search offset
  1468. * @to: search limit
  1469. * @config: textsearch configuration
  1470. * @state: uninitialized textsearch state variable
  1471. *
  1472. * Finds a pattern in the skb data according to the specified
  1473. * textsearch configuration. Use textsearch_next() to retrieve
  1474. * subsequent occurrences of the pattern. Returns the offset
  1475. * to the first occurrence or UINT_MAX if no match was found.
  1476. */
  1477. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  1478. unsigned int to, struct ts_config *config,
  1479. struct ts_state *state)
  1480. {
  1481. config->get_next_block = skb_ts_get_next_block;
  1482. config->finish = skb_ts_finish;
  1483. skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
  1484. return textsearch_find(config, state);
  1485. }
  1486. /**
  1487. * skb_append_datato_frags: - append the user data to a skb
  1488. * @sk: sock structure
  1489. * @skb: skb structure to be appened with user data.
  1490. * @getfrag: call back function to be used for getting the user data
  1491. * @from: pointer to user message iov
  1492. * @length: length of the iov message
  1493. *
  1494. * Description: This procedure append the user data in the fragment part
  1495. * of the skb if any page alloc fails user this procedure returns -ENOMEM
  1496. */
  1497. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  1498. int (*getfrag)(void *from, char *to, int offset,
  1499. int len, int odd, struct sk_buff *skb),
  1500. void *from, int length)
  1501. {
  1502. int frg_cnt = 0;
  1503. skb_frag_t *frag = NULL;
  1504. struct page *page = NULL;
  1505. int copy, left;
  1506. int offset = 0;
  1507. int ret;
  1508. do {
  1509. /* Return error if we don't have space for new frag */
  1510. frg_cnt = skb_shinfo(skb)->nr_frags;
  1511. if (frg_cnt >= MAX_SKB_FRAGS)
  1512. return -EFAULT;
  1513. /* allocate a new page for next frag */
  1514. page = alloc_pages(sk->sk_allocation, 0);
  1515. /* If alloc_page fails just return failure and caller will
  1516. * free previous allocated pages by doing kfree_skb()
  1517. */
  1518. if (page == NULL)
  1519. return -ENOMEM;
  1520. /* initialize the next frag */
  1521. sk->sk_sndmsg_page = page;
  1522. sk->sk_sndmsg_off = 0;
  1523. skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
  1524. skb->truesize += PAGE_SIZE;
  1525. atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
  1526. /* get the new initialized frag */
  1527. frg_cnt = skb_shinfo(skb)->nr_frags;
  1528. frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
  1529. /* copy the user data to page */
  1530. left = PAGE_SIZE - frag->page_offset;
  1531. copy = (length > left)? left : length;
  1532. ret = getfrag(from, (page_address(frag->page) +
  1533. frag->page_offset + frag->size),
  1534. offset, copy, 0, skb);
  1535. if (ret < 0)
  1536. return -EFAULT;
  1537. /* copy was successful so update the size parameters */
  1538. sk->sk_sndmsg_off += copy;
  1539. frag->size += copy;
  1540. skb->len += copy;
  1541. skb->data_len += copy;
  1542. offset += copy;
  1543. length -= copy;
  1544. } while (length > 0);
  1545. return 0;
  1546. }
  1547. void __init skb_init(void)
  1548. {
  1549. skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
  1550. sizeof(struct sk_buff),
  1551. 0,
  1552. SLAB_HWCACHE_ALIGN,
  1553. NULL, NULL);
  1554. if (!skbuff_head_cache)
  1555. panic("cannot create skbuff cache");
  1556. skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
  1557. (2*sizeof(struct sk_buff)) +
  1558. sizeof(atomic_t),
  1559. 0,
  1560. SLAB_HWCACHE_ALIGN,
  1561. NULL, NULL);
  1562. if (!skbuff_fclone_cache)
  1563. panic("cannot create skbuff cache");
  1564. }
  1565. EXPORT_SYMBOL(___pskb_trim);
  1566. EXPORT_SYMBOL(__kfree_skb);
  1567. EXPORT_SYMBOL(__pskb_pull_tail);
  1568. EXPORT_SYMBOL(__alloc_skb);
  1569. EXPORT_SYMBOL(pskb_copy);
  1570. EXPORT_SYMBOL(pskb_expand_head);
  1571. EXPORT_SYMBOL(skb_checksum);
  1572. EXPORT_SYMBOL(skb_clone);
  1573. EXPORT_SYMBOL(skb_clone_fraglist);
  1574. EXPORT_SYMBOL(skb_copy);
  1575. EXPORT_SYMBOL(skb_copy_and_csum_bits);
  1576. EXPORT_SYMBOL(skb_copy_and_csum_dev);
  1577. EXPORT_SYMBOL(skb_copy_bits);
  1578. EXPORT_SYMBOL(skb_copy_expand);
  1579. EXPORT_SYMBOL(skb_over_panic);
  1580. EXPORT_SYMBOL(skb_pad);
  1581. EXPORT_SYMBOL(skb_realloc_headroom);
  1582. EXPORT_SYMBOL(skb_under_panic);
  1583. EXPORT_SYMBOL(skb_dequeue);
  1584. EXPORT_SYMBOL(skb_dequeue_tail);
  1585. EXPORT_SYMBOL(skb_insert);
  1586. EXPORT_SYMBOL(skb_queue_purge);
  1587. EXPORT_SYMBOL(skb_queue_head);
  1588. EXPORT_SYMBOL(skb_queue_tail);
  1589. EXPORT_SYMBOL(skb_unlink);
  1590. EXPORT_SYMBOL(skb_append);
  1591. EXPORT_SYMBOL(skb_split);
  1592. EXPORT_SYMBOL(skb_prepare_seq_read);
  1593. EXPORT_SYMBOL(skb_seq_read);
  1594. EXPORT_SYMBOL(skb_abort_seq_read);
  1595. EXPORT_SYMBOL(skb_find_text);
  1596. EXPORT_SYMBOL(skb_append_datato_frags);