12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797 |
- /*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * (markhe@nextd.demon.co.uk)
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * (c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same intializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in struct kmem_cache and struct slab never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking,
- * and local interrupts are disabled so slab code is preempt-safe.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- * 15 March 2005. NUMA slab allocator.
- * Shai Fultheim <shai@scalex86.org>.
- * Shobhit Dayal <shobhit@calsoftinc.com>
- * Alok N Kataria <alokk@calsoftinc.com>
- * Christoph Lameter <christoph@lameter.com>
- *
- * Modified the slab allocator to be node aware on NUMA systems.
- * Each node has its own list of partial, free and full slabs.
- * All object allocations for a node occur from node specific slab lists.
- */
- #include <linux/config.h>
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/cache.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/compiler.h>
- #include <linux/seq_file.h>
- #include <linux/notifier.h>
- #include <linux/kallsyms.h>
- #include <linux/cpu.h>
- #include <linux/sysctl.h>
- #include <linux/module.h>
- #include <linux/rcupdate.h>
- #include <linux/string.h>
- #include <linux/nodemask.h>
- #include <linux/mempolicy.h>
- #include <linux/mutex.h>
- #include <asm/uaccess.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #include <asm/page.h>
- /*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
- * SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
- #ifdef CONFIG_DEBUG_SLAB
- #define DEBUG 1
- #define STATS 1
- #define FORCED_DEBUG 1
- #else
- #define DEBUG 0
- #define STATS 0
- #define FORCED_DEBUG 0
- #endif
- /* Shouldn't this be in a header file somewhere? */
- #define BYTES_PER_WORD sizeof(void *)
- #ifndef cache_line_size
- #define cache_line_size() L1_CACHE_BYTES
- #endif
- #ifndef ARCH_KMALLOC_MINALIGN
- /*
- * Enforce a minimum alignment for the kmalloc caches.
- * Usually, the kmalloc caches are cache_line_size() aligned, except when
- * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
- * Note that this flag disables some debug features.
- */
- #define ARCH_KMALLOC_MINALIGN 0
- #endif
- #ifndef ARCH_SLAB_MINALIGN
- /*
- * Enforce a minimum alignment for all caches.
- * Intended for archs that get misalignment faults even for BYTES_PER_WORD
- * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
- * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
- * some debug features.
- */
- #define ARCH_SLAB_MINALIGN 0
- #endif
- #ifndef ARCH_KMALLOC_FLAGS
- #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
- #endif
- /* Legal flag mask for kmem_cache_create(). */
- #if DEBUG
- # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_HWCACHE_ALIGN | \
- SLAB_NO_REAP | SLAB_CACHE_DMA | \
- SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU)
- #else
- # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
- SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU)
- #endif
- /*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
- typedef unsigned int kmem_bufctl_t;
- #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
- #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
- #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
- /* Max number of objs-per-slab for caches which use off-slab slabs.
- * Needed to avoid a possible looping condition in cache_grow().
- */
- static unsigned long offslab_limit;
- /*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
- struct slab {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
- };
- /*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- *
- * We assume struct slab_rcu can overlay struct slab when destroying.
- */
- struct slab_rcu {
- struct rcu_head head;
- struct kmem_cache *cachep;
- void *addr;
- };
- /*
- * struct array_cache
- *
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
- struct array_cache {
- unsigned int avail;
- unsigned int limit;
- unsigned int batchcount;
- unsigned int touched;
- spinlock_t lock;
- void *entry[0]; /*
- * Must have this definition in here for the proper
- * alignment of array_cache. Also simplifies accessing
- * the entries.
- * [0] is for gcc 2.95. It should really be [].
- */
- };
- /* bootstrap: The caches do not work without cpuarrays anymore,
- * but the cpuarrays are allocated from the generic caches...
- */
- #define BOOT_CPUCACHE_ENTRIES 1
- struct arraycache_init {
- struct array_cache cache;
- void *entries[BOOT_CPUCACHE_ENTRIES];
- };
- /*
- * The slab lists for all objects.
- */
- struct kmem_list3 {
- struct list_head slabs_partial; /* partial list first, better asm code */
- struct list_head slabs_full;
- struct list_head slabs_free;
- unsigned long free_objects;
- unsigned long next_reap;
- int free_touched;
- unsigned int free_limit;
- unsigned int colour_next; /* Per-node cache coloring */
- spinlock_t list_lock;
- struct array_cache *shared; /* shared per node */
- struct array_cache **alien; /* on other nodes */
- };
- /*
- * Need this for bootstrapping a per node allocator.
- */
- #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
- struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
- #define CACHE_CACHE 0
- #define SIZE_AC 1
- #define SIZE_L3 (1 + MAX_NUMNODES)
- /*
- * This function must be completely optimized away if
- * a constant is passed to it. Mostly the same as
- * what is in linux/slab.h except it returns an
- * index.
- */
- static __always_inline int index_of(const size_t size)
- {
- extern void __bad_size(void);
- if (__builtin_constant_p(size)) {
- int i = 0;
- #define CACHE(x) \
- if (size <=x) \
- return i; \
- else \
- i++;
- #include "linux/kmalloc_sizes.h"
- #undef CACHE
- __bad_size();
- } else
- __bad_size();
- return 0;
- }
- #define INDEX_AC index_of(sizeof(struct arraycache_init))
- #define INDEX_L3 index_of(sizeof(struct kmem_list3))
- static void kmem_list3_init(struct kmem_list3 *parent)
- {
- INIT_LIST_HEAD(&parent->slabs_full);
- INIT_LIST_HEAD(&parent->slabs_partial);
- INIT_LIST_HEAD(&parent->slabs_free);
- parent->shared = NULL;
- parent->alien = NULL;
- parent->colour_next = 0;
- spin_lock_init(&parent->list_lock);
- parent->free_objects = 0;
- parent->free_touched = 0;
- }
- #define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
- } while (0)
- #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
- MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
- } while (0)
- /*
- * struct kmem_cache
- *
- * manages a cache.
