123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923 |
- /*
- * linux/mm/vmscan.c
- *
- * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
- *
- * Swap reorganised 29.12.95, Stephen Tweedie.
- * kswapd added: 7.1.96 sct
- * Removed kswapd_ctl limits, and swap out as many pages as needed
- * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
- * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
- * Multiqueue VM started 5.8.00, Rik van Riel.
- */
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/slab.h>
- #include <linux/kernel_stat.h>
- #include <linux/swap.h>
- #include <linux/pagemap.h>
- #include <linux/init.h>
- #include <linux/highmem.h>
- #include <linux/file.h>
- #include <linux/writeback.h>
- #include <linux/blkdev.h>
- #include <linux/buffer_head.h> /* for try_to_release_page(),
- buffer_heads_over_limit */
- #include <linux/mm_inline.h>
- #include <linux/pagevec.h>
- #include <linux/backing-dev.h>
- #include <linux/rmap.h>
- #include <linux/topology.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/notifier.h>
- #include <linux/rwsem.h>
- #include <asm/tlbflush.h>
- #include <asm/div64.h>
- #include <linux/swapops.h>
- /* possible outcome of pageout() */
- typedef enum {
- /* failed to write page out, page is locked */
- PAGE_KEEP,
- /* move page to the active list, page is locked */
- PAGE_ACTIVATE,
- /* page has been sent to the disk successfully, page is unlocked */
- PAGE_SUCCESS,
- /* page is clean and locked */
- PAGE_CLEAN,
- } pageout_t;
- struct scan_control {
- /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
- unsigned long nr_to_scan;
- /* Incremented by the number of inactive pages that were scanned */
- unsigned long nr_scanned;
- /* Incremented by the number of pages reclaimed */
- unsigned long nr_reclaimed;
- unsigned long nr_mapped; /* From page_state */
- /* Ask shrink_caches, or shrink_zone to scan at this priority */
- unsigned int priority;
- /* This context's GFP mask */
- gfp_t gfp_mask;
- int may_writepage;
- /* Can pages be swapped as part of reclaim? */
- int may_swap;
- /* This context's SWAP_CLUSTER_MAX. If freeing memory for
- * suspend, we effectively ignore SWAP_CLUSTER_MAX.
- * In this context, it doesn't matter that we scan the
- * whole list at once. */
- int swap_cluster_max;
- };
- /*
- * The list of shrinker callbacks used by to apply pressure to
- * ageable caches.
- */
- struct shrinker {
- shrinker_t shrinker;
- struct list_head list;
- int seeks; /* seeks to recreate an obj */
- long nr; /* objs pending delete */
- };
- #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
- #ifdef ARCH_HAS_PREFETCH
- #define prefetch_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetch(&prev->_field); \
- } \
- } while (0)
- #else
- #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
- #endif
- #ifdef ARCH_HAS_PREFETCHW
- #define prefetchw_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetchw(&prev->_field); \
- } \
- } while (0)
- #else
- #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
- #endif
- /*
- * From 0 .. 100. Higher means more swappy.
- */
- int vm_swappiness = 60;
- static long total_memory;
- static LIST_HEAD(shrinker_list);
- static DECLARE_RWSEM(shrinker_rwsem);
- /*
- * Add a shrinker callback to be called from the vm
- */
- struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
- {
- struct shrinker *shrinker;
- shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
- if (shrinker) {
- shrinker->shrinker = theshrinker;
- shrinker->seeks = seeks;
- shrinker->nr = 0;
- down_write(&shrinker_rwsem);
- list_add_tail(&shrinker->list, &shrinker_list);
- up_write(&shrinker_rwsem);
- }
- return shrinker;
- }
- EXPORT_SYMBOL(set_shrinker);
- /*
- * Remove one
- */
- void remove_shrinker(struct shrinker *shrinker)
- {
- down_write(&shrinker_rwsem);
- list_del(&shrinker->list);
- up_write(&shrinker_rwsem);
- kfree(shrinker);
- }
- EXPORT_SYMBOL(remove_shrinker);
- #define SHRINK_BATCH 128
- /*
- * Call the shrink functions to age shrinkable caches
- *
- * Here we assume it costs one seek to replace a lru page and that it also
- * takes a seek to recreate a cache object. With this in mind we age equal
- * percentages of the lru and ageable caches. This should balance the seeks
- * generated by these structures.
- *
- * If the vm encounted mapped pages on the LRU it increase the pressure on
- * slab to avoid swapping.
- *
- * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
- *
- * `lru_pages' represents the number of on-LRU pages in all the zones which
- * are eligible for the caller's allocation attempt. It is used for balancing
- * slab reclaim versus page reclaim.
- *
- * Returns the number of slab objects which we shrunk.
- */
- int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
- {
- struct shrinker *shrinker;
- int ret = 0;
- if (scanned == 0)
- scanned = SWAP_CLUSTER_MAX;
- if (!down_read_trylock(&shrinker_rwsem))
- return 1; /* Assume we'll be able to shrink next time */
- list_for_each_entry(shrinker, &shrinker_list, list) {
- unsigned long long delta;
- unsigned long total_scan;
- unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
- delta = (4 * scanned) / shrinker->seeks;
- delta *= max_pass;
- do_div(delta, lru_pages + 1);
- shrinker->nr += delta;
- if (shrinker->nr < 0) {
- printk(KERN_ERR "%s: nr=%ld\n",
- __FUNCTION__, shrinker->nr);
- shrinker->nr = max_pass;
- }
- /*
- * Avoid risking looping forever due to too large nr value:
- * never try to free more than twice the estimate number of
- * freeable entries.
- */
- if (shrinker->nr > max_pass * 2)
- shrinker->nr = max_pass * 2;
- total_scan = shrinker->nr;
- shrinker->nr = 0;
- while (total_scan >= SHRINK_BATCH) {
- long this_scan = SHRINK_BATCH;
- int shrink_ret;
- int nr_before;
- nr_before = (*shrinker->shrinker)(0, gfp_mask);
- shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
- if (shrink_ret == -1)
- break;
- if (shrink_ret < nr_before)
- ret += nr_before - shrink_ret;
- mod_page_state(slabs_scanned, this_scan);
- total_scan -= this_scan;
- cond_resched();
- }
- shrinker->nr += total_scan;
- }
- up_read(&shrinker_rwsem);
- return ret;
- }
- /* Called without lock on whether page is mapped, so answer is unstable */
- static inline int page_mapping_inuse(struct page *page)
- {
- struct address_space *mapping;
- /* Page is in somebody's page tables. */
- if (page_mapped(page))
- return 1;
- /* Be more reluctant to reclaim swapcache than pagecache */
- if (PageSwapCache(page))
- return 1;
- mapping = page_mapping(page);
- if (!mapping)
- return 0;
- /* File is mmap'd by somebody? */
- return mapping_mapped(mapping);
- }
- static inline int is_page_cache_freeable(struct page *page)
- {
- return page_count(page) - !!PagePrivate(page) == 2;
- }
- static int may_write_to_queue(struct backing_dev_info *bdi)
- {
- if (current->flags & PF_SWAPWRITE)
- return 1;
- if (!bdi_write_congested(bdi))
- return 1;
- if (bdi == current->backing_dev_info)
- return 1;
- return 0;
- }
- /*
- * We detected a synchronous write error writing a page out. Probably
- * -ENOSPC. We need to propagate that into the address_space for a subsequent
- * fsync(), msync() or close().
