swapfile.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/config.h>
  8. #include <linux/mm.h>
  9. #include <linux/hugetlb.h>
  10. #include <linux/mman.h>
  11. #include <linux/slab.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/namei.h>
  17. #include <linux/shm.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/tlbflush.h>
  32. #include <linux/swapops.h>
  33. DEFINE_SPINLOCK(swap_lock);
  34. unsigned int nr_swapfiles;
  35. long total_swap_pages;
  36. static int swap_overflow;
  37. static const char Bad_file[] = "Bad swap file entry ";
  38. static const char Unused_file[] = "Unused swap file entry ";
  39. static const char Bad_offset[] = "Bad swap offset entry ";
  40. static const char Unused_offset[] = "Unused swap offset entry ";
  41. struct swap_list_t swap_list = {-1, -1};
  42. struct swap_info_struct swap_info[MAX_SWAPFILES];
  43. static DEFINE_MUTEX(swapon_mutex);
  44. /*
  45. * We need this because the bdev->unplug_fn can sleep and we cannot
  46. * hold swap_lock while calling the unplug_fn. And swap_lock
  47. * cannot be turned into a mutex.
  48. */
  49. static DECLARE_RWSEM(swap_unplug_sem);
  50. void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
  51. {
  52. swp_entry_t entry;
  53. down_read(&swap_unplug_sem);
  54. entry.val = page_private(page);
  55. if (PageSwapCache(page)) {
  56. struct block_device *bdev = swap_info[swp_type(entry)].bdev;
  57. struct backing_dev_info *bdi;
  58. /*
  59. * If the page is removed from swapcache from under us (with a
  60. * racy try_to_unuse/swapoff) we need an additional reference
  61. * count to avoid reading garbage from page_private(page) above.
  62. * If the WARN_ON triggers during a swapoff it maybe the race
  63. * condition and it's harmless. However if it triggers without
  64. * swapoff it signals a problem.
  65. */
  66. WARN_ON(page_count(page) <= 1);
  67. bdi = bdev->bd_inode->i_mapping->backing_dev_info;
  68. blk_run_backing_dev(bdi, page);
  69. }
  70. up_read(&swap_unplug_sem);
  71. }
  72. #define SWAPFILE_CLUSTER 256
  73. #define LATENCY_LIMIT 256
  74. static inline unsigned long scan_swap_map(struct swap_info_struct *si)
  75. {
  76. unsigned long offset, last_in_cluster;
  77. int latency_ration = LATENCY_LIMIT;
  78. /*
  79. * We try to cluster swap pages by allocating them sequentially
  80. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  81. * way, however, we resort to first-free allocation, starting
  82. * a new cluster. This prevents us from scattering swap pages
  83. * all over the entire swap partition, so that we reduce
  84. * overall disk seek times between swap pages. -- sct
  85. * But we do now try to find an empty cluster. -Andrea
  86. */
  87. si->flags += SWP_SCANNING;
  88. if (unlikely(!si->cluster_nr)) {
  89. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  90. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
  91. goto lowest;
  92. spin_unlock(&swap_lock);
  93. offset = si->lowest_bit;
  94. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  95. /* Locate the first empty (unaligned) cluster */
  96. for (; last_in_cluster <= si->highest_bit; offset++) {
  97. if (si->swap_map[offset])
  98. last_in_cluster = offset + SWAPFILE_CLUSTER;
  99. else if (offset == last_in_cluster) {
  100. spin_lock(&swap_lock);
  101. si->cluster_next = offset-SWAPFILE_CLUSTER-1;
  102. goto cluster;
  103. }
  104. if (unlikely(--latency_ration < 0)) {
  105. cond_resched();
  106. latency_ration = LATENCY_LIMIT;
  107. }
  108. }
  109. spin_lock(&swap_lock);
  110. goto lowest;
  111. }
  112. si->cluster_nr--;
  113. cluster:
  114. offset = si->cluster_next;
  115. if (offset > si->highest_bit)
  116. lowest: offset = si->lowest_bit;
  117. checks: if (!(si->flags & SWP_WRITEOK))
  118. goto no_page;
  119. if (!si->highest_bit)
  120. goto no_page;
  121. if (!si->swap_map[offset]) {
  122. if (offset == si->lowest_bit)
  123. si->lowest_bit++;
  124. if (offset == si->highest_bit)
  125. si->highest_bit--;
  126. si->inuse_pages++;
  127. if (si->inuse_pages == si->pages) {
  128. si->lowest_bit = si->max;
  129. si->highest_bit = 0;
  130. }
  131. si->swap_map[offset] = 1;
  132. si->cluster_next = offset + 1;
  133. si->flags -= SWP_SCANNING;
  134. return offset;
  135. }
  136. spin_unlock(&swap_lock);
  137. while (++offset <= si->highest_bit) {
  138. if (!si->swap_map[offset]) {
  139. spin_lock(&swap_lock);
  140. goto checks;
  141. }
  142. if (unlikely(--latency_ration < 0)) {
  143. cond_resched();
  144. latency_ration = LATENCY_LIMIT;
  145. }
  146. }
  147. spin_lock(&swap_lock);
  148. goto lowest;
  149. no_page:
  150. si->flags -= SWP_SCANNING;
  151. return 0;
  152. }
  153. swp_entry_t get_swap_page(void)
  154. {
  155. struct swap_info_struct *si;
  156. pgoff_t offset;
  157. int type, next;
  158. int wrapped = 0;
  159. spin_lock(&swap_lock);
  160. if (nr_swap_pages <= 0)
  161. goto noswap;
  162. nr_swap_pages--;
  163. for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  164. si = swap_info + type;
  165. next = si->next;
  166. if (next < 0 ||
  167. (!wrapped && si->prio != swap_info[next].prio)) {
  168. next = swap_list.head;
  169. wrapped++;
  170. }
  171. if (!si->highest_bit)
  172. continue;
  173. if (!(si->flags & SWP_WRITEOK))
  174. continue;
  175. swap_list.next = next;
  176. offset = scan_swap_map(si);
  177. if (offset) {
  178. spin_unlock(&swap_lock);
  179. return swp_entry(type, offset);
  180. }
  181. next = swap_list.next;
  182. }
  183. nr_swap_pages++;
  184. noswap:
  185. spin_unlock(&swap_lock);
  186. return (swp_entry_t) {0};
  187. }
  188. swp_entry_t get_swap_page_of_type(int type)
  189. {
  190. struct swap_info_struct *si;
  191. pgoff_t offset;
  192. spin_lock(&swap_lock);
  193. si = swap_info + type;
  194. if (si->flags & SWP_WRITEOK) {
  195. nr_swap_pages--;
  196. offset = scan_swap_map(si);
  197. if (offset) {
  198. spin_unlock(&swap_lock);
  199. return swp_entry(type, offset);
  200. }
  201. nr_swap_pages++;
  202. }
  203. spin_unlock(&swap_lock);
  204. return (swp_entry_t) {0};
  205. }
  206. static struct swap_info_struct * swap_info_get(swp_entry_t entry)
  207. {
  208. struct swap_info_struct * p;
  209. unsigned long offset, type;
  210. if (!entry.val)
  211. goto out;
  212. type = swp_type(entry);
  213. if (type >= nr_swapfiles)
  214. goto bad_nofile;
  215. p = & swap_info[type];
  216. if (!(p->flags & SWP_USED))
  217. goto bad_device;
  218. offset = swp_offset(entry);
  219. if (offset >= p->max)
  220. goto bad_offset;
  221. if (!p->swap_map[offset])
  222. goto bad_free;
  223. spin_lock(&swap_lock);
  224. return p;
  225. bad_free:
  226. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  227. goto out;
  228. bad_offset:
  229. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  230. goto out;
  231. bad_device:
  232. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  233. goto out;
  234. bad_nofile:
  235. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  236. out:
  237. return NULL;
  238. }
  239. static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
  240. {
  241. int count = p->swap_map[offset];
  242. if (count < SWAP_MAP_MAX) {
  243. count--;
  244. p->swap_map[offset] = count;
  245. if (!count) {
  246. if (offset < p->lowest_bit)
  247. p->lowest_bit = offset;
  248. if (offset > p->highest_bit)
  249. p->highest_bit = offset;
  250. if (p->prio > swap_info[swap_list.next].prio)
  251. swap_list.next = p - swap_info;
  252. nr_swap_pages++;
  253. p->inuse_pages--;
  254. }
  255. }
  256. return count;
  257. }
  258. /*
  259. * Caller has made sure that the swapdevice corresponding to entry
  260. * is still around or has not been recycled.