- */
- struct kmem_cache {
- /* 1) per-cpu data, touched during every alloc/free */
- struct array_cache *array[NR_CPUS];
- unsigned int batchcount;
- unsigned int limit;
- unsigned int shared;
- unsigned int buffer_size;
- /* 2) touched by every alloc & free from the backend */
- struct kmem_list3 *nodelists[MAX_NUMNODES];
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
- spinlock_t spinlock;
- /* 3) cache_grow/shrink */
- /* order of pgs per slab (2^n) */
- unsigned int gfporder;
- /* force GFP flags, e.g. GFP_DMA */
- gfp_t gfpflags;
- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- struct kmem_cache *slabp_cache;
- unsigned int slab_size;
- unsigned int dflags; /* dynamic flags */
- /* constructor func */
- void (*ctor) (void *, struct kmem_cache *, unsigned long);
- /* de-constructor func */
- void (*dtor) (void *, struct kmem_cache *, unsigned long);
- /* 4) cache creation/removal */
- const char *name;
- struct list_head next;
- /* 5) statistics */
- #if STATS
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- unsigned long max_freeable;
- unsigned long node_allocs;
- unsigned long node_frees;
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
- #endif
- #if DEBUG
- /*
- * If debugging is enabled, then the allocator can add additional
- * fields and/or padding to every object. buffer_size contains the total
- * object size including these internal fields, the following two
- * variables contain the offset to the user object and its size.
- */
- int obj_offset;
- int obj_size;
- #endif
- };
- #define CFLGS_OFF_SLAB (0x80000000UL)
- #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
- #define BATCHREFILL_LIMIT 16
- /* Optimization question: fewer reaps means less
- * probability for unnessary cpucache drain/refill cycles.
- *
- * OTOH the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
- #define REAPTIMEOUT_CPUC (2*HZ)
- #define REAPTIMEOUT_LIST3 (4*HZ)
- #if STATS
- #define STATS_INC_ACTIVE(x) ((x)->num_active++)
- #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
- #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
- #define STATS_INC_GROWN(x) ((x)->grown++)
- #define STATS_INC_REAPED(x) ((x)->reaped++)
- #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
- #define STATS_INC_ERR(x) ((x)->errors++)
- #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
- #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
- #define STATS_SET_FREEABLE(x, i) \
- do { if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
- #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
- #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
- #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
- #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
- #else
- #define STATS_INC_ACTIVE(x) do { } while (0)
- #define STATS_DEC_ACTIVE(x) do { } while (0)
- #define STATS_INC_ALLOCED(x) do { } while (0)
- #define STATS_INC_GROWN(x) do { } while (0)
- #define STATS_INC_REAPED(x) do { } while (0)
- #define STATS_SET_HIGH(x) do { } while (0)
- #define STATS_INC_ERR(x) do { } while (0)
- #define STATS_INC_NODEALLOCS(x) do { } while (0)
- #define STATS_INC_NODEFREES(x) do { } while (0)
- #define STATS_SET_FREEABLE(x, i) \
- do { } while (0)
- #define STATS_INC_ALLOCHIT(x) do { } while (0)
- #define STATS_INC_ALLOCMISS(x) do { } while (0)
- #define STATS_INC_FREEHIT(x) do { } while (0)
- #define STATS_INC_FREEMISS(x) do { } while (0)
- #endif
- #if DEBUG
- /* Magic nums for obj red zoning.
- * Placed in the first word before and the first word after an obj.
- */
- #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
- #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
- /* ...and for poisoning */
- #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
- #define POISON_FREE 0x6b /* for use-after-free poisoning */
- #define POISON_END 0xa5 /* end-byte of poisoning */
- /* memory layout of objects:
- * 0 : objp
- * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
- * the end of an object is aligned with the end of the real
- * allocation. Catches writes behind the end of the allocation.
- * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
- * redzone word.
- * cachep->obj_offset: The real object.
- * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
- */
- static int obj_offset(struct kmem_cache *cachep)
- {
- return cachep->obj_offset;
- }
- static int obj_size(struct kmem_cache *cachep)
- {
- return cachep->obj_size;
- }
- static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
- }
- static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long *)(objp + cachep->buffer_size -
- 2 * BYTES_PER_WORD);
- return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
- }
- static void **dbg_userword(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
- }
- #else
- #define obj_offset(x) 0
- #define obj_size(cachep) (cachep->buffer_size)
- #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
- #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
- #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
- #endif
- /*
- * Maximum size of an obj (in 2^order pages)
- * and absolute limit for the gfp order.
- */
- #if defined(CONFIG_LARGE_ALLOCS)
- #define MAX_OBJ_ORDER 13 /* up to 32Mb */
- #define MAX_GFP_ORDER 13 /* up to 32Mb */
- #elif defined(CONFIG_MMU)
- #define MAX_OBJ_ORDER 5 /* 32 pages */
- #define MAX_GFP_ORDER 5 /* 32 pages */
- #else
- #define MAX_OBJ_ORDER 8 /* up to 1Mb */
- #define MAX_GFP_ORDER 8 /* up to 1Mb */
- #endif
- /*
- * Do not go above this order unless 0 objects fit into the slab.
- */
- #define BREAK_GFP_ORDER_HI 1
- #define BREAK_GFP_ORDER_LO 0
- static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
- /* Functions for storing/retrieving the cachep and or slab from the
- * global 'mem_map'. These are used to find the slab an obj belongs to.
- * With kfree(), these are used to find the cache which an obj belongs to.