- *
- * The tricky part is that after writepage we cannot touch the mapping: nothing
- * prevents it from being freed up. But we have a ref on the page and once
- * that page is locked, the mapping is pinned.
- *
- * We're allowed to run sleeping lock_page() here because we know the caller has
- * __GFP_FS.
- */
- static void handle_write_error(struct address_space *mapping,
- struct page *page, int error)
- {
- lock_page(page);
- if (page_mapping(page) == mapping) {
- if (error == -ENOSPC)
- set_bit(AS_ENOSPC, &mapping->flags);
- else
- set_bit(AS_EIO, &mapping->flags);
- }
- unlock_page(page);
- }
- /*
- * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
- */
- static pageout_t pageout(struct page *page, struct address_space *mapping)
- {
- /*
- * If the page is dirty, only perform writeback if that write
- * will be non-blocking. To prevent this allocation from being
- * stalled by pagecache activity. But note that there may be
- * stalls if we need to run get_block(). We could test
- * PagePrivate for that.
- *
- * If this process is currently in generic_file_write() against
- * this page's queue, we can perform writeback even if that
- * will block.
- *
- * If the page is swapcache, write it back even if that would
- * block, for some throttling. This happens by accident, because
- * swap_backing_dev_info is bust: it doesn't reflect the
- * congestion state of the swapdevs. Easy to fix, if needed.
- * See swapfile.c:page_queue_congested().
- */
- if (!is_page_cache_freeable(page))
- return PAGE_KEEP;
- if (!mapping) {
- /*
- * Some data journaling orphaned pages can have
- * page->mapping == NULL while being dirty with clean buffers.
- */
- if (PagePrivate(page)) {
- if (try_to_free_buffers(page)) {
- ClearPageDirty(page);
- printk("%s: orphaned page\n", __FUNCTION__);
- return PAGE_CLEAN;
- }
- }
- return PAGE_KEEP;
- }
- if (mapping->a_ops->writepage == NULL)
- return PAGE_ACTIVATE;
- if (!may_write_to_queue(mapping->backing_dev_info))
- return PAGE_KEEP;
- if (clear_page_dirty_for_io(page)) {
- int res;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_NONE,
- .nr_to_write = SWAP_CLUSTER_MAX,
- .nonblocking = 1,
- .for_reclaim = 1,
- };
- SetPageReclaim(page);
- res = mapping->a_ops->writepage(page, &wbc);
- if (res < 0)
- handle_write_error(mapping, page, res);
- if (res == AOP_WRITEPAGE_ACTIVATE) {
- ClearPageReclaim(page);
- return PAGE_ACTIVATE;
- }
- if (!PageWriteback(page)) {
- /* synchronous write or broken a_ops? */
- ClearPageReclaim(page);
- }
- return PAGE_SUCCESS;
- }
- return PAGE_CLEAN;
- }
- static int remove_mapping(struct address_space *mapping, struct page *page)
- {
- if (!mapping)
- return 0; /* truncate got there first */
- write_lock_irq(&mapping->tree_lock);
- /*
- * The non-racy check for busy page. It is critical to check
- * PageDirty _after_ making sure that the page is freeable and
- * not in use by anybody. (pagecache + us == 2)
- */
- if (unlikely(page_count(page) != 2))
- goto cannot_free;
- smp_rmb();
- if (unlikely(PageDirty(page)))
- goto cannot_free;
- if (PageSwapCache(page)) {
- swp_entry_t swap = { .val = page_private(page) };
- __delete_from_swap_cache(page);
- write_unlock_irq(&mapping->tree_lock);
- swap_free(swap);
- __put_page(page); /* The pagecache ref */
- return 1;
- }
- __remove_from_page_cache(page);
- write_unlock_irq(&mapping->tree_lock);
- __put_page(page);
- return 1;
- cannot_free:
- write_unlock_irq(&mapping->tree_lock);
- return 0;
- }
- /*
- * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
- */
- static int shrink_list(struct list_head *page_list, struct scan_control *sc)
- {
- LIST_HEAD(ret_pages);
- struct pagevec freed_pvec;
- int pgactivate = 0;
- int reclaimed = 0;
- cond_resched();
- pagevec_init(&freed_pvec, 1);
- while (!list_empty(page_list)) {
- struct address_space *mapping;
- struct page *page;
- int may_enter_fs;
- int referenced;
- cond_resched();
- page = lru_to_page(page_list);
- list_del(&page->lru);
- if (TestSetPageLocked(page))
- goto keep;
- BUG_ON(PageActive(page));
- sc->nr_scanned++;
- /* Double the slab pressure for mapped and swapcache pages */
- if (page_mapped(page) || PageSwapCache(page))
- sc->nr_scanned++;
- if (PageWriteback(page))
- goto keep_locked;
- referenced = page_referenced(page, 1);
- /* In active use or really unfreeable? Activate it. */
- if (referenced && page_mapping_inuse(page))
- goto activate_locked;
- #ifdef CONFIG_SWAP
- /*
- * Anonymous process memory has backing store?
- * Try to allocate it some swap space here.
- */
- if (PageAnon(page) && !PageSwapCache(page)) {
- if (!sc->may_swap)
- goto keep_locked;
- if (!add_to_swap(page, GFP_ATOMIC))
- goto activate_locked;
- }
- #endif /* CONFIG_SWAP */
- mapping = page_mapping(page);
- may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
- (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
- /*
- * The page is mapped into the page tables of one or more
- * processes. Try to unmap it here.