  261. */
  262. void swap_free(swp_entry_t entry)
  263. {
  264. struct swap_info_struct * p;
  265. p = swap_info_get(entry);
  266. if (p) {
  267. swap_entry_free(p, swp_offset(entry));
  268. spin_unlock(&swap_lock);
  269. }
  270. }
  271. /*
  272. * How many references to page are currently swapped out?
  273. */
  274. static inline int page_swapcount(struct page *page)
  275. {
  276. int count = 0;
  277. struct swap_info_struct *p;
  278. swp_entry_t entry;
  279. entry.val = page_private(page);
  280. p = swap_info_get(entry);
  281. if (p) {
  282. /* Subtract the 1 for the swap cache itself */
  283. count = p->swap_map[swp_offset(entry)] - 1;
  284. spin_unlock(&swap_lock);
  285. }
  286. return count;
  287. }
  288. /*
  289. * We can use this swap cache entry directly
  290. * if there are no other references to it.
  291. */
  292. int can_share_swap_page(struct page *page)
  293. {
  294. int count;
  295. BUG_ON(!PageLocked(page));
  296. count = page_mapcount(page);
  297. if (count <= 1 && PageSwapCache(page))
  298. count += page_swapcount(page);
  299. return count == 1;
  300. }
  301. /*
  302. * Work out if there are any other processes sharing this
  303. * swap cache page. Free it if you can. Return success.
  304. */
  305. int remove_exclusive_swap_page(struct page *page)
  306. {
  307. int retval;
  308. struct swap_info_struct * p;
  309. swp_entry_t entry;
  310. BUG_ON(PagePrivate(page));
  311. BUG_ON(!PageLocked(page));
  312. if (!PageSwapCache(page))
  313. return 0;
  314. if (PageWriteback(page))
  315. return 0;
  316. if (page_count(page) != 2) /* 2: us + cache */
  317. return 0;
  318. entry.val = page_private(page);
  319. p = swap_info_get(entry);
  320. if (!p)
  321. return 0;
  322. /* Is the only swap cache user the cache itself? */
  323. retval = 0;
  324. if (p->swap_map[swp_offset(entry)] == 1) {
  325. /* Recheck the page count with the swapcache lock held.. */
  326. write_lock_irq(&swapper_space.tree_lock);
  327. if ((page_count(page) == 2) && !PageWriteback(page)) {
  328. __delete_from_swap_cache(page);
  329. SetPageDirty(page);
  330. retval = 1;
  331. }
  332. write_unlock_irq(&swapper_space.tree_lock);
  333. }
  334. spin_unlock(&swap_lock);
  335. if (retval) {
  336. swap_free(entry);
  337. page_cache_release(page);
  338. }
  339. return retval;
  340. }
  341. /*
  342. * Free the swap entry like above, but also try to
  343. * free the page cache entry if it is the last user.
  344. */
  345. void free_swap_and_cache(swp_entry_t entry)
  346. {
  347. struct swap_info_struct * p;
  348. struct page *page = NULL;
  349. p = swap_info_get(entry);
  350. if (p) {
  351. if (swap_entry_free(p, swp_offset(entry)) == 1)
  352. page = find_trylock_page(&swapper_space, entry.val);
  353. spin_unlock(&swap_lock);
  354. }
  355. if (page) {
  356. int one_user;
  357. BUG_ON(PagePrivate(page));
  358. page_cache_get(page);
  359. one_user = (page_count(page) == 2);
  360. /* Only cache user (+us), or swap space full? Free it! */
  361. if (!PageWriteback(page) && (one_user || vm_swap_full())) {
  362. delete_from_swap_cache(page);
  363. SetPageDirty(page);
  364. }
  365. unlock_page(page);
  366. page_cache_release(page);
  367. }
  368. }
  369. /*
  370. * No need to decide whether this PTE shares the swap entry with others,
  371. * just let do_wp_page work it out if a write is requested later - to
  372. * force COW, vm_page_prot omits write permission from any private vma.
  373. */
  374. static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
  375. unsigned long addr, swp_entry_t entry, struct page *page)
  376. {
  377. inc_mm_counter(vma->vm_mm, anon_rss);
  378. get_page(page);
  379. set_pte_at(vma->vm_mm, addr, pte,
  380. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  381. page_add_anon_rmap(page, vma, addr);
  382. swap_free(entry);
  383. /*
  384. * Move the page to the active list so it is not
  385. * immediately swapped out again after swapon.
  386. */
  387. activate_page(page);
  388. }
  389. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  390. unsigned long addr, unsigned long end,
  391. swp_entry_t entry, struct page *page)
  392. {
  393. pte_t swp_pte = swp_entry_to_pte(entry);
  394. pte_t *pte;
  395. spinlock_t *ptl;
  396. int found = 0;
  397. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  398. do {
  399. /*
  400. * swapoff spends a _lot_ of time in this loop!
  401. * Test inline before going to call unuse_pte.