- */
- static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
- {
- page->lru.next = (struct list_head *)cache;
- }
- static inline struct kmem_cache *page_get_cache(struct page *page)
- {
- return (struct kmem_cache *)page->lru.next;
- }
- static inline void page_set_slab(struct page *page, struct slab *slab)
- {
- page->lru.prev = (struct list_head *)slab;
- }
- static inline struct slab *page_get_slab(struct page *page)
- {
- return (struct slab *)page->lru.prev;
- }
- static inline struct kmem_cache *virt_to_cache(const void *obj)
- {
- struct page *page = virt_to_page(obj);
- return page_get_cache(page);
- }
- static inline struct slab *virt_to_slab(const void *obj)
- {
- struct page *page = virt_to_page(obj);
- return page_get_slab(page);
- }
- /* These are the default caches for kmalloc. Custom caches can have other sizes. */
- struct cache_sizes malloc_sizes[] = {
- #define CACHE(x) { .cs_size = (x) },
- #include <linux/kmalloc_sizes.h>
- CACHE(ULONG_MAX)
- #undef CACHE
- };
- EXPORT_SYMBOL(malloc_sizes);
- /* Must match cache_sizes above. Out of line to keep cache footprint low. */
- struct cache_names {
- char *name;
- char *name_dma;
- };
- static struct cache_names __initdata cache_names[] = {
- #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
- #include <linux/kmalloc_sizes.h>
- {NULL,}
- #undef CACHE
- };
- static struct arraycache_init initarray_cache __initdata =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- static struct arraycache_init initarray_generic =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- /* internal cache of cache description objs */
- static struct kmem_cache cache_cache = {
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .shared = 1,
- .buffer_size = sizeof(struct kmem_cache),
- .flags = SLAB_NO_REAP,
- .spinlock = SPIN_LOCK_UNLOCKED,
- .name = "kmem_cache",
- #if DEBUG
- .obj_size = sizeof(struct kmem_cache),
- #endif
- };
- /* Guard access to the cache-chain. */
- static DEFINE_MUTEX(cache_chain_mutex);
- static struct list_head cache_chain;
- /*
- * vm_enough_memory() looks at this to determine how many
- * slab-allocated pages are possibly freeable under pressure
- *
- * SLAB_RECLAIM_ACCOUNT turns this on per-slab
- */
- atomic_t slab_reclaim_pages;
- /*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
- static enum {
- NONE,
- PARTIAL_AC,
- PARTIAL_L3,
- FULL
- } g_cpucache_up;
- static DEFINE_PER_CPU(struct work_struct, reap_work);
- static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
- static void enable_cpucache(struct kmem_cache *cachep);
- static void cache_reap(void *unused);
- static int __node_shrink(struct kmem_cache *cachep, int node);
- static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
- {
- return cachep->array[smp_processor_id()];
- }
- static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
- {
- struct cache_sizes *csizep = malloc_sizes;
- #if DEBUG
- /* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
- BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
- #endif
- while (size > csizep->cs_size)
- csizep++;
- /*
- * Really subtle: The last entry with cs->cs_size==ULONG_MAX
- * has cs_{dma,}cachep==NULL. Thus no special case
- * for large kmalloc calls required.
- */
- if (unlikely(gfpflags & GFP_DMA))
- return csizep->cs_dmacachep;
- return csizep->cs_cachep;
- }
- struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
- {
- return __find_general_cachep(size, gfpflags);
- }
- EXPORT_SYMBOL(kmem_find_general_cachep);
- static size_t slab_mgmt_size(size_t nr_objs, size_t align)
- {
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
- }
- /* Calculate the number of objects and left-over bytes for a given
- buffer size. */
- static void cache_estimate(unsigned long gfporder, size_t buffer_size,
- size_t align, int flags, size_t *left_over,
- unsigned int *num)
- {
- int nr_objs;
- size_t mgmt_size;
- size_t slab_size = PAGE_SIZE << gfporder;
- /*
- * The slab management structure can be either off the slab or
- * on it. For the latter case, the memory allocated for a
- * slab is used for:
- *
- * - The struct slab
- * - One kmem_bufctl_t for each object
- * - Padding to respect alignment of @align
- * - @buffer_size bytes for each object
- *
- * If the slab management structure is off the slab, then the
- * alignment will already be calculated into the size. Because
- * the slabs are all pages aligned, the objects will be at the
- * correct alignment when allocated.
- */
- if (flags & CFLGS_OFF_SLAB) {
- mgmt_size = 0;
- nr_objs = slab_size / buffer_size;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- } else {
- /*
- * Ignore padding for the initial guess. The padding
- * is at most @align-1 bytes, and @buffer_size is at
- * least @align. In the worst case, this result will
- * be one greater than the number of objects that fit
- * into the memory allocation when taking the padding
- * into account.
- */
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(kmem_bufctl_t));
- /*
- * This calculated number will be either the right
- * amount, or one greater than what we want.
- */
- if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
- > slab_size)
- nr_objs--;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- mgmt_size = slab_mgmt_size(nr_objs, align);
- }
- *num = nr_objs;
- *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
- }
- #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
- static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
- {
- printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
- dump_stack();
- }
- /*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
- static void __devinit start_cpu_timer(int cpu)
- {
- struct work_struct *reap_work = &per_cpu(reap_work, cpu);
- /*
- * When this gets called from do_initcalls via cpucache_init(),
- * init_workqueues() has already run, so keventd will be setup
- * at that time.
- */
- if (keventd_up() && reap_work->func == NULL) {
- INIT_WORK(reap_work, cache_reap, NULL);
- schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
- }
- }
- static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount)
- {
- int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
- struct array_cache *nc = NULL;
- nc = kmalloc_node(memsize, GFP_KERNEL, node);
- if (nc) {
- nc->avail = 0;
- nc->limit = entries;
- nc->batchcount = batchcount;
- nc->touched = 0;
- spin_lock_init(&nc->lock);
- }
- return nc;
- }
- #ifdef CONFIG_NUMA
- static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
- static struct array_cache **alloc_alien_cache(int node, int limit)
- {
- struct array_cache **ac_ptr;
- int memsize = sizeof(void *) * MAX_NUMNODES;
- int i;
- if (limit > 1)
- limit = 12;
- ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
- if (ac_ptr) {
- for_each_node(i) {
- if (i == node || !node_online(i)) {
- ac_ptr[i] = NULL;
- continue;
- }
- ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
- if (!ac_ptr[i]) {
- for (i--; i <= 0; i--)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- return NULL;
- }
- }
- }
- return ac_ptr;
- }
- static void free_alien_cache(struct array_cache **ac_ptr)
- {
- int i;
- if (!ac_ptr)
- return;
- for_each_node(i)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- }
- static void __drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache *ac, int node)
- {
- struct kmem_list3 *rl3 = cachep->nodelists[node];
- if (ac->avail) {
- spin_lock(&rl3->list_lock);
- free_block(cachep, ac->entry, ac->avail, node);
- ac->avail = 0;
- spin_unlock(&rl3->list_lock);
- }
- }
- static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
- {
- int i = 0;
- struct array_cache *ac;
- unsigned long flags;
- for_each_online_node(i) {
- ac = alien[i];
- if (ac) {
- spin_lock_irqsave(&ac->lock, flags);
- __drain_alien_cache(cachep, ac, i);
- spin_unlock_irqrestore(&ac->lock, flags);
- }
- }
- }
- #else
- #define drain_alien_cache(cachep, alien) do { } while (0)
- static inline struct array_cache **alloc_alien_cache(int node, int limit)
- {
- return (struct array_cache **) 0x01020304ul;
- }
- static inline void free_alien_cache(struct array_cache **ac_ptr)
- {
- }
- #endif
- static int __devinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- struct kmem_cache *cachep;
- struct kmem_list3 *l3 = NULL;
- int node = cpu_to_node(cpu);
- int memsize = sizeof(struct kmem_list3);
- switch (action) {
- case CPU_UP_PREPARE:
- mutex_lock(&cache_chain_mutex);
- /* we need to do this right in the beginning since
- * alloc_arraycache's are going to use this list.