- */
- if (page_mapped(page) && mapping) {
- /*
- * No unmapping if we do not swap
- */
- if (!sc->may_swap)
- goto keep_locked;
- switch (try_to_unmap(page, 0)) {
- case SWAP_FAIL:
- goto activate_locked;
- case SWAP_AGAIN:
- goto keep_locked;
- case SWAP_SUCCESS:
- ; /* try to free the page below */
- }
- }
- if (PageDirty(page)) {
- if (referenced)
- goto keep_locked;
- if (!may_enter_fs)
- goto keep_locked;
- if (!sc->may_writepage)
- goto keep_locked;
- /* Page is dirty, try to write it out here */
- switch(pageout(page, mapping)) {
- case PAGE_KEEP:
- goto keep_locked;
- case PAGE_ACTIVATE:
- goto activate_locked;
- case PAGE_SUCCESS:
- if (PageWriteback(page) || PageDirty(page))
- goto keep;
- /*
- * A synchronous write - probably a ramdisk. Go
- * ahead and try to reclaim the page.
- */
- if (TestSetPageLocked(page))
- goto keep;
- if (PageDirty(page) || PageWriteback(page))
- goto keep_locked;
- mapping = page_mapping(page);
- case PAGE_CLEAN:
- ; /* try to free the page below */
- }
- }
- /*
- * If the page has buffers, try to free the buffer mappings
- * associated with this page. If we succeed we try to free
- * the page as well.
- *
- * We do this even if the page is PageDirty().
- * try_to_release_page() does not perform I/O, but it is
- * possible for a page to have PageDirty set, but it is actually
- * clean (all its buffers are clean). This happens if the
- * buffers were written out directly, with submit_bh(). ext3
- * will do this, as well as the blockdev mapping.
- * try_to_release_page() will discover that cleanness and will
- * drop the buffers and mark the page clean - it can be freed.
- *
- * Rarely, pages can have buffers and no ->mapping. These are
- * the pages which were not successfully invalidated in
- * truncate_complete_page(). We try to drop those buffers here
- * and if that worked, and the page is no longer mapped into
- * process address space (page_count == 1) it can be freed.
- * Otherwise, leave the page on the LRU so it is swappable.
- */
- if (PagePrivate(page)) {
- if (!try_to_release_page(page, sc->gfp_mask))
- goto activate_locked;
- if (!mapping && page_count(page) == 1)
- goto free_it;
- }
- if (!remove_mapping(mapping, page))
- goto keep_locked;
- free_it:
- unlock_page(page);
- reclaimed++;
- if (!pagevec_add(&freed_pvec, page))
- __pagevec_release_nonlru(&freed_pvec);
- continue;
- activate_locked:
- SetPageActive(page);
- pgactivate++;
- keep_locked:
- unlock_page(page);
- keep:
- list_add(&page->lru, &ret_pages);
- BUG_ON(PageLRU(page));
- }
- list_splice(&ret_pages, page_list);
- if (pagevec_count(&freed_pvec))
- __pagevec_release_nonlru(&freed_pvec);
- mod_page_state(pgactivate, pgactivate);
- sc->nr_reclaimed += reclaimed;
- return reclaimed;
- }
- #ifdef CONFIG_MIGRATION
- static inline void move_to_lru(struct page *page)
- {
- list_del(&page->lru);
- if (PageActive(page)) {
- /*
- * lru_cache_add_active checks that
- * the PG_active bit is off.
- */
- ClearPageActive(page);
- lru_cache_add_active(page);
- } else {
- lru_cache_add(page);
- }
- put_page(page);
- }
- /*
- * Add isolated pages on the list back to the LRU.
- *
- * returns the number of pages put back.
- */
- int putback_lru_pages(struct list_head *l)
- {
- struct page *page;
- struct page *page2;
- int count = 0;
- list_for_each_entry_safe(page, page2, l, lru) {
- move_to_lru(page);
- count++;
- }
- return count;
- }
- /*
- * Non migratable page
- */
- int fail_migrate_page(struct page *newpage, struct page *page)
- {
- return -EIO;
- }
- EXPORT_SYMBOL(fail_migrate_page);
- /*
- * swapout a single page
- * page is locked upon entry, unlocked on exit
- */
- static int swap_page(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- if (page_mapped(page) && mapping)
- if (try_to_unmap(page, 0) != SWAP_SUCCESS)
- goto unlock_retry;
- if (PageDirty(page)) {
- /* Page is dirty, try to write it out here */
- switch(pageout(page, mapping)) {
- case PAGE_KEEP:
- case PAGE_ACTIVATE:
- goto unlock_retry;
- case PAGE_SUCCESS:
- goto retry;
- case PAGE_CLEAN:
- ; /* try to free the page below */
- }
- }
- if (PagePrivate(page)) {
- if (!try_to_release_page(page, GFP_KERNEL) ||
- (!mapping && page_count(page) == 1))
- goto unlock_retry;
- }
- if (remove_mapping(mapping, page)) {
- /* Success */
- unlock_page(page);
- return 0;
- }
- unlock_retry:
- unlock_page(page);
- retry:
- return -EAGAIN;
- }
- EXPORT_SYMBOL(swap_page);
- /*
- * Page migration was first developed in the context of the memory hotplug
- * project. The main authors of the migration code are:
- *
- * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
- * Hirokazu Takahashi <taka@valinux.co.jp>
- * Dave Hansen <haveblue@us.ibm.com>
- * Christoph Lameter <clameter@sgi.com>
- */
- /*
- * Remove references for a page and establish the new page with the correct
- * basic settings to be able to stop accesses to the page.
- */
- int migrate_page_remove_references(struct page *newpage,
- struct page *page, int nr_refs)
- {
- struct address_space *mapping = page_mapping(page);
- struct page **radix_pointer;
- /*
- * Avoid doing any of the following work if the page count
- * indicates that the page is in use or truncate has removed
- * the page.
- */
- if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
- return 1;
- /*
- * Establish swap ptes for anonymous pages or destroy pte
- * maps for files.
- *
- * In order to reestablish file backed mappings the fault handlers
- * will take the radix tree_lock which may then be used to stop
- * processses from accessing this page until the new page is ready.
- *
- * A process accessing via a swap pte (an anonymous page) will take a
- * page_lock on the old page which will block the process until the
- * migration attempt is complete. At that time the PageSwapCache bit
- * will be examined. If the page was migrated then the PageSwapCache
- * bit will be clear and the operation to retrieve the page will be
- * retried which will find the new page in the radix tree. Then a new
- * direct mapping may be generated based on the radix tree contents.
- *
- * If the page was not migrated then the PageSwapCache bit
- * is still set and the operation may continue.
- */
- try_to_unmap(page, 1);
- /*
- * Give up if we were unable to remove all mappings.
- */
- if (page_mapcount(page))
- return 1;
- write_lock_irq(&mapping->tree_lock);
- radix_pointer = (struct page **)radix_tree_lookup_slot(
- &mapping->page_tree,
- page_index(page));
- if (!page_mapping(page) || page_count(page) != nr_refs ||
- *radix_pointer != page) {
- write_unlock_irq(&mapping->tree_lock);
- return 1;
- }
- /*
- * Now we know that no one else is looking at the page.