  402. */
  403. if (unlikely(pte_same(*pte, swp_pte))) {
  404. unuse_pte(vma, pte++, addr, entry, page);
  405. found = 1;
  406. break;
  407. }
  408. } while (pte++, addr += PAGE_SIZE, addr != end);
  409. pte_unmap_unlock(pte - 1, ptl);
  410. return found;
  411. }
  412. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  413. unsigned long addr, unsigned long end,
  414. swp_entry_t entry, struct page *page)
  415. {
  416. pmd_t *pmd;
  417. unsigned long next;
  418. pmd = pmd_offset(pud, addr);
  419. do {
  420. next = pmd_addr_end(addr, end);
  421. if (pmd_none_or_clear_bad(pmd))
  422. continue;
  423. if (unuse_pte_range(vma, pmd, addr, next, entry, page))
  424. return 1;
  425. } while (pmd++, addr = next, addr != end);
  426. return 0;
  427. }
  428. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  429. unsigned long addr, unsigned long end,
  430. swp_entry_t entry, struct page *page)
  431. {
  432. pud_t *pud;
  433. unsigned long next;
  434. pud = pud_offset(pgd, addr);
  435. do {
  436. next = pud_addr_end(addr, end);
  437. if (pud_none_or_clear_bad(pud))
  438. continue;
  439. if (unuse_pmd_range(vma, pud, addr, next, entry, page))
  440. return 1;
  441. } while (pud++, addr = next, addr != end);
  442. return 0;
  443. }
  444. static int unuse_vma(struct vm_area_struct *vma,
  445. swp_entry_t entry, struct page *page)
  446. {
  447. pgd_t *pgd;
  448. unsigned long addr, end, next;
  449. if (page->mapping) {
  450. addr = page_address_in_vma(page, vma);
  451. if (addr == -EFAULT)
  452. return 0;
  453. else
  454. end = addr + PAGE_SIZE;
  455. } else {
  456. addr = vma->vm_start;
  457. end = vma->vm_end;
  458. }
  459. pgd = pgd_offset(vma->vm_mm, addr);
  460. do {
  461. next = pgd_addr_end(addr, end);
  462. if (pgd_none_or_clear_bad(pgd))
  463. continue;
  464. if (unuse_pud_range(vma, pgd, addr, next, entry, page))
  465. return 1;
  466. } while (pgd++, addr = next, addr != end);
  467. return 0;
  468. }
  469. static int unuse_mm(struct mm_struct *mm,
  470. swp_entry_t entry, struct page *page)
  471. {
  472. struct vm_area_struct *vma;
  473. if (!down_read_trylock(&mm->mmap_sem)) {
  474. /*
  475. * Activate page so shrink_cache is unlikely to unmap its
  476. * ptes while lock is dropped, so swapoff can make progress.
  477. */
  478. activate_page(page);
  479. unlock_page(page);
  480. down_read(&mm->mmap_sem);
  481. lock_page(page);
  482. }
  483. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  484. if (vma->anon_vma && unuse_vma(vma, entry, page))
  485. break;
  486. }
  487. up_read(&mm->mmap_sem);
  488. /*
  489. * Currently unuse_mm cannot fail, but leave error handling
  490. * at call sites for now, since we change it from time to time.
  491. */
  492. return 0;
  493. }
  494. #ifdef CONFIG_MIGRATION
  495. int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
  496. {
  497. swp_entry_t entry = { .val = page_private(page) };
  498. return unuse_vma(vma, entry, page);
  499. }
  500. #endif
  501. /*
  502. * Scan swap_map from current position to next entry still in use.
  503. * Recycle to start on reaching the end, returning 0 when empty.
  504. */
  505. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  506. unsigned int prev)
  507. {
  508. unsigned int max = si->max;
  509. unsigned int i = prev;
  510. int count;
  511. /*
  512. * No need for swap_lock here: we're just looking
  513. * for whether an entry is in use, not modifying it; false
  514. * hits are okay, and sys_swapoff() has already prevented new
  515. * allocations from this area (while holding swap_lock).
  516. */
  517. for (;;) {
  518. if (++i >= max) {
  519. if (!prev) {
  520. i = 0;
  521. break;
  522. }
  523. /*
  524. * No entries in use at top of swap_map,
  525. * loop back to start and recheck there.
  526. */
  527. max = prev + 1;
  528. prev = 0;
  529. i = 1;
  530. }
  531. count = si->swap_map[i];
  532. if (count && count != SWAP_MAP_BAD)
  533. break;
  534. }
  535. return i;
  536. }
  537. /*
  538. * We completely avoid races by reading each swap page in advance,
  539. * and then search for the process using it. All the necessary
  540. * page table adjustments can then be made atomically.
  541. */
  542. static int try_to_unuse(unsigned int type)
  543. {
  544. struct swap_info_struct * si = &swap_info[type];
  545. struct mm_struct *start_mm;
  546. unsigned short *swap_map;
  547. unsigned short swcount;
  548. struct page *page;
  549. swp_entry_t entry;
  550. unsigned int i = 0;
  551. int retval = 0;
  552. int reset_overflow = 0;
  553. int shmem;
  554. /*
  555. * When searching mms for an entry, a good strategy is to
  556. * start at the first mm we freed the previous entry from
  557. * (though actually we don't notice whether we or coincidence
  558. * freed the entry). Initialize this start_mm with a hold.
  559. *
  560. * A simpler strategy would be to start at the last mm we
  561. * freed the previous entry from; but that would take less
  562. * advantage of mmlist ordering, which clusters forked mms
  563. * together, child after parent. If we race with dup_mmap(), we
  564. * prefer to resolve parent before child, lest we miss entries
  565. * duplicated after we scanned child: using last mm would invert
  566. * that. Though it's only a serious concern when an overflowed
  567. * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
  568. */
  569. start_mm = &init_mm;
  570. atomic_inc(&init_mm.mm_users);
  571. /*
  572. * Keep on scanning until all entries have gone. Usually,
  573. * one pass through swap_map is enough, but not necessarily:
  574. * there are races when an instance of an entry might be missed.
  575. */
  576. while ((i = find_next_to_unuse(si, i)) != 0) {
  577. if (signal_pending(current)) {
  578. retval = -EINTR;
  579. break;
  580. }
  581. /*
  582. * Get a page for the entry, using the existing swap
  583. * cache page if there is one. Otherwise, get a clean
  584. * page and read the swap into it.
  585. */
  586. swap_map = &si->swap_map[i];
  587. entry = swp_entry(type, i);
  588. again:
  589. page = read_swap_cache_async(entry, NULL, 0);
  590. if (!page) {
  591. /*
  592. * Either swap_duplicate() failed because entry
  593. * has been freed independently, and will not be
  594. * reused since sys_swapoff() already disabled
  595. * allocation from here, or alloc_page() failed.
  596. */
  597. if (!*swap_map)
  598. continue;
  599. retval = -ENOMEM;
  600. break;
  601. }
  602. /*
  603. * Don't hold on to start_mm if it looks like exiting.
  604. */
  605. if (atomic_read(&start_mm->mm_users) == 1) {
  606. mmput(start_mm);
  607. start_mm = &init_mm;
  608. atomic_inc(&init_mm.mm_users);
  609. }
  610. /*
  611. * Wait for and lock page. When do_swap_page races with
  612. * try_to_unuse, do_swap_page can handle the fault much
  613. * faster than try_to_unuse can locate the entry. This
  614. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  615. * defer to do_swap_page in such a case - in some tests,
  616. * do_swap_page and try_to_unuse repeatedly compete.