- * kmalloc_node allows us to add the slab to the right
- * kmem_list3 and not this cpu's kmem_list3
- */
- list_for_each_entry(cachep, &cache_chain, next) {
- /* setup the size64 kmemlist for cpu before we can
- * begin anything. Make sure some other cpu on this
- * node has not already allocated this
- */
- if (!cachep->nodelists[node]) {
- if (!(l3 = kmalloc_node(memsize,
- GFP_KERNEL, node)))
- goto bad;
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- /*
- * The l3s don't come and go as CPUs come and
- * go. cache_chain_mutex is sufficient
- * protection here.
- */
- cachep->nodelists[node] = l3;
- }
- spin_lock_irq(&cachep->nodelists[node]->list_lock);
- cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&cachep->nodelists[node]->list_lock);
- }
- /* Now we can go ahead with allocating the shared array's
- & array cache's */
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- struct array_cache *shared;
- struct array_cache **alien;
- nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount);
- if (!nc)
- goto bad;
- shared = alloc_arraycache(node,
- cachep->shared * cachep->batchcount,
- 0xbaadf00d);
- if (!shared)
- goto bad;
- alien = alloc_alien_cache(node, cachep->limit);
- if (!alien)
- goto bad;
- cachep->array[cpu] = nc;
- l3 = cachep->nodelists[node];
- BUG_ON(!l3);
- spin_lock_irq(&l3->list_lock);
- if (!l3->shared) {
- /*
- * We are serialised from CPU_DEAD or
- * CPU_UP_CANCELLED by the cpucontrol lock
- */
- l3->shared = shared;
- shared = NULL;
- }
- #ifdef CONFIG_NUMA
- if (!l3->alien) {
- l3->alien = alien;
- alien = NULL;
- }
- #endif
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(alien);
- }
- mutex_unlock(&cache_chain_mutex);
- break;
- case CPU_ONLINE:
- start_cpu_timer(cpu);
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_DEAD:
- /*
- * Even if all the cpus of a node are down, we don't free the
- * kmem_list3 of any cache. This to avoid a race between
- * cpu_down, and a kmalloc allocation from another cpu for
- * memory from the node of the cpu going down. The list3
- * structure is usually allocated from kmem_cache_create() and
- * gets destroyed at kmem_cache_destroy().
- */
- /* fall thru */
- case CPU_UP_CANCELED:
- mutex_lock(&cache_chain_mutex);
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- struct array_cache *shared;
- struct array_cache **alien;
- cpumask_t mask;
- mask = node_to_cpumask(node);
- /* cpu is dead; no one can alloc from it. */
- nc = cachep->array[cpu];
- cachep->array[cpu] = NULL;
- l3 = cachep->nodelists[node];
- if (!l3)
- goto free_array_cache;
- spin_lock_irq(&l3->list_lock);
- /* Free limit for this kmem_list3 */
- l3->free_limit -= cachep->batchcount;
- if (nc)
- free_block(cachep, nc->entry, nc->avail, node);
- if (!cpus_empty(mask)) {
- spin_unlock_irq(&l3->list_lock);
- goto free_array_cache;
- }
- shared = l3->shared;
- if (shared) {
- free_block(cachep, l3->shared->entry,
- l3->shared->avail, node);
- l3->shared = NULL;
- }
- alien = l3->alien;
- l3->alien = NULL;
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- if (alien) {
- drain_alien_cache(cachep, alien);
- free_alien_cache(alien);
- }
- free_array_cache:
- kfree(nc);
- }
- /*
- * In the previous loop, all the objects were freed to
- * the respective cache's slabs, now we can go ahead and
- * shrink each nodelist to its limit.
- */
- list_for_each_entry(cachep, &cache_chain, next) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- spin_lock_irq(&l3->list_lock);
- /* free slabs belonging to this node */
- __node_shrink(cachep, node);
- spin_unlock_irq(&l3->list_lock);
- }
- mutex_unlock(&cache_chain_mutex);
- break;
- #endif
- }
- return NOTIFY_OK;
- bad:
- mutex_unlock(&cache_chain_mutex);
- return NOTIFY_BAD;
- }
- static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
- /*
- * swap the static kmem_list3 with kmalloced memory
- */
- static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
- {
- struct kmem_list3 *ptr;
- BUG_ON(cachep->nodelists[nodeid] != list);
- ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
- BUG_ON(!ptr);
- local_irq_disable();
- memcpy(ptr, list, sizeof(struct kmem_list3));
- MAKE_ALL_LISTS(cachep, ptr, nodeid);
- cachep->nodelists[nodeid] = ptr;
- local_irq_enable();
- }
- /* Initialisation.
- * Called after the gfp() functions have been enabled, and before smp_init().