- *
- * Certain minimal information about a page must be available
- * in order for other subsystems to properly handle the page if they
- * find it through the radix tree update before we are finished
- * copying the page.
- */
- get_page(newpage);
- newpage->index = page->index;
- newpage->mapping = page->mapping;
- if (PageSwapCache(page)) {
- SetPageSwapCache(newpage);
- set_page_private(newpage, page_private(page));
- }
- *radix_pointer = newpage;
- __put_page(page);
- write_unlock_irq(&mapping->tree_lock);
- return 0;
- }
- EXPORT_SYMBOL(migrate_page_remove_references);
- /*
- * Copy the page to its new location
- */
- void migrate_page_copy(struct page *newpage, struct page *page)
- {
- copy_highpage(newpage, page);
- if (PageError(page))
- SetPageError(newpage);
- if (PageReferenced(page))
- SetPageReferenced(newpage);
- if (PageUptodate(page))
- SetPageUptodate(newpage);
- if (PageActive(page))
- SetPageActive(newpage);
- if (PageChecked(page))
- SetPageChecked(newpage);
- if (PageMappedToDisk(page))
- SetPageMappedToDisk(newpage);
- if (PageDirty(page)) {
- clear_page_dirty_for_io(page);
- set_page_dirty(newpage);
- }
- ClearPageSwapCache(page);
- ClearPageActive(page);
- ClearPagePrivate(page);
- set_page_private(page, 0);
- page->mapping = NULL;
- /*
- * If any waiters have accumulated on the new page then
- * wake them up.
- */
- if (PageWriteback(newpage))
- end_page_writeback(newpage);
- }
- EXPORT_SYMBOL(migrate_page_copy);
- /*
- * Common logic to directly migrate a single page suitable for
- * pages that do not use PagePrivate.
- *
- * Pages are locked upon entry and exit.
- */
- int migrate_page(struct page *newpage, struct page *page)
- {
- BUG_ON(PageWriteback(page)); /* Writeback must be complete */
- if (migrate_page_remove_references(newpage, page, 2))
- return -EAGAIN;
- migrate_page_copy(newpage, page);
- /*
- * Remove auxiliary swap entries and replace
- * them with real ptes.
- *
- * Note that a real pte entry will allow processes that are not
- * waiting on the page lock to use the new page via the page tables
- * before the new page is unlocked.
- */
- remove_from_swap(newpage);
- return 0;
- }
- EXPORT_SYMBOL(migrate_page);
- /*
- * migrate_pages
- *
- * Two lists are passed to this function. The first list
- * contains the pages isolated from the LRU to be migrated.
- * The second list contains new pages that the pages isolated
- * can be moved to. If the second list is NULL then all
- * pages are swapped out.
- *
- * The function returns after 10 attempts or if no pages
- * are movable anymore because t has become empty
- * or no retryable pages exist anymore.
- *
- * Return: Number of pages not migrated when "to" ran empty.
- */
- int migrate_pages(struct list_head *from, struct list_head *to,
- struct list_head *moved, struct list_head *failed)
- {
- int retry;
- int nr_failed = 0;
- int pass = 0;
- struct page *page;
- struct page *page2;
- int swapwrite = current->flags & PF_SWAPWRITE;
- int rc;
- if (!swapwrite)
- current->flags |= PF_SWAPWRITE;
- redo:
- retry = 0;
- list_for_each_entry_safe(page, page2, from, lru) {
- struct page *newpage = NULL;
- struct address_space *mapping;
- cond_resched();
- rc = 0;
- if (page_count(page) == 1)
- /* page was freed from under us. So we are done. */
- goto next;
- if (to && list_empty(to))
- break;
- /*
- * Skip locked pages during the first two passes to give the
- * functions holding the lock time to release the page. Later we
- * use lock_page() to have a higher chance of acquiring the
- * lock.
- */
- rc = -EAGAIN;
- if (pass > 2)
- lock_page(page);
- else
- if (TestSetPageLocked(page))
- goto next;
- /*
- * Only wait on writeback if we have already done a pass where
- * we we may have triggered writeouts for lots of pages.
- */
- if (pass > 0) {
- wait_on_page_writeback(page);
- } else {
- if (PageWriteback(page))
- goto unlock_page;
- }
- /*
- * Anonymous pages must have swap cache references otherwise
- * the information contained in the page maps cannot be
- * preserved.
- */
- if (PageAnon(page) && !PageSwapCache(page)) {
- if (!add_to_swap(page, GFP_KERNEL)) {
- rc = -ENOMEM;
- goto unlock_page;
- }
- }
- if (!to) {
- rc = swap_page(page);
- goto next;
- }
- newpage = lru_to_page(to);
- lock_page(newpage);
- /*
- * Pages are properly locked and writeback is complete.
- * Try to migrate the page.
- */
- mapping = page_mapping(page);
- if (!mapping)
- goto unlock_both;
- if (mapping->a_ops->migratepage) {
- rc = mapping->a_ops->migratepage(newpage, page);
- goto unlock_both;
- }
- /*
- * Trigger writeout if page is dirty
- */
- if (PageDirty(page)) {
- switch (pageout(page, mapping)) {
- case PAGE_KEEP:
- case PAGE_ACTIVATE:
- goto unlock_both;
- case PAGE_SUCCESS:
- unlock_page(newpage);
- goto next;
- case PAGE_CLEAN:
- ; /* try to migrate the page below */
- }
- }
- /*
- * If we have no buffer or can release the buffer
- * then do a simple migration.
- */
- if (!page_has_buffers(page) ||
- try_to_release_page(page, GFP_KERNEL)) {
- rc = migrate_page(newpage, page);
- goto unlock_both;
- }
- /*
- * On early passes with mapped pages simply
- * retry. There may be a lock held for some
- * buffers that may go away. Later
- * swap them out.
- */
- if (pass > 4) {
- unlock_page(newpage);
- newpage = NULL;
- rc = swap_page(page);
- goto next;
- }
- unlock_both:
- unlock_page(newpage);
- unlock_page:
- unlock_page(page);
- next:
- if (rc == -EAGAIN) {
- retry++;
- } else if (rc) {
- /* Permanent failure */
- list_move(&page->lru, failed);
- nr_failed++;
- } else {
- if (newpage) {
- /* Successful migration. Return page to LRU */
- move_to_lru(newpage);
- }
- list_move(&page->lru, moved);
- }
- }
- if (retry && pass++ < 10)
- goto redo;
- if (!swapwrite)
- current->flags &= ~PF_SWAPWRITE;
- return nr_failed + retry;
- }
- /*
- * Isolate one page from the LRU lists and put it on the
- * indicated list with elevated refcount.