  617. */
  618. wait_on_page_locked(page);
  619. wait_on_page_writeback(page);
  620. lock_page(page);
  621. if (!PageSwapCache(page)) {
  622. /* Page migration has occured */
  623. unlock_page(page);
  624. page_cache_release(page);
  625. goto again;
  626. }
  627. wait_on_page_writeback(page);
  628. /*
  629. * Remove all references to entry.
  630. * Whenever we reach init_mm, there's no address space
  631. * to search, but use it as a reminder to search shmem.
  632. */
  633. shmem = 0;
  634. swcount = *swap_map;
  635. if (swcount > 1) {
  636. if (start_mm == &init_mm)
  637. shmem = shmem_unuse(entry, page);
  638. else
  639. retval = unuse_mm(start_mm, entry, page);
  640. }
  641. if (*swap_map > 1) {
  642. int set_start_mm = (*swap_map >= swcount);
  643. struct list_head *p = &start_mm->mmlist;
  644. struct mm_struct *new_start_mm = start_mm;
  645. struct mm_struct *prev_mm = start_mm;
  646. struct mm_struct *mm;
  647. atomic_inc(&new_start_mm->mm_users);
  648. atomic_inc(&prev_mm->mm_users);
  649. spin_lock(&mmlist_lock);
  650. while (*swap_map > 1 && !retval &&
  651. (p = p->next) != &start_mm->mmlist) {
  652. mm = list_entry(p, struct mm_struct, mmlist);
  653. if (atomic_inc_return(&mm->mm_users) == 1) {
  654. atomic_dec(&mm->mm_users);
  655. continue;
  656. }
  657. spin_unlock(&mmlist_lock);
  658. mmput(prev_mm);
  659. prev_mm = mm;
  660. cond_resched();
  661. swcount = *swap_map;
  662. if (swcount <= 1)
  663. ;
  664. else if (mm == &init_mm) {
  665. set_start_mm = 1;
  666. shmem = shmem_unuse(entry, page);
  667. } else
  668. retval = unuse_mm(mm, entry, page);
  669. if (set_start_mm && *swap_map < swcount) {
  670. mmput(new_start_mm);
  671. atomic_inc(&mm->mm_users);
  672. new_start_mm = mm;
  673. set_start_mm = 0;
  674. }
  675. spin_lock(&mmlist_lock);
  676. }
  677. spin_unlock(&mmlist_lock);
  678. mmput(prev_mm);
  679. mmput(start_mm);
  680. start_mm = new_start_mm;
  681. }
  682. if (retval) {
  683. unlock_page(page);
  684. page_cache_release(page);
  685. break;
  686. }
  687. /*
  688. * How could swap count reach 0x7fff when the maximum
  689. * pid is 0x7fff, and there's no way to repeat a swap
  690. * page within an mm (except in shmem, where it's the
  691. * shared object which takes the reference count)?
  692. * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
  693. *
  694. * If that's wrong, then we should worry more about
  695. * exit_mmap() and do_munmap() cases described above:
  696. * we might be resetting SWAP_MAP_MAX too early here.
  697. * We know "Undead"s can happen, they're okay, so don't
  698. * report them; but do report if we reset SWAP_MAP_MAX.
  699. */
  700. if (*swap_map == SWAP_MAP_MAX) {
  701. spin_lock(&swap_lock);
  702. *swap_map = 1;
  703. spin_unlock(&swap_lock);
  704. reset_overflow = 1;
  705. }
  706. /*
  707. * If a reference remains (rare), we would like to leave
  708. * the page in the swap cache; but try_to_unmap could
  709. * then re-duplicate the entry once we drop page lock,
  710. * so we might loop indefinitely; also, that page could
  711. * not be swapped out to other storage meanwhile. So:
  712. * delete from cache even if there's another reference,
  713. * after ensuring that the data has been saved to disk -
  714. * since if the reference remains (rarer), it will be
  715. * read from disk into another page. Splitting into two
  716. * pages would be incorrect if swap supported "shared
  717. * private" pages, but they are handled by tmpfs files.
  718. *
  719. * Note shmem_unuse already deleted a swappage from
  720. * the swap cache, unless the move to filepage failed:
  721. * in which case it left swappage in cache, lowered its
  722. * swap count to pass quickly through the loops above,
  723. * and now we must reincrement count to try again later.
  724. */
  725. if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
  726. struct writeback_control wbc = {
  727. .sync_mode = WB_SYNC_NONE,
  728. };
  729. swap_writepage(page, &wbc);
  730. lock_page(page);
  731. wait_on_page_writeback(page);
  732. }
  733. if (PageSwapCache(page)) {
  734. if (shmem)
  735. swap_duplicate(entry);
  736. else
  737. delete_from_swap_cache(page);
  738. }
  739. /*
  740. * So we could skip searching mms once swap count went
  741. * to 1, we did not mark any present ptes as dirty: must
  742. * mark page dirty so shrink_list will preserve it.
  743. */
  744. SetPageDirty(page);
  745. unlock_page(page);
  746. page_cache_release(page);
  747. /*
  748. * Make sure that we aren't completely killing
  749. * interactive performance.
  750. */
  751. cond_resched();
  752. }
  753. mmput(start_mm);
  754. if (reset_overflow) {
  755. printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
  756. swap_overflow = 0;
  757. }
  758. return retval;
  759. }
  760. /*
  761. * After a successful try_to_unuse, if no swap is now in use, we know
  762. * we can empty the mmlist. swap_lock must be held on entry and exit.
  763. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  764. * added to the mmlist just after page_duplicate - before would be racy.
  765. */
  766. static void drain_mmlist(void)
  767. {
  768. struct list_head *p, *next;
  769. unsigned int i;
  770. for (i = 0; i < nr_swapfiles; i++)
  771. if (swap_info[i].inuse_pages)
  772. return;
  773. spin_lock(&mmlist_lock);
  774. list_for_each_safe(p, next, &init_mm.mmlist)
  775. list_del_init(p);
  776. spin_unlock(&mmlist_lock);
  777. }
  778. /*
  779. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  780. * corresponds to page offset `offset'.