- */
- void __init kmem_cache_init(void)
- {
- size_t left_over;
- struct cache_sizes *sizes;
- struct cache_names *names;
- int i;
- for (i = 0; i < NUM_INIT_LISTS; i++) {
- kmem_list3_init(&initkmem_list3[i]);
- if (i < MAX_NUMNODES)
- cache_cache.nodelists[i] = NULL;
- }
- /*
- * Fragmentation resistance on low memory - only use bigger
- * page orders on machines with more than 32MB of memory.
- */
- if (num_physpages > (32 << 20) >> PAGE_SHIFT)
- slab_break_gfp_order = BREAK_GFP_ORDER_HI;
- /* Bootstrap is tricky, because several objects are allocated
- * from caches that do not exist yet:
- * 1) initialize the cache_cache cache: it contains the struct kmem_cache
- * structures of all caches, except cache_cache itself: cache_cache
- * is statically allocated.
- * Initially an __init data area is used for the head array and the
- * kmem_list3 structures, it's replaced with a kmalloc allocated
- * array at the end of the bootstrap.
- * 2) Create the first kmalloc cache.
- * The struct kmem_cache for the new cache is allocated normally.
- * An __init data area is used for the head array.
- * 3) Create the remaining kmalloc caches, with minimally sized
- * head arrays.
- * 4) Replace the __init data head arrays for cache_cache and the first
- * kmalloc cache with kmalloc allocated arrays.
- * 5) Replace the __init data for kmem_list3 for cache_cache and
- * the other cache's with kmalloc allocated memory.
- * 6) Resize the head arrays of the kmalloc caches to their final sizes.
- */
- /* 1) create the cache_cache */
- INIT_LIST_HEAD(&cache_chain);
- list_add(&cache_cache.next, &cache_chain);
- cache_cache.colour_off = cache_line_size();
- cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
- cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
- cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
- cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
- &left_over, &cache_cache.num);
- if (!cache_cache.num)
- BUG();
- cache_cache.colour = left_over / cache_cache.colour_off;
- cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
- sizeof(struct slab), cache_line_size());
- /* 2+3) create the kmalloc caches */
- sizes = malloc_sizes;
- names = cache_names;
- /* Initialize the caches that provide memory for the array cache
- * and the kmem_list3 structures first.
- * Without this, further allocations will bug
- */
- sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
- sizes[INDEX_AC].cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS |
- SLAB_PANIC), NULL, NULL);
- if (INDEX_AC != INDEX_L3)
- sizes[INDEX_L3].cs_cachep =
- kmem_cache_create(names[INDEX_L3].name,
- sizes[INDEX_L3].cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
- NULL);
- while (sizes->cs_size != ULONG_MAX) {
- /*
- * For performance, all the general caches are L1 aligned.
- * This should be particularly beneficial on SMP boxes, as it
- * eliminates "false sharing".
- * Note for systems short on memory removing the alignment will
- * allow tighter packing of the smaller caches.
- */
- if (!sizes->cs_cachep)
- sizes->cs_cachep = kmem_cache_create(names->name,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS
- | SLAB_PANIC),
- NULL, NULL);
- /* Inc off-slab bufctl limit until the ceiling is hit. */
- if (!(OFF_SLAB(sizes->cs_cachep))) {
- offslab_limit = sizes->cs_size - sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
- }
- sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS |
- SLAB_CACHE_DMA |
- SLAB_PANIC), NULL,
- NULL);
- sizes++;
- names++;
- }
- /* 4) Replace the bootstrap head arrays */
- {
- void *ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
- local_irq_disable();
- BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
- memcpy(ptr, cpu_cache_get(&cache_cache),
- sizeof(struct arraycache_init));
- cache_cache.array[smp_processor_id()] = ptr;
- local_irq_enable();
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
- local_irq_disable();
- BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
- != &initarray_generic.cache);
- memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
- sizeof(struct arraycache_init));
- malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
- ptr;
- local_irq_enable();
- }
- /* 5) Replace the bootstrap kmem_list3's */
- {
- int node;
- /* Replace the static kmem_list3 structures for the boot cpu */
- init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
- numa_node_id());
- for_each_online_node(node) {
- init_list(malloc_sizes[INDEX_AC].cs_cachep,
- &initkmem_list3[SIZE_AC + node], node);
- if (INDEX_AC != INDEX_L3) {
- init_list(malloc_sizes[INDEX_L3].cs_cachep,
- &initkmem_list3[SIZE_L3 + node],
- node);
- }
- }
- }
- /* 6) resize the head arrays to their final sizes */
- {
- struct kmem_cache *cachep;
- mutex_lock(&cache_chain_mutex);
- list_for_each_entry(cachep, &cache_chain, next)
- enable_cpucache(cachep);
- mutex_unlock(&cache_chain_mutex);
- }
- /* Done! */
- g_cpucache_up = FULL;
- /* Register a cpu startup notifier callback
- * that initializes cpu_cache_get for all new cpus
- */
- register_cpu_notifier(&cpucache_notifier);
- /* The reap timers are started later, with a module init call:
- * That part of the kernel is not yet operational.
- */
- }
- static int __init cpucache_init(void)
- {
- int cpu;
- /*
- * Register the timers that return unneeded
- * pages to gfp.
- */
- for_each_online_cpu(cpu)
- start_cpu_timer(cpu);
- return 0;
- }
- __initcall(cpucache_init);
- /*
- * Interface to system's page allocator. No need to hold the cache-lock.
- *
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
- static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- struct page *page;
- void *addr;
- int i;
- flags |= cachep->gfpflags;
- page = alloc_pages_node(nodeid, flags, cachep->gfporder);
- if (!page)
- return NULL;
- addr = page_address(page);
- i = (1 << cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- atomic_add(i, &slab_reclaim_pages);
- add_page_state(nr_slab, i);
- while (i--) {
- SetPageSlab(page);
- page++;
- }
- return addr;
- }
- /*
- * Interface to system's page release.