- *
- * Result:
- * 0 = page not on LRU list
- * 1 = page removed from LRU list and added to the specified list.
- */
- int isolate_lru_page(struct page *page)
- {
- int ret = 0;
- if (PageLRU(page)) {
- struct zone *zone = page_zone(page);
- spin_lock_irq(&zone->lru_lock);
- if (TestClearPageLRU(page)) {
- ret = 1;
- get_page(page);
- if (PageActive(page))
- del_page_from_active_list(zone, page);
- else
- del_page_from_inactive_list(zone, page);
- }
- spin_unlock_irq(&zone->lru_lock);
- }
- return ret;
- }
- #endif
- /*
- * zone->lru_lock is heavily contended. Some of the functions that
- * shrink the lists perform better by taking out a batch of pages
- * and working on them outside the LRU lock.
- *
- * For pagecache intensive workloads, this function is the hottest
- * spot in the kernel (apart from copy_*_user functions).
- *
- * Appropriate locks must be held before calling this function.
- *
- * @nr_to_scan: The number of pages to look through on the list.
- * @src: The LRU list to pull pages off.
- * @dst: The temp list to put pages on to.
- * @scanned: The number of pages that were scanned.
- *
- * returns how many pages were moved onto *@dst.
- */
- static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
- struct list_head *dst, int *scanned)
- {
- int nr_taken = 0;
- struct page *page;
- int scan = 0;
- while (scan++ < nr_to_scan && !list_empty(src)) {
- page = lru_to_page(src);
- prefetchw_prev_lru_page(page, src, flags);
- if (!TestClearPageLRU(page))
- BUG();
- list_del(&page->lru);
- if (get_page_testone(page)) {
- /*
- * It is being freed elsewhere
- */
- __put_page(page);
- SetPageLRU(page);
- list_add(&page->lru, src);
- continue;
- } else {
- list_add(&page->lru, dst);
- nr_taken++;
- }
- }
- *scanned = scan;
- return nr_taken;
- }
- /*
- * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
- */
- static void shrink_cache(struct zone *zone, struct scan_control *sc)
- {
- LIST_HEAD(page_list);
- struct pagevec pvec;
- int max_scan = sc->nr_to_scan;
- pagevec_init(&pvec, 1);
- lru_add_drain();
- spin_lock_irq(&zone->lru_lock);
- while (max_scan > 0) {
- struct page *page;
- int nr_taken;
- int nr_scan;
- int nr_freed;
- nr_taken = isolate_lru_pages(sc->swap_cluster_max,
- &zone->inactive_list,
- &page_list, &nr_scan);
- zone->nr_inactive -= nr_taken;
- zone->pages_scanned += nr_scan;
- spin_unlock_irq(&zone->lru_lock);
- if (nr_taken == 0)
- goto done;
- max_scan -= nr_scan;
- nr_freed = shrink_list(&page_list, sc);
- local_irq_disable();
- if (current_is_kswapd()) {
- __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
- __mod_page_state(kswapd_steal, nr_freed);
- } else
- __mod_page_state_zone(zone, pgscan_direct, nr_scan);
- __mod_page_state_zone(zone, pgsteal, nr_freed);
- spin_lock(&zone->lru_lock);
- /*
- * Put back any unfreeable pages.
- */
- while (!list_empty(&page_list)) {
- page = lru_to_page(&page_list);
- if (TestSetPageLRU(page))
- BUG();
- list_del(&page->lru);
- if (PageActive(page))
- add_page_to_active_list(zone, page);
- else
- add_page_to_inactive_list(zone, page);
- if (!pagevec_add(&pvec, page)) {
- spin_unlock_irq(&zone->lru_lock);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- }
- spin_unlock_irq(&zone->lru_lock);
- done:
- pagevec_release(&pvec);
- }
- /*
- * This moves pages from the active list to the inactive list.
- *
- * We move them the other way if the page is referenced by one or more
- * processes, from rmap.
- *
- * If the pages are mostly unmapped, the processing is fast and it is
- * appropriate to hold zone->lru_lock across the whole operation. But if
- * the pages are mapped, the processing is slow (page_referenced()) so we
- * should drop zone->lru_lock around each page. It's impossible to balance
- * this, so instead we remove the pages from the LRU while processing them.
- * It is safe to rely on PG_active against the non-LRU pages in here because
- * nobody will play with that bit on a non-LRU page.
- *
- * The downside is that we have to touch page->_count against each page.
- * But we had to alter page->flags anyway.
- */
- static void
- refill_inactive_zone(struct zone *zone, struct scan_control *sc)
- {
- int pgmoved;
- int pgdeactivate = 0;
- int pgscanned;
- int nr_pages = sc->nr_to_scan;
- LIST_HEAD(l_hold); /* The pages which were snipped off */
- LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
- LIST_HEAD(l_active); /* Pages to go onto the active_list */
- struct page *page;
- struct pagevec pvec;
- int reclaim_mapped = 0;
- long mapped_ratio;
- long distress;
- long swap_tendency;
- lru_add_drain();
- spin_lock_irq(&zone->lru_lock);
- pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
- &l_hold, &pgscanned);
- zone->pages_scanned += pgscanned;
- zone->nr_active -= pgmoved;
- spin_unlock_irq(&zone->lru_lock);
- /*
- * `distress' is a measure of how much trouble we're having reclaiming
- * pages. 0 -> no problems. 100 -> great trouble.
- */
- distress = 100 >> zone->prev_priority;
- /*
- * The point of this algorithm is to decide when to start reclaiming
- * mapped memory instead of just pagecache. Work out how much memory
- * is mapped.
- */
- mapped_ratio = (sc->nr_mapped * 100) / total_memory;
- /*
- * Now decide how much we really want to unmap some pages. The mapped
- * ratio is downgraded - just because there's a lot of mapped memory
- * doesn't necessarily mean that page reclaim isn't succeeding.
- *
- * The distress ratio is important - we don't want to start going oom.
- *
- * A 100% value of vm_swappiness overrides this algorithm altogether.
- */
- swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
- /*
- * Now use this metric to decide whether to start moving mapped memory
- * onto the inactive list.