  781. */
  782. sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
  783. {
  784. struct swap_extent *se = sis->curr_swap_extent;
  785. struct swap_extent *start_se = se;
  786. for ( ; ; ) {
  787. struct list_head *lh;
  788. if (se->start_page <= offset &&
  789. offset < (se->start_page + se->nr_pages)) {
  790. return se->start_block + (offset - se->start_page);
  791. }
  792. lh = se->list.next;
  793. if (lh == &sis->extent_list)
  794. lh = lh->next;
  795. se = list_entry(lh, struct swap_extent, list);
  796. sis->curr_swap_extent = se;
  797. BUG_ON(se == start_se); /* It *must* be present */
  798. }
  799. }
  800. /*
  801. * Free all of a swapdev's extent information
  802. */
  803. static void destroy_swap_extents(struct swap_info_struct *sis)
  804. {
  805. while (!list_empty(&sis->extent_list)) {
  806. struct swap_extent *se;
  807. se = list_entry(sis->extent_list.next,
  808. struct swap_extent, list);
  809. list_del(&se->list);
  810. kfree(se);
  811. }
  812. }
  813. /*
  814. * Add a block range (and the corresponding page range) into this swapdev's
  815. * extent list. The extent list is kept sorted in page order.
  816. *
  817. * This function rather assumes that it is called in ascending page order.
  818. */
  819. static int
  820. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  821. unsigned long nr_pages, sector_t start_block)
  822. {
  823. struct swap_extent *se;
  824. struct swap_extent *new_se;
  825. struct list_head *lh;
  826. lh = sis->extent_list.prev; /* The highest page extent */
  827. if (lh != &sis->extent_list) {
  828. se = list_entry(lh, struct swap_extent, list);
  829. BUG_ON(se->start_page + se->nr_pages != start_page);
  830. if (se->start_block + se->nr_pages == start_block) {
  831. /* Merge it */
  832. se->nr_pages += nr_pages;
  833. return 0;
  834. }
  835. }
  836. /*
  837. * No merge. Insert a new extent, preserving ordering.
  838. */
  839. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  840. if (new_se == NULL)
  841. return -ENOMEM;
  842. new_se->start_page = start_page;
  843. new_se->nr_pages = nr_pages;
  844. new_se->start_block = start_block;
  845. list_add_tail(&new_se->list, &sis->extent_list);
  846. return 1;
  847. }
  848. /*
  849. * A `swap extent' is a simple thing which maps a contiguous range of pages
  850. * onto a contiguous range of disk blocks. An ordered list of swap extents
  851. * is built at swapon time and is then used at swap_writepage/swap_readpage
  852. * time for locating where on disk a page belongs.
  853. *
  854. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  855. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  856. * swap files identically.
  857. *
  858. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  859. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  860. * swapfiles are handled *identically* after swapon time.
  861. *
  862. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  863. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  864. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  865. * requirements, they are simply tossed out - we will never use those blocks
  866. * for swapping.
  867. *
  868. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  869. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  870. * which will scribble on the fs.
  871. *
  872. * The amount of disk space which a single swap extent represents varies.
  873. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  874. * extents in the list. To avoid much list walking, we cache the previous
  875. * search location in `curr_swap_extent', and start new searches from there.
  876. * This is extremely effective. The average number of iterations in
  877. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  878. */
  879. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  880. {
  881. struct inode *inode;
  882. unsigned blocks_per_page;
  883. unsigned long page_no;
  884. unsigned blkbits;
  885. sector_t probe_block;
  886. sector_t last_block;
  887. sector_t lowest_block = -1;
  888. sector_t highest_block = 0;
  889. int nr_extents = 0;
  890. int ret;
  891. inode = sis->swap_file->f_mapping->host;
  892. if (S_ISBLK(inode->i_mode)) {
  893. ret = add_swap_extent(sis, 0, sis->max, 0);
  894. *span = sis->pages;
  895. goto done;
  896. }
  897. blkbits = inode->i_blkbits;
  898. blocks_per_page = PAGE_SIZE >> blkbits;
  899. /*
  900. * Map all the blocks into the extent list. This code doesn't try
  901. * to be very smart.
  902. */
  903. probe_block = 0;
  904. page_no = 0;
  905. last_block = i_size_read(inode) >> blkbits;
  906. while ((probe_block + blocks_per_page) <= last_block &&
  907. page_no < sis->max) {
  908. unsigned block_in_page;
  909. sector_t first_block;
  910. first_block = bmap(inode, probe_block);
  911. if (first_block == 0)
  912. goto bad_bmap;
  913. /*
  914. * It must be PAGE_SIZE aligned on-disk
  915. */
  916. if (first_block & (blocks_per_page - 1)) {
  917. probe_block++;
  918. goto reprobe;
  919. }
  920. for (block_in_page = 1; block_in_page < blocks_per_page;
  921. block_in_page++) {
  922. sector_t block;
  923. block = bmap(inode, probe_block + block_in_page);
  924. if (block == 0)
  925. goto bad_bmap;
  926. if (block != first_block + block_in_page) {
  927. /* Discontiguity */
  928. probe_block++;
  929. goto reprobe;
  930. }
  931. }
  932. first_block >>= (PAGE_SHIFT - blkbits);
  933. if (page_no) { /* exclude the header page */
  934. if (first_block < lowest_block)
  935. lowest_block = first_block;
  936. if (first_block > highest_block)
  937. highest_block = first_block;
  938. }
  939. /*
  940. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  941. */
  942. ret = add_swap_extent(sis, page_no, 1, first_block);
  943. if (ret < 0)
  944. goto out;
  945. nr_extents += ret;
  946. page_no++;
  947. probe_block += blocks_per_page;
  948. reprobe:
  949. continue;
  950. }
  951. ret = nr_extents;
  952. *span = 1 + highest_block - lowest_block;
  953. if (page_no == 0)
  954. page_no = 1; /* force Empty message */
  955. sis->max = page_no;
  956. sis->pages = page_no - 1;
  957. sis->highest_bit = page_no - 1;
  958. done:
  959. sis->curr_swap_extent = list_entry(sis->extent_list.prev,
  960. struct swap_extent, list);
  961. goto out;
  962. bad_bmap:
  963. printk(KERN_ERR "swapon: swapfile has holes\n");
  964. ret = -EINVAL;
  965. out:
  966. return ret;
  967. }
  968. #if 0 /* We don't need this yet */
  969. #include <linux/backing-dev.h>
  970. int page_queue_congested(struct page *page)
  971. {
  972. struct backing_dev_info *bdi;
  973. BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
  974. if (PageSwapCache(page)) {
  975. swp_entry_t entry = { .val = page_private(page) };
  976. struct swap_info_struct *sis;
  977. sis = get_swap_info_struct(swp_type(entry));
  978. bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
  979. } else
  980. bdi = page->mapping->backing_dev_info;
  981. return bdi_write_congested(bdi);
  982. }
  983. #endif
  984. asmlinkage long sys_swapoff(const char __user * specialfile)
  985. {
  986. struct swap_info_struct * p = NULL;
  987. unsigned short *swap_map;
  988. struct file *swap_file, *victim;
  989. struct address_space *mapping;
  990. struct inode *inode;
  991. char * pathname;
  992. int i, type, prev;
  993. int err;
  994. if (!capable(CAP_SYS_ADMIN))