- */
- static void kmem_freepages(struct kmem_cache *cachep, void *addr)
- {
- unsigned long i = (1 << cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
- while (i--) {
- if (!TestClearPageSlab(page))
- BUG();
- page++;
- }
- sub_page_state(nr_slab, nr_freed);
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += nr_freed;
- free_pages((unsigned long)addr, cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
- }
- static void kmem_rcu_free(struct rcu_head *head)
- {
- struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
- struct kmem_cache *cachep = slab_rcu->cachep;
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
- }
- #if DEBUG
- #ifdef CONFIG_DEBUG_PAGEALLOC
- static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
- unsigned long caller)
- {
- int size = obj_size(cachep);
- addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
- if (size < 5 * sizeof(unsigned long))
- return;
- *addr++ = 0x12345678;
- *addr++ = caller;
- *addr++ = smp_processor_id();
- size -= 3 * sizeof(unsigned long);
- {
- unsigned long *sptr = &caller;
- unsigned long svalue;
- while (!kstack_end(sptr)) {
- svalue = *sptr++;
- if (kernel_text_address(svalue)) {
- *addr++ = svalue;
- size -= sizeof(unsigned long);
- if (size <= sizeof(unsigned long))
- break;
- }
- }
- }
- *addr++ = 0x87654321;
- }
- #endif
- static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
- {
- int size = obj_size(cachep);
- addr = &((char *)addr)[obj_offset(cachep)];
- memset(addr, val, size);
- *(unsigned char *)(addr + size - 1) = POISON_END;
- }
- static void dump_line(char *data, int offset, int limit)
- {
- int i;
- printk(KERN_ERR "%03x:", offset);
- for (i = 0; i < limit; i++) {
- printk(" %02x", (unsigned char)data[offset + i]);
- }
- printk("\n");
- }
- #endif
- #if DEBUG
- static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
- {
- int i, size;
- char *realobj;
- if (cachep->flags & SLAB_RED_ZONE) {
- printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- if (cachep->flags & SLAB_STORE_USER) {
- printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
- print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
- printk("\n");
- }
- realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
- for (i = 0; i < size && lines; i += 16, lines--) {
- int limit;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- }
- }
- static void check_poison_obj(struct kmem_cache *cachep, void *objp)
- {
- char *realobj;
- int size, i;
- int lines = 0;
- realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
- for (i = 0; i < size; i++) {
- char exp = POISON_FREE;
- if (i == size - 1)
- exp = POISON_END;
- if (realobj[i] != exp) {
- int limit;
- /* Mismatch ! */
- /* Print header */
- if (lines == 0) {
- printk(KERN_ERR
- "Slab corruption: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 0);
- }
- /* Hexdump the affected line */
- i = (i / 16) * 16;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- i += 16;
- lines++;
- /* Limit to 5 lines */
- if (lines > 5)
- break;
- }
- }
- if (lines != 0) {
- /* Print some data about the neighboring objects, if they
- * exist:
- */
- struct slab *slabp = virt_to_slab(objp);
- int objnr;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
- if (objnr) {
- objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- if (objnr + 1 < cachep->num) {
- objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- }
- }
- #endif
- #if DEBUG
- /**
- * slab_destroy_objs - call the registered destructor for each object in
- * a slab that is to be destroyed.
- */
- static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->buffer_size * i;
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0
- && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE,
- 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- }
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "start of a freed object "
- "was overwritten");
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "end of a freed object "
- "was overwritten");
- }
- if (cachep->dtor && !(cachep->flags & SLAB_POISON))
- (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
- }
- }
- #else
- static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
- {
- if (cachep->dtor) {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->buffer_size * i;
- (cachep->dtor) (objp, cachep, 0);
- }
- }
- }
- #endif
- /**
- * Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.
- * The cache-lock is not held/needed.
- */
- static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
- {
- void *addr = slabp->s_mem - slabp->colouroff;
- slab_destroy_objs(cachep, slabp);
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
- slab_rcu = (struct slab_rcu *)slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
- } else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
- }
- }
- /* For setting up all the kmem_list3s for cache whose buffer_size is same
- as size of kmem_list3. */
- static void set_up_list3s(struct kmem_cache *cachep, int index)
- {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] = &initkmem_list3[index + node];
- cachep->nodelists[node]->next_reap = jiffies +
- REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- }
- }
- /**
- * calculate_slab_order - calculate size (page order) of slabs
- * @cachep: pointer to the cache that is being created
- * @size: size of objects to be created in this cache.
- * @align: required alignment for the objects.
- * @flags: slab allocation flags
- *
- * Also calculates the number of objects per slab.
- *
- * This could be made much more intelligent. For now, try to avoid using
- * high order pages for slabs. When the gfp() functions are more friendly
- * towards high-order requests, this should be changed.
- */
- static inline size_t calculate_slab_order(struct kmem_cache *cachep,
- size_t size, size_t align, unsigned long flags)
- {
- size_t left_over = 0;
- for (;; cachep->gfporder++) {
- unsigned int num;
- size_t remainder;
- if (cachep->gfporder > MAX_GFP_ORDER) {
- cachep->num = 0;
- break;
- }
- cache_estimate(cachep->gfporder, size, align, flags,
- &remainder, &num);
- if (!num)
- continue;
- /* More than offslab_limit objects will cause problems */
- if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
- break;
- cachep->num = num;
- left_over = remainder;
- /*
- * Large number of objects is good, but very large slabs are
- * currently bad for the gfp()s.
- */
- if (cachep->gfporder >= slab_break_gfp_order)
- break;
- if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
- /* Acceptable internal fragmentation */
- break;
- }
- return left_over;
- }
- /**
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @align: The required alignment for the objects.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- * @dtor: A destructor for the objects.
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache
- * and the @dtor is run before the pages are handed back.
- *
- * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting
- * unloaded.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
- * memory pressure.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
- struct kmem_cache *
- kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
- void (*dtor)(void*, struct kmem_cache *, unsigned long))
- {
- size_t left_over, slab_size, ralign;
- struct kmem_cache *cachep = NULL;
- struct list_head *p;
- /*
- * Sanity checks... these are all serious usage bugs.
- */
- if ((!name) ||
- in_interrupt() ||
- (size < BYTES_PER_WORD) ||
- (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
- printk(KERN_ERR "%s: Early error in slab %s\n",
- __FUNCTION__, name);
- BUG();
- }
- mutex_lock(&cache_chain_mutex);
- list_for_each(p, &cache_chain) {
- struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
- mm_segment_t old_fs = get_fs();
- char tmp;
- int res;
- /*
- * This happens when the module gets unloaded and doesn't
- * destroy its slab cache and no-one else reuses the vmalloc
- * area of the module. Print a warning.