- */
- if (swap_tendency >= 100)
- reclaim_mapped = 1;
- while (!list_empty(&l_hold)) {
- cond_resched();
- page = lru_to_page(&l_hold);
- list_del(&page->lru);
- if (page_mapped(page)) {
- if (!reclaim_mapped ||
- (total_swap_pages == 0 && PageAnon(page)) ||
- page_referenced(page, 0)) {
- list_add(&page->lru, &l_active);
- continue;
- }
- }
- list_add(&page->lru, &l_inactive);
- }
- pagevec_init(&pvec, 1);
- pgmoved = 0;
- spin_lock_irq(&zone->lru_lock);
- while (!list_empty(&l_inactive)) {
- page = lru_to_page(&l_inactive);
- prefetchw_prev_lru_page(page, &l_inactive, flags);
- if (TestSetPageLRU(page))
- BUG();
- if (!TestClearPageActive(page))
- BUG();
- list_move(&page->lru, &zone->inactive_list);
- pgmoved++;
- if (!pagevec_add(&pvec, page)) {
- zone->nr_inactive += pgmoved;
- spin_unlock_irq(&zone->lru_lock);
- pgdeactivate += pgmoved;
- pgmoved = 0;
- if (buffer_heads_over_limit)
- pagevec_strip(&pvec);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- zone->nr_inactive += pgmoved;
- pgdeactivate += pgmoved;
- if (buffer_heads_over_limit) {
- spin_unlock_irq(&zone->lru_lock);
- pagevec_strip(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- pgmoved = 0;
- while (!list_empty(&l_active)) {
- page = lru_to_page(&l_active);
- prefetchw_prev_lru_page(page, &l_active, flags);
- if (TestSetPageLRU(page))
- BUG();
- BUG_ON(!PageActive(page));
- list_move(&page->lru, &zone->active_list);
- pgmoved++;
- if (!pagevec_add(&pvec, page)) {
- zone->nr_active += pgmoved;
- pgmoved = 0;
- spin_unlock_irq(&zone->lru_lock);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- zone->nr_active += pgmoved;
- spin_unlock(&zone->lru_lock);
- __mod_page_state_zone(zone, pgrefill, pgscanned);
- __mod_page_state(pgdeactivate, pgdeactivate);
- local_irq_enable();
- pagevec_release(&pvec);
- }
- /*
- * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
- */
- static void
- shrink_zone(struct zone *zone, struct scan_control *sc)
- {
- unsigned long nr_active;
- unsigned long nr_inactive;
- atomic_inc(&zone->reclaim_in_progress);
- /*
- * Add one to `nr_to_scan' just to make sure that the kernel will
- * slowly sift through the active list.
- */
- zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
- nr_active = zone->nr_scan_active;
- if (nr_active >= sc->swap_cluster_max)
- zone->nr_scan_active = 0;
- else
- nr_active = 0;
- zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
- nr_inactive = zone->nr_scan_inactive;
- if (nr_inactive >= sc->swap_cluster_max)
- zone->nr_scan_inactive = 0;
- else
- nr_inactive = 0;
- while (nr_active || nr_inactive) {
- if (nr_active) {
- sc->nr_to_scan = min(nr_active,
- (unsigned long)sc->swap_cluster_max);
- nr_active -= sc->nr_to_scan;
- refill_inactive_zone(zone, sc);
- }
- if (nr_inactive) {
- sc->nr_to_scan = min(nr_inactive,
- (unsigned long)sc->swap_cluster_max);
- nr_inactive -= sc->nr_to_scan;
- shrink_cache(zone, sc);
- }
- }
- throttle_vm_writeout();
- atomic_dec(&zone->reclaim_in_progress);
- }
- /*
- * This is the direct reclaim path, for page-allocating processes. We only
- * try to reclaim pages from zones which will satisfy the caller's allocation
- * request.
- *
- * We reclaim from a zone even if that zone is over pages_high. Because:
- * a) The caller may be trying to free *extra* pages to satisfy a higher-order
- * allocation or
- * b) The zones may be over pages_high but they must go *over* pages_high to
- * satisfy the `incremental min' zone defense algorithm.
- *
- * Returns the number of reclaimed pages.
- *
- * If a zone is deemed to be full of pinned pages then just give it a light
- * scan then give up on it.
- */
- static void
- shrink_caches(struct zone **zones, struct scan_control *sc)
- {
- int i;
- for (i = 0; zones[i] != NULL; i++) {
- struct zone *zone = zones[i];
- if (!populated_zone(zone))
- continue;
- if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
- continue;
- zone->temp_priority = sc->priority;
- if (zone->prev_priority > sc->priority)
- zone->prev_priority = sc->priority;
- if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
- continue; /* Let kswapd poll it */
- shrink_zone(zone, sc);
- }
- }
-
- /*
- * This is the main entry point to direct page reclaim.
- *
- * If a full scan of the inactive list fails to free enough memory then we
- * are "out of memory" and something needs to be killed.
- *
- * If the caller is !__GFP_FS then the probability of a failure is reasonably
- * high - the zone may be full of dirty or under-writeback pages, which this
- * caller can't do much about. We kick pdflush and take explicit naps in the
- * hope that some of these pages can be written. But if the allocating task
- * holds filesystem locks which prevent writeout this might not work, and the
- * allocation attempt will fail.
- */
- int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
- {
- int priority;
- int ret = 0;
- int total_scanned = 0, total_reclaimed = 0;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- struct scan_control sc;
- unsigned long lru_pages = 0;
- int i;
- sc.gfp_mask = gfp_mask;
- sc.may_writepage = !laptop_mode;
- sc.may_swap = 1;
- inc_page_state(allocstall);
- for (i = 0; zones[i] != NULL; i++) {
- struct zone *zone = zones[i];
- if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
- continue;
- zone->temp_priority = DEF_PRIORITY;
- lru_pages += zone->nr_active + zone->nr_inactive;
- }
- for (priority = DEF_PRIORITY; priority >= 0; priority--) {
- sc.nr_mapped = read_page_state(nr_mapped);
- sc.nr_scanned = 0;
- sc.nr_reclaimed = 0;
- sc.priority = priority;
- sc.swap_cluster_max = SWAP_CLUSTER_MAX;
- if (!priority)
- disable_swap_token();
- shrink_caches(zones, &sc);
- shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
- if (reclaim_state) {
- sc.nr_reclaimed += reclaim_state->reclaimed_slab;
- reclaim_state->reclaimed_slab = 0;
- }
- total_scanned += sc.nr_scanned;
- total_reclaimed += sc.nr_reclaimed;
- if (total_reclaimed >= sc.swap_cluster_max) {
- ret = 1;
- goto out;
- }
- /*
- * Try to write back as many pages as we just scanned. This
- * tends to cause slow streaming writers to write data to the
- * disk smoothly, at the dirtying rate, which is nice. But
- * that's undesirable in laptop mode, where we *want* lumpy
- * writeout. So in laptop mode, write out the whole world.