  995. return -EPERM;
  996. pathname = getname(specialfile);
  997. err = PTR_ERR(pathname);
  998. if (IS_ERR(pathname))
  999. goto out;
  1000. victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
  1001. putname(pathname);
  1002. err = PTR_ERR(victim);
  1003. if (IS_ERR(victim))
  1004. goto out;
  1005. mapping = victim->f_mapping;
  1006. prev = -1;
  1007. spin_lock(&swap_lock);
  1008. for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
  1009. p = swap_info + type;
  1010. if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
  1011. if (p->swap_file->f_mapping == mapping)
  1012. break;
  1013. }
  1014. prev = type;
  1015. }
  1016. if (type < 0) {
  1017. err = -EINVAL;
  1018. spin_unlock(&swap_lock);
  1019. goto out_dput;
  1020. }
  1021. if (!security_vm_enough_memory(p->pages))
  1022. vm_unacct_memory(p->pages);
  1023. else {
  1024. err = -ENOMEM;
  1025. spin_unlock(&swap_lock);
  1026. goto out_dput;
  1027. }
  1028. if (prev < 0) {
  1029. swap_list.head = p->next;
  1030. } else {
  1031. swap_info[prev].next = p->next;
  1032. }
  1033. if (type == swap_list.next) {
  1034. /* just pick something that's safe... */
  1035. swap_list.next = swap_list.head;
  1036. }
  1037. nr_swap_pages -= p->pages;
  1038. total_swap_pages -= p->pages;
  1039. p->flags &= ~SWP_WRITEOK;
  1040. spin_unlock(&swap_lock);
  1041. current->flags |= PF_SWAPOFF;
  1042. err = try_to_unuse(type);
  1043. current->flags &= ~PF_SWAPOFF;
  1044. if (err) {
  1045. /* re-insert swap space back into swap_list */
  1046. spin_lock(&swap_lock);
  1047. for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
  1048. if (p->prio >= swap_info[i].prio)
  1049. break;
  1050. p->next = i;
  1051. if (prev < 0)
  1052. swap_list.head = swap_list.next = p - swap_info;
  1053. else
  1054. swap_info[prev].next = p - swap_info;
  1055. nr_swap_pages += p->pages;
  1056. total_swap_pages += p->pages;
  1057. p->flags |= SWP_WRITEOK;
  1058. spin_unlock(&swap_lock);
  1059. goto out_dput;
  1060. }
  1061. /* wait for any unplug function to finish */
  1062. down_write(&swap_unplug_sem);
  1063. up_write(&swap_unplug_sem);
  1064. destroy_swap_extents(p);
  1065. mutex_lock(&swapon_mutex);
  1066. spin_lock(&swap_lock);
  1067. drain_mmlist();
  1068. /* wait for anyone still in scan_swap_map */
  1069. p->highest_bit = 0; /* cuts scans short */
  1070. while (p->flags >= SWP_SCANNING) {
  1071. spin_unlock(&swap_lock);
  1072. schedule_timeout_uninterruptible(1);
  1073. spin_lock(&swap_lock);
  1074. }
  1075. swap_file = p->swap_file;
  1076. p->swap_file = NULL;
  1077. p->max = 0;
  1078. swap_map = p->swap_map;
  1079. p->swap_map = NULL;
  1080. p->flags = 0;
  1081. spin_unlock(&swap_lock);
  1082. mutex_unlock(&swapon_mutex);
  1083. vfree(swap_map);
  1084. inode = mapping->host;
  1085. if (S_ISBLK(inode->i_mode)) {
  1086. struct block_device *bdev = I_BDEV(inode);
  1087. set_blocksize(bdev, p->old_block_size);
  1088. bd_release(bdev);
  1089. } else {
  1090. mutex_lock(&inode->i_mutex);
  1091. inode->i_flags &= ~S_SWAPFILE;
  1092. mutex_unlock(&inode->i_mutex);
  1093. }
  1094. filp_close(swap_file, NULL);
  1095. err = 0;
  1096. out_dput:
  1097. filp_close(victim, NULL);
  1098. out:
  1099. return err;
  1100. }
  1101. #ifdef CONFIG_PROC_FS
  1102. /* iterator */
  1103. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1104. {
  1105. struct swap_info_struct *ptr = swap_info;
  1106. int i;
  1107. loff_t l = *pos;
  1108. mutex_lock(&swapon_mutex);
  1109. for (i = 0; i < nr_swapfiles; i++, ptr++) {
  1110. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1111. continue;
  1112. if (!l--)
  1113. return ptr;
  1114. }
  1115. return NULL;
  1116. }
  1117. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1118. {
  1119. struct swap_info_struct *ptr = v;
  1120. struct swap_info_struct *endptr = swap_info + nr_swapfiles;
  1121. for (++ptr; ptr < endptr; ptr++) {
  1122. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1123. continue;
  1124. ++*pos;
  1125. return ptr;
  1126. }
  1127. return NULL;
  1128. }
  1129. static void swap_stop(struct seq_file *swap, void *v)
  1130. {
  1131. mutex_unlock(&swapon_mutex);
  1132. }
  1133. static int swap_show(struct seq_file *swap, void *v)
  1134. {
  1135. struct swap_info_struct *ptr = v;
  1136. struct file *file;
  1137. int len;
  1138. if (v == swap_info)
  1139. seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1140. file = ptr->swap_file;
  1141. len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
  1142. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1143. len < 40 ? 40 - len : 1, " ",
  1144. S_ISBLK(file->f_dentry->d_inode->i_mode) ?
  1145. "partition" : "file\t",
  1146. ptr->pages << (PAGE_SHIFT - 10),
  1147. ptr->inuse_pages << (PAGE_SHIFT - 10),
  1148. ptr->prio);
  1149. return 0;
  1150. }
  1151. static struct seq_operations swaps_op = {
  1152. .start = swap_start,
  1153. .next = swap_next,
  1154. .stop = swap_stop,
  1155. .show = swap_show
  1156. };
  1157. static int swaps_open(struct inode *inode, struct file *file)
  1158. {
  1159. return seq_open(file, &swaps_op);
  1160. }
  1161. static struct file_operations proc_swaps_operations = {
  1162. .open = swaps_open,
  1163. .read = seq_read,
  1164. .llseek = seq_lseek,
  1165. .release = seq_release,
  1166. };
  1167. static int __init procswaps_init(void)
  1168. {
  1169. struct proc_dir_entry *entry;
  1170. entry = create_proc_entry("swaps", 0, NULL);
  1171. if (entry)
  1172. entry->proc_fops = &proc_swaps_operations;
  1173. return 0;
  1174. }
  1175. __initcall(procswaps_init);
  1176. #endif /* CONFIG_PROC_FS */
  1177. /*
  1178. * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
  1179. *
  1180. * The swapon system call
  1181. */
  1182. asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
  1183. {
  1184. struct swap_info_struct * p;
  1185. char *name = NULL;
  1186. struct block_device *bdev = NULL;
  1187. struct file *swap_file = NULL;
  1188. struct address_space *mapping;
  1189. unsigned int type;
  1190. int i, prev;
  1191. int error;
  1192. static int least_priority;
  1193. union swap_header *swap_header = NULL;
  1194. int swap_header_version;
  1195. unsigned int nr_good_pages = 0;
  1196. int nr_extents = 0;
  1197. sector_t span;
  1198. unsigned long maxpages = 1;
  1199. int swapfilesize;
  1200. unsigned short *swap_map;
  1201. struct page *page = NULL;
  1202. struct inode *inode = NULL;
  1203. int did_down = 0;
  1204. if (!capable(CAP_SYS_ADMIN))
  1205. return -EPERM;
  1206. spin_lock(&swap_lock);
  1207. p = swap_info;
  1208. for (type = 0 ; type < nr_swapfiles ; type++,p++)
  1209. if (!(p->flags & SWP_USED))
  1210. break;
  1211. error = -EPERM;
  1212. /*
  1213. * Test if adding another swap device is possible. There are
  1214. * two limiting factors: 1) the number of bits for the swap
  1215. * type swp_entry_t definition and 2) the number of bits for
  1216. * the swap type in the swap ptes as defined by the different
  1217. * architectures. To honor both limitations a swap entry
  1218. * with swap offset 0 and swap type ~0UL is created, encoded
  1219. * to a swap pte, decoded to a swp_entry_t again and finally
  1220. * the swap type part is extracted. This will mask all bits
  1221. * from the initial ~0UL that can't be encoded in either the
  1222. * swp_entry_t or the architecture definition of a swap pte.