- */
- set_fs(KERNEL_DS);
- res = __get_user(tmp, pc->name);
- set_fs(old_fs);
- if (res) {
- printk("SLAB: cache with size %d has lost its name\n",
- pc->buffer_size);
- continue;
- }
- if (!strcmp(pc->name, name)) {
- printk("kmem_cache_create: duplicate cache %s\n", name);
- dump_stack();
- goto oops;
- }
- }
- #if DEBUG
- WARN_ON(strchr(name, ' ')); /* It confuses parsers */
- if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
- /* No constructor, but inital state check requested */
- printk(KERN_ERR "%s: No con, but init state check "
- "requested - %s\n", __FUNCTION__, name);
- flags &= ~SLAB_DEBUG_INITIAL;
- }
- #if FORCED_DEBUG
- /*
- * Enable redzoning and last user accounting, except for caches with
- * large objects, if the increased size would increase the object size
- * above the next power of two: caches with object sizes just above a
- * power of two have a significant amount of internal fragmentation.
- */
- if ((size < 4096
- || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
- flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
- if (!(flags & SLAB_DESTROY_BY_RCU))
- flags |= SLAB_POISON;
- #endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(flags & SLAB_POISON);
- #endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(dtor);
- /*
- * Always checks flags, a caller might be expecting debug
- * support which isn't available.
- */
- if (flags & ~CREATE_MASK)
- BUG();
- /* Check that size is in terms of words. This is needed to avoid
- * unaligned accesses for some archs when redzoning is used, and makes
- * sure any on-slab bufctl's are also correctly aligned.
- */
- if (size & (BYTES_PER_WORD - 1)) {
- size += (BYTES_PER_WORD - 1);
- size &= ~(BYTES_PER_WORD - 1);
- }
- /* calculate out the final buffer alignment: */
- /* 1) arch recommendation: can be overridden for debug */
- if (flags & SLAB_HWCACHE_ALIGN) {
- /* Default alignment: as specified by the arch code.
- * Except if an object is really small, then squeeze multiple
- * objects into one cacheline.
- */
- ralign = cache_line_size();
- while (size <= ralign / 2)
- ralign /= 2;
- } else {
- ralign = BYTES_PER_WORD;
- }
- /* 2) arch mandated alignment: disables debug if necessary */
- if (ralign < ARCH_SLAB_MINALIGN) {
- ralign = ARCH_SLAB_MINALIGN;
- if (ralign > BYTES_PER_WORD)
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- }
- /* 3) caller mandated alignment: disables debug if necessary */
- if (ralign < align) {
- ralign = align;
- if (ralign > BYTES_PER_WORD)
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- }
- /* 4) Store it. Note that the debug code below can reduce
- * the alignment to BYTES_PER_WORD.
- */
- align = ralign;
- /* Get cache's description obj. */
- cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
- if (!cachep)
- goto oops;
- memset(cachep, 0, sizeof(struct kmem_cache));
- #if DEBUG
- cachep->obj_size = size;
- if (flags & SLAB_RED_ZONE) {
- /* redzoning only works with word aligned caches */
- align = BYTES_PER_WORD;
- /* add space for red zone words */
- cachep->obj_offset += BYTES_PER_WORD;
- size += 2 * BYTES_PER_WORD;
- }
- if (flags & SLAB_STORE_USER) {
- /* user store requires word alignment and
- * one word storage behind the end of the real
- * object.
- */
- align = BYTES_PER_WORD;
- size += BYTES_PER_WORD;
- }
- #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
- if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
- && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
- cachep->obj_offset += PAGE_SIZE - size;
- size = PAGE_SIZE;
- }
- #endif
- #endif
- /* Determine if the slab management is 'on' or 'off' slab. */
- if (size >= (PAGE_SIZE >> 3))
- /*
- * Size is large, assume best to place the slab management obj
- * off-slab (should allow better packing of objs).
- */
- flags |= CFLGS_OFF_SLAB;
- size = ALIGN(size, align);
- if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
- /*
- * A VFS-reclaimable slab tends to have most allocations
- * as GFP_NOFS and we really don't want to have to be allocating
- * higher-order pages when we are unable to shrink dcache.
- */
- cachep->gfporder = 0;
- cache_estimate(cachep->gfporder, size, align, flags,
- &left_over, &cachep->num);
- } else
- left_over = calculate_slab_order(cachep, size, align, flags);
- if (!cachep->num) {
- printk("kmem_cache_create: couldn't create cache %s.\n", name);
- kmem_cache_free(&cache_cache, cachep);
- cachep = NULL;
- goto oops;
- }
- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
- + sizeof(struct slab), align);
- /*
- * If the slab has been placed off-slab, and we have enough space then
- * move it on-slab. This is at the expense of any extra colouring.
- */
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
- flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
- }
- if (flags & CFLGS_OFF_SLAB) {
- /* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
- }
- cachep->colour_off = cache_line_size();
- /* Offset must be a multiple of the alignment. */
- if (cachep->colour_off < align)
- cachep->colour_off = align;
- cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
- cachep->flags = flags;
- cachep->gfpflags = 0;
- if (flags & SLAB_CACHE_DMA)
- cachep->gfpflags |= GFP_DMA;
- spin_lock_init(&cachep->spinlock);
- cachep->buffer_size = size;
- if (flags & CFLGS_OFF_SLAB)
- cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
- cachep->ctor = ctor;
- cachep->dtor = dtor;
- cachep->name = name;
- /* Don't let CPUs to come and go */
- lock_cpu_hotplug();
- if (g_cpucache_up == FULL) {
- enable_cpucache(cachep);
- } else {
- if (g_cpucache_up == NONE) {
- /* Note: the first kmem_cache_create must create
- * the cache that's used by kmalloc(24), otherwise
- * the creation of further caches will BUG().