- */
- if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
- wakeup_pdflush(laptop_mode ? 0 : total_scanned);
- sc.may_writepage = 1;
- }
- /* Take a nap, wait for some writeback to complete */
- if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
- blk_congestion_wait(WRITE, HZ/10);
- }
- out:
- for (i = 0; zones[i] != 0; i++) {
- struct zone *zone = zones[i];
- if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
- continue;
- zone->prev_priority = zone->temp_priority;
- }
- return ret;
- }
- /*
- * For kswapd, balance_pgdat() will work across all this node's zones until
- * they are all at pages_high.
- *
- * If `nr_pages' is non-zero then it is the number of pages which are to be
- * reclaimed, regardless of the zone occupancies. This is a software suspend
- * special.
- *
- * Returns the number of pages which were actually freed.
- *
- * There is special handling here for zones which are full of pinned pages.
- * This can happen if the pages are all mlocked, or if they are all used by
- * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
- * What we do is to detect the case where all pages in the zone have been
- * scanned twice and there has been zero successful reclaim. Mark the zone as
- * dead and from now on, only perform a short scan. Basically we're polling
- * the zone for when the problem goes away.
- *
- * kswapd scans the zones in the highmem->normal->dma direction. It skips
- * zones which have free_pages > pages_high, but once a zone is found to have
- * free_pages <= pages_high, we scan that zone and the lower zones regardless
- * of the number of free pages in the lower zones. This interoperates with
- * the page allocator fallback scheme to ensure that aging of pages is balanced
- * across the zones.
- */
- static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
- {
- int to_free = nr_pages;
- int all_zones_ok;
- int priority;
- int i;
- int total_scanned, total_reclaimed;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- struct scan_control sc;
- loop_again:
- total_scanned = 0;
- total_reclaimed = 0;
- sc.gfp_mask = GFP_KERNEL;
- sc.may_writepage = !laptop_mode;
- sc.may_swap = 1;
- sc.nr_mapped = read_page_state(nr_mapped);
- inc_page_state(pageoutrun);
- for (i = 0; i < pgdat->nr_zones; i++) {
- struct zone *zone = pgdat->node_zones + i;
- zone->temp_priority = DEF_PRIORITY;
- }
- for (priority = DEF_PRIORITY; priority >= 0; priority--) {
- int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
- unsigned long lru_pages = 0;
- /* The swap token gets in the way of swapout... */
- if (!priority)
- disable_swap_token();
- all_zones_ok = 1;
- if (nr_pages == 0) {
- /*
- * Scan in the highmem->dma direction for the highest
- * zone which needs scanning
- */
- for (i = pgdat->nr_zones - 1; i >= 0; i--) {
- struct zone *zone = pgdat->node_zones + i;
- if (!populated_zone(zone))
- continue;
- if (zone->all_unreclaimable &&
- priority != DEF_PRIORITY)
- continue;
- if (!zone_watermark_ok(zone, order,
- zone->pages_high, 0, 0)) {
- end_zone = i;
- goto scan;
- }
- }
- goto out;
- } else {
- end_zone = pgdat->nr_zones - 1;
- }
- scan:
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- lru_pages += zone->nr_active + zone->nr_inactive;
- }
- /*
- * Now scan the zone in the dma->highmem direction, stopping
- * at the last zone which needs scanning.
- *
- * We do this because the page allocator works in the opposite
- * direction. This prevents the page allocator from allocating
- * pages behind kswapd's direction of progress, which would
- * cause too much scanning of the lower zones.
- */
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- int nr_slab;
- if (!populated_zone(zone))
- continue;
- if (zone->all_unreclaimable && priority != DEF_PRIORITY)
- continue;
- if (nr_pages == 0) { /* Not software suspend */
- if (!zone_watermark_ok(zone, order,
- zone->pages_high, end_zone, 0))
- all_zones_ok = 0;
- }
- zone->temp_priority = priority;
- if (zone->prev_priority > priority)
- zone->prev_priority = priority;
- sc.nr_scanned = 0;
- sc.nr_reclaimed = 0;
- sc.priority = priority;
- sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
- atomic_inc(&zone->reclaim_in_progress);
- shrink_zone(zone, &sc);
- atomic_dec(&zone->reclaim_in_progress);
- reclaim_state->reclaimed_slab = 0;
- nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
- lru_pages);
- sc.nr_reclaimed += reclaim_state->reclaimed_slab;
- total_reclaimed += sc.nr_reclaimed;
- total_scanned += sc.nr_scanned;
- if (zone->all_unreclaimable)
- continue;
- if (nr_slab == 0 && zone->pages_scanned >=
- (zone->nr_active + zone->nr_inactive) * 4)
- zone->all_unreclaimable = 1;
- /*
- * If we've done a decent amount of scanning and
- * the reclaim ratio is low, start doing writepage
- * even in laptop mode
- */
- if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
- total_scanned > total_reclaimed+total_reclaimed/2)
- sc.may_writepage = 1;
- }
- if (nr_pages && to_free > total_reclaimed)
- continue; /* swsusp: need to do more work */
- if (all_zones_ok)
- break; /* kswapd: all done */
- /*
- * OK, kswapd is getting into trouble. Take a nap, then take
- * another pass across the zones.
- */
- if (total_scanned && priority < DEF_PRIORITY - 2)
- blk_congestion_wait(WRITE, HZ/10);
- /*
- * We do this so kswapd doesn't build up large priorities for
- * example when it is freeing in parallel with allocators. It
- * matches the direct reclaim path behaviour in terms of impact
- * on zone->*_priority.
- */
- if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
- break;
- }
- out:
- for (i = 0; i < pgdat->nr_zones; i++) {
- struct zone *zone = pgdat->node_zones + i;
- zone->prev_priority = zone->temp_priority;
- }
- if (!all_zones_ok) {
- cond_resched();
- goto loop_again;
- }
- return total_reclaimed;
- }
- /*
- * The background pageout daemon, started as a kernel thread
- * from the init process.
- *
- * This basically trickles out pages so that we have _some_
- * free memory available even if there is no other activity
- * that frees anything up. This is needed for things like routing
- * etc, where we otherwise might have all activity going on in
- * asynchronous contexts that cannot page things out.
- *
- * If there are applications that are active memory-allocators
- * (most normal use), this basically shouldn't matter.