  1223. */
  1224. if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
  1225. spin_unlock(&swap_lock);
  1226. goto out;
  1227. }
  1228. if (type >= nr_swapfiles)
  1229. nr_swapfiles = type+1;
  1230. INIT_LIST_HEAD(&p->extent_list);
  1231. p->flags = SWP_USED;
  1232. p->swap_file = NULL;
  1233. p->old_block_size = 0;
  1234. p->swap_map = NULL;
  1235. p->lowest_bit = 0;
  1236. p->highest_bit = 0;
  1237. p->cluster_nr = 0;
  1238. p->inuse_pages = 0;
  1239. p->next = -1;
  1240. if (swap_flags & SWAP_FLAG_PREFER) {
  1241. p->prio =
  1242. (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
  1243. } else {
  1244. p->prio = --least_priority;
  1245. }
  1246. spin_unlock(&swap_lock);
  1247. name = getname(specialfile);
  1248. error = PTR_ERR(name);
  1249. if (IS_ERR(name)) {
  1250. name = NULL;
  1251. goto bad_swap_2;
  1252. }
  1253. swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
  1254. error = PTR_ERR(swap_file);
  1255. if (IS_ERR(swap_file)) {
  1256. swap_file = NULL;
  1257. goto bad_swap_2;
  1258. }
  1259. p->swap_file = swap_file;
  1260. mapping = swap_file->f_mapping;
  1261. inode = mapping->host;
  1262. error = -EBUSY;
  1263. for (i = 0; i < nr_swapfiles; i++) {
  1264. struct swap_info_struct *q = &swap_info[i];
  1265. if (i == type || !q->swap_file)
  1266. continue;
  1267. if (mapping == q->swap_file->f_mapping)
  1268. goto bad_swap;
  1269. }
  1270. error = -EINVAL;
  1271. if (S_ISBLK(inode->i_mode)) {
  1272. bdev = I_BDEV(inode);
  1273. error = bd_claim(bdev, sys_swapon);
  1274. if (error < 0) {
  1275. bdev = NULL;
  1276. error = -EINVAL;
  1277. goto bad_swap;
  1278. }
  1279. p->old_block_size = block_size(bdev);
  1280. error = set_blocksize(bdev, PAGE_SIZE);
  1281. if (error < 0)
  1282. goto bad_swap;
  1283. p->bdev = bdev;
  1284. } else if (S_ISREG(inode->i_mode)) {
  1285. p->bdev = inode->i_sb->s_bdev;
  1286. mutex_lock(&inode->i_mutex);
  1287. did_down = 1;
  1288. if (IS_SWAPFILE(inode)) {
  1289. error = -EBUSY;
  1290. goto bad_swap;
  1291. }
  1292. } else {
  1293. goto bad_swap;
  1294. }
  1295. swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
  1296. /*
  1297. * Read the swap header.
  1298. */
  1299. if (!mapping->a_ops->readpage) {
  1300. error = -EINVAL;
  1301. goto bad_swap;
  1302. }
  1303. page = read_cache_page(mapping, 0,
  1304. (filler_t *)mapping->a_ops->readpage, swap_file);
  1305. if (IS_ERR(page)) {
  1306. error = PTR_ERR(page);
  1307. goto bad_swap;
  1308. }
  1309. wait_on_page_locked(page);
  1310. if (!PageUptodate(page))
  1311. goto bad_swap;
  1312. kmap(page);
  1313. swap_header = page_address(page);
  1314. if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
  1315. swap_header_version = 1;
  1316. else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
  1317. swap_header_version = 2;
  1318. else {
  1319. printk(KERN_ERR "Unable to find swap-space signature\n");
  1320. error = -EINVAL;
  1321. goto bad_swap;
  1322. }
  1323. switch (swap_header_version) {
  1324. case 1:
  1325. printk(KERN_ERR "version 0 swap is no longer supported. "
  1326. "Use mkswap -v1 %s\n", name);
  1327. error = -EINVAL;
  1328. goto bad_swap;
  1329. case 2:
  1330. /* Check the swap header's sub-version and the size of
  1331. the swap file and bad block lists */
  1332. if (swap_header->info.version != 1) {
  1333. printk(KERN_WARNING
  1334. "Unable to handle swap header version %d\n",
  1335. swap_header->info.version);
  1336. error = -EINVAL;
  1337. goto bad_swap;
  1338. }
  1339. p->lowest_bit = 1;
  1340. p->cluster_next = 1;
  1341. /*
  1342. * Find out how many pages are allowed for a single swap
  1343. * device. There are two limiting factors: 1) the number of
  1344. * bits for the swap offset in the swp_entry_t type and
  1345. * 2) the number of bits in the a swap pte as defined by
  1346. * the different architectures. In order to find the
  1347. * largest possible bit mask a swap entry with swap type 0
  1348. * and swap offset ~0UL is created, encoded to a swap pte,
  1349. * decoded to a swp_entry_t again and finally the swap
  1350. * offset is extracted. This will mask all the bits from
  1351. * the initial ~0UL mask that can't be encoded in either
  1352. * the swp_entry_t or the architecture definition of a
  1353. * swap pte.
  1354. */
  1355. maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
  1356. if (maxpages > swap_header->info.last_page)
  1357. maxpages = swap_header->info.last_page;
  1358. p->highest_bit = maxpages - 1;
  1359. error = -EINVAL;
  1360. if (!maxpages)
  1361. goto bad_swap;
  1362. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  1363. goto bad_swap;
  1364. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  1365. goto bad_swap;
  1366. /* OK, set up the swap map and apply the bad block list */
  1367. if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
  1368. error = -ENOMEM;
  1369. goto bad_swap;
  1370. }
  1371. error = 0;
  1372. memset(p->swap_map, 0, maxpages * sizeof(short));
  1373. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  1374. int page_nr = swap_header->info.badpages[i];
  1375. if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
  1376. error = -EINVAL;
  1377. else
  1378. p->swap_map[page_nr] = SWAP_MAP_BAD;
  1379. }
  1380. nr_good_pages = swap_header->info.last_page -
  1381. swap_header->info.nr_badpages -
  1382. 1 /* header page */;
  1383. if (error)
  1384. goto bad_swap;
  1385. }
  1386. if (swapfilesize && maxpages > swapfilesize) {
  1387. printk(KERN_WARNING
  1388. "Swap area shorter than signature indicates\n");
  1389. error = -EINVAL;
  1390. goto bad_swap;
  1391. }
  1392. if (nr_good_pages) {
  1393. p->swap_map[0] = SWAP_MAP_BAD;
  1394. p->max = maxpages;
  1395. p->pages = nr_good_pages;
  1396. nr_extents = setup_swap_extents(p, &span);
  1397. if (nr_extents < 0) {
  1398. error = nr_extents;
  1399. goto bad_swap;
  1400. }
  1401. nr_good_pages = p->pages;
  1402. }
  1403. if (!nr_good_pages) {
  1404. printk(KERN_WARNING "Empty swap-file\n");
  1405. error = -EINVAL;
  1406. goto bad_swap;
  1407. }
  1408. mutex_lock(&swapon_mutex);
  1409. spin_lock(&swap_lock);
  1410. p->flags = SWP_ACTIVE;
  1411. nr_swap_pages += nr_good_pages;
  1412. total_swap_pages += nr_good_pages;
  1413. printk(KERN_INFO "Adding %uk swap on %s. "
  1414. "Priority:%d extents:%d across:%lluk\n",
  1415. nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
  1416. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
  1417. /* insert swap space into swap_list: */
  1418. prev = -1;
  1419. for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
  1420. if (p->prio >= swap_info[i].prio) {
  1421. break;
  1422. }
  1423. prev = i;
  1424. }
  1425. p->next = i;
  1426. if (prev < 0) {
  1427. swap_list.head = swap_list.next = p - swap_info;
  1428. } else {
  1429. swap_info[prev].next = p - swap_info;
  1430. }
  1431. spin_unlock(&swap_lock);
  1432. mutex_unlock(&swapon_mutex);
  1433. error = 0;
  1434. goto out;
  1435. bad_swap:
  1436. if (bdev) {
  1437. set_blocksize(bdev, p->old_block_size);
  1438. bd_release(bdev);
  1439. }
  1440. destroy_swap_extents(p);
  1441. bad_swap_2:
  1442. spin_lock(&swap_lock);
  1443. swap_map = p->swap_map;
  1444. p->swap_file = NULL;
  1445. p->swap_map = NULL;
  1446. p->flags = 0;
  1447. if (!(swap_flags & SWAP_FLAG_PREFER))
  1448. ++least_priority;
  1449. spin_unlock(&swap_lock);
  1450. vfree(swap_map);
  1451. if (swap_file)
  1452. filp_close(swap_file, NULL);
  1453. out:
  1454. if (page && !IS_ERR(page)) {
  1455. kunmap(page);
  1456. page_cache_release(page);
  1457. }
  1458. if (name)
  1459. putname(name);
  1460. if (did_down) {
  1461. if (!error)
  1462. inode->i_flags |= S_SWAPFILE;
  1463. mutex_unlock(&inode->i_mutex);
  1464. }
  1465. return error;
  1466. }
  1467. void si_swapinfo(struct sysinfo *val)
  1468. {
  1469. unsigned int i;
  1470. unsigned long nr_to_be_unused = 0;
  1471. spin_lock(&swap_lock);
  1472. for (i = 0; i < nr_swapfiles; i++) {
  1473. if (!(swap_info[i].flags & SWP_USED) ||
  1474. (swap_info[i].flags & SWP_WRITEOK))
  1475. continue;
  1476. nr_to_be_unused += swap_info[i].inuse_pages;
  1477. }
  1478. val->freeswap = nr_swap_pages + nr_to_be_unused;
  1479. val->totalswap = total_swap_pages + nr_to_be_unused;
  1480. spin_unlock(&swap_lock);
  1481. }
  1482. /*
  1483. * Verify that a swap entry is valid and increment its swap map count.
  1484. *
  1485. * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
  1486. * "permanent", but will be reclaimed by the next swapoff.
  1487. */
  1488. int swap_duplicate(swp_entry_t entry)
  1489. {
  1490. struct swap_info_struct * p;
  1491. unsigned long offset, type;
  1492. int result = 0;
  1493. type = swp_type(entry);
  1494. if (type >= nr_swapfiles)
  1495. goto bad_file;
  1496. p = type + swap_info;
  1497. offset = swp_offset(entry);
  1498. spin_lock(&swap_lock);
  1499. if (offset < p->max && p->swap_map[offset]) {
  1500. if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
  1501. p->swap_map[offset]++;
  1502. result = 1;
  1503. } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
  1504. if (swap_overflow++ < 5)
  1505. printk(KERN_WARNING "swap_dup: swap entry overflow\n");
  1506. p->swap_map[offset] = SWAP_MAP_MAX;
  1507. result = 1;
  1508. }
  1509. }
  1510. spin_unlock(&swap_lock);
  1511. out:
  1512. return result;
  1513. bad_file:
  1514. printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
  1515. goto out;
  1516. }
  1517. struct swap_info_struct *
  1518. get_swap_info_struct(unsigned type)
  1519. {
  1520. return &swap_info[type];
  1521. }
  1522. /*
  1523. * swap_lock prevents swap_map being freed. Don't grab an extra
  1524. * reference on the swaphandle, it doesn't matter if it becomes unused.
  1525. */
  1526. int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
  1527. {
  1528. int ret = 0, i = 1 << page_cluster;
  1529. unsigned long toff;
  1530. struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
  1531. if (!page_cluster) /* no readahead */
  1532. return 0;
  1533. toff = (swp_offset(entry) >> page_cluster) << page_cluster;
  1534. if (!toff) /* first page is swap header */
  1535. toff++, i--;
  1536. *offset = toff;
  1537. spin_lock(&swap_lock);
  1538. do {
  1539. /* Don't read-ahead past the end of the swap area */
  1540. if (toff >= swapdev->max)
  1541. break;
  1542. /* Don't read in free or bad pages */
  1543. if (!swapdev->swap_map[toff])
  1544. break;
  1545. if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
  1546. break;
  1547. toff++;
  1548. ret++;
  1549. } while (--i);
  1550. spin_unlock(&swap_lock);
  1551. return ret;
  1552. }