- */
- static int kswapd(void *p)
- {
- unsigned long order;
- pg_data_t *pgdat = (pg_data_t*)p;
- struct task_struct *tsk = current;
- DEFINE_WAIT(wait);
- struct reclaim_state reclaim_state = {
- .reclaimed_slab = 0,
- };
- cpumask_t cpumask;
- daemonize("kswapd%d", pgdat->node_id);
- cpumask = node_to_cpumask(pgdat->node_id);
- if (!cpus_empty(cpumask))
- set_cpus_allowed(tsk, cpumask);
- current->reclaim_state = &reclaim_state;
- /*
- * Tell the memory management that we're a "memory allocator",
- * and that if we need more memory we should get access to it
- * regardless (see "__alloc_pages()"). "kswapd" should
- * never get caught in the normal page freeing logic.
- *
- * (Kswapd normally doesn't need memory anyway, but sometimes
- * you need a small amount of memory in order to be able to
- * page out something else, and this flag essentially protects
- * us from recursively trying to free more memory as we're
- * trying to free the first piece of memory in the first place).
- */
- tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
- order = 0;
- for ( ; ; ) {
- unsigned long new_order;
- try_to_freeze();
- prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
- new_order = pgdat->kswapd_max_order;
- pgdat->kswapd_max_order = 0;
- if (order < new_order) {
- /*
- * Don't sleep if someone wants a larger 'order'
- * allocation
- */
- order = new_order;
- } else {
- schedule();
- order = pgdat->kswapd_max_order;
- }
- finish_wait(&pgdat->kswapd_wait, &wait);
- balance_pgdat(pgdat, 0, order);
- }
- return 0;
- }
- /*
- * A zone is low on free memory, so wake its kswapd task to service it.
- */
- void wakeup_kswapd(struct zone *zone, int order)
- {
- pg_data_t *pgdat;
- if (!populated_zone(zone))
- return;
- pgdat = zone->zone_pgdat;
- if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
- return;
- if (pgdat->kswapd_max_order < order)
- pgdat->kswapd_max_order = order;
- if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
- return;
- if (!waitqueue_active(&pgdat->kswapd_wait))
- return;
- wake_up_interruptible(&pgdat->kswapd_wait);
- }
- #ifdef CONFIG_PM
- /*
- * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
- * pages.
- */
- int shrink_all_memory(int nr_pages)
- {
- pg_data_t *pgdat;
- int nr_to_free = nr_pages;
- int ret = 0;
- struct reclaim_state reclaim_state = {
- .reclaimed_slab = 0,
- };
- current->reclaim_state = &reclaim_state;
- for_each_pgdat(pgdat) {
- int freed;
- freed = balance_pgdat(pgdat, nr_to_free, 0);
- ret += freed;
- nr_to_free -= freed;
- if (nr_to_free <= 0)
- break;
- }
- current->reclaim_state = NULL;
- return ret;
- }
- #endif
- #ifdef CONFIG_HOTPLUG_CPU
- /* It's optimal to keep kswapds on the same CPUs as their memory, but
- not required for correctness. So if the last cpu in a node goes
- away, we get changed to run anywhere: as the first one comes back,
- restore their cpu bindings. */
- static int __devinit cpu_callback(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
- {
- pg_data_t *pgdat;
- cpumask_t mask;
- if (action == CPU_ONLINE) {
- for_each_pgdat(pgdat) {
- mask = node_to_cpumask(pgdat->node_id);
- if (any_online_cpu(mask) != NR_CPUS)
- /* One of our CPUs online: restore mask */
- set_cpus_allowed(pgdat->kswapd, mask);
- }
- }
- return NOTIFY_OK;
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- static int __init kswapd_init(void)
- {
- pg_data_t *pgdat;
- swap_setup();
- for_each_pgdat(pgdat)
- pgdat->kswapd
- = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
- total_memory = nr_free_pagecache_pages();
- hotcpu_notifier(cpu_callback, 0);
- return 0;
- }
- module_init(kswapd_init)
- #ifdef CONFIG_NUMA
- /*
- * Zone reclaim mode
- *
- * If non-zero call zone_reclaim when the number of free pages falls below
- * the watermarks.
- *
- * In the future we may add flags to the mode. However, the page allocator
- * should only have to check that zone_reclaim_mode != 0 before calling
- * zone_reclaim().
- */
- int zone_reclaim_mode __read_mostly;
- #define RECLAIM_OFF 0
- #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
- #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
- #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
- #define RECLAIM_SLAB (1<<3) /* Do a global slab shrink if the zone is out of memory */
- /*
- * Mininum time between zone reclaim scans
- */
- int zone_reclaim_interval __read_mostly = 30*HZ;
- /*
- * Priority for ZONE_RECLAIM. This determines the fraction of pages
- * of a node considered for each zone_reclaim. 4 scans 1/16th of
- * a zone.
- */
- #define ZONE_RECLAIM_PRIORITY 4
- /*
- * Try to free up some pages from this zone through reclaim.
- */
- int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
- {
- int nr_pages;
- struct task_struct *p = current;
- struct reclaim_state reclaim_state;
- struct scan_control sc;
- cpumask_t mask;
- int node_id;
- if (time_before(jiffies,
- zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
- return 0;
- if (!(gfp_mask & __GFP_WAIT) ||
- zone->all_unreclaimable ||
- atomic_read(&zone->reclaim_in_progress) > 0)
- return 0;
- node_id = zone->zone_pgdat->node_id;
- mask = node_to_cpumask(node_id);
- if (!cpus_empty(mask) && node_id != numa_node_id())
- return 0;
- sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
- sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
- sc.nr_scanned = 0;
- sc.nr_reclaimed = 0;
- sc.priority = ZONE_RECLAIM_PRIORITY + 1;
- sc.nr_mapped = read_page_state(nr_mapped);
- sc.gfp_mask = gfp_mask;
- disable_swap_token();
- nr_pages = 1 << order;
- if (nr_pages > SWAP_CLUSTER_MAX)
- sc.swap_cluster_max = nr_pages;
- else
- sc.swap_cluster_max = SWAP_CLUSTER_MAX;
- cond_resched();
- p->flags |= PF_MEMALLOC;
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
- /*
- * Free memory by calling shrink zone with increasing priorities
- * until we have enough memory freed.
- */
- do {
- sc.priority--;
- shrink_zone(zone, &sc);
- } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
- if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
- /*
- * shrink_slab does not currently allow us to determine
- * how many pages were freed in the zone. So we just
- * shake the slab and then go offnode for a single allocation.
- *
- * shrink_slab will free memory on all zones and may take
- * a long time.
- */
- shrink_slab(sc.nr_scanned, gfp_mask, order);
- sc.nr_reclaimed = 1; /* Avoid getting the off node timeout */
- }
- p->reclaim_state = NULL;
- current->flags &= ~PF_MEMALLOC;
- if (sc.nr_reclaimed == 0)
- zone->last_unsuccessful_zone_reclaim = jiffies;
- return sc.nr_reclaimed >= nr_pages;
- }
- #endif
|