- */
- cachep->array[smp_processor_id()] =
- &initarray_generic.cache;
- /* If the cache that's used by
- * kmalloc(sizeof(kmem_list3)) is the first cache,
- * then we need to set up all its list3s, otherwise
- * the creation of further caches will BUG().
- */
- set_up_list3s(cachep, SIZE_AC);
- if (INDEX_AC == INDEX_L3)
- g_cpucache_up = PARTIAL_L3;
- else
- g_cpucache_up = PARTIAL_AC;
- } else {
- cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
- if (g_cpucache_up == PARTIAL_AC) {
- set_up_list3s(cachep, SIZE_L3);
- g_cpucache_up = PARTIAL_L3;
- } else {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] =
- kmalloc_node(sizeof
- (struct kmem_list3),
- GFP_KERNEL, node);
- BUG_ON(!cachep->nodelists[node]);
- kmem_list3_init(cachep->
- nodelists[node]);
- }
- }
- }
- cachep->nodelists[numa_node_id()]->next_reap =
- jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- BUG_ON(!cpu_cache_get(cachep));
- cpu_cache_get(cachep)->avail = 0;
- cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
- cpu_cache_get(cachep)->batchcount = 1;
- cpu_cache_get(cachep)->touched = 0;
- cachep->batchcount = 1;
- cachep->limit = BOOT_CPUCACHE_ENTRIES;
- }
- /* cache setup completed, link it into the list */
- list_add(&cachep->next, &cache_chain);
- unlock_cpu_hotplug();
- oops:
- if (!cachep && (flags & SLAB_PANIC))
- panic("kmem_cache_create(): failed to create slab `%s'\n",
- name);
- mutex_unlock(&cache_chain_mutex);
- return cachep;
- }
- EXPORT_SYMBOL(kmem_cache_create);
- #if DEBUG
- static void check_irq_off(void)
- {
- BUG_ON(!irqs_disabled());
- }
- static void check_irq_on(void)
- {
- BUG_ON(irqs_disabled());
- }
- static void check_spinlock_acquired(struct kmem_cache *cachep)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
- #endif
- }
- static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[node]->list_lock);
- #endif
- }
- #else
- #define check_irq_off() do { } while(0)
- #define check_irq_on() do { } while(0)
- #define check_spinlock_acquired(x) do { } while(0)
- #define check_spinlock_acquired_node(x, y) do { } while(0)
- #endif
- /*
- * Waits for all CPUs to execute func().
- */
- static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
- {
- check_irq_on();
- preempt_disable();
- local_irq_disable();
- func(arg);
- local_irq_enable();
- if (smp_call_function(func, arg, 1, 1))
- BUG();
- preempt_enable();
- }
- static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
- int force, int node);
- static void do_drain(void *arg)
- {
- struct kmem_cache *cachep = (struct kmem_cache *) arg;
- struct array_cache *ac;
- int node = numa_node_id();
- check_irq_off();
- ac = cpu_cache_get(cachep);
- spin_lock(&cachep->nodelists[node]->list_lock);
- free_block(cachep, ac->entry, ac->avail, node);
- spin_unlock(&cachep->nodelists[node]->list_lock);
- ac->avail = 0;
- }
- static void drain_cpu_caches(struct kmem_cache *cachep)
- {
- struct kmem_list3 *l3;
- int node;
- smp_call_function_all_cpus(do_drain, cachep);
- check_irq_on();
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3) {
- spin_lock_irq(&l3->list_lock);
- drain_array_locked(cachep, l3->shared, 1, node);
- spin_unlock_irq(&l3->list_lock);
- if (l3->alien)
- drain_alien_cache(cachep, l3->alien);
- }
- }
- }
- static int __node_shrink(struct kmem_cache *cachep, int node)
- {
- struct slab *slabp;
- struct kmem_list3 *l3 = cachep->nodelists[node];
- int ret;
- for (;;) {
- struct list_head *p;
- p = l3->slabs_free.prev;
- if (p == &l3->slabs_free)
- break;
- slabp = list_entry(l3->slabs_free.prev, struct slab, list);
- #if DEBUG
- if (slabp->inuse)
- BUG();
- #endif
- list_del(&slabp->list);
- l3->free_objects -= cachep->num;
- spin_unlock_irq(&l3->list_lock);
- slab_destroy(cachep, slabp);
- spin_lock_irq(&l3->list_lock);
- }
- ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
- return ret;
- }
- static int __cache_shrink(struct kmem_cache *cachep)
- {
- int ret = 0, i = 0;
- struct kmem_list3 *l3;
- drain_cpu_caches(cachep);
- check_irq_on();
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (l3) {
- spin_lock_irq(&l3->list_lock);
- ret += __node_shrink(cachep, i);
- spin_unlock_irq(&l3->list_lock);
- }
- }
- return (ret ? 1 : 0);
- }
- /**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
- int kmem_cache_shrink(struct kmem_cache *cachep)
- {
- if (!cachep || in_interrupt())
- BUG();
- return __cache_shrink(cachep);
- }
- EXPORT_SYMBOL(kmem_cache_shrink);
- /**
- * kmem_cache_destroy - delete a cache
- * @cachep: the cache to destroy
- *
- * Remove a struct kmem_cache object from the slab cache.
- * Returns 0 on success.
- *
- * It is expected this function will be called by a module when it is
- * unloaded. This will remove the cache completely, and avoid a duplicate
- * cache being allocated each time a module is loaded and unloaded, if the
- * module doesn't have persistent in-kernel storage across loads and unloads.
- *
- * The cache must be empty before calling this function.
- *
- * The caller must guarantee that noone will allocate memory from the cache
- * during the kmem_cache_destroy().
- */
- int kmem_cache_destroy(struct kmem_cache *cachep)
- {
- int i;
- struct kmem_list3 *l3;
- if (!cachep || in_interrupt())
- BUG();
- /* Don't let CPUs to come and go */
- lock_cpu_hotplug();
- /* Find the cache in the chain of caches. */
- mutex_lock(&cache_chain_mutex);
- /*
- * the chain is never empty, cache_cache is never destroyed
- */
- list_del(&cachep->next);
- mutex_unlock(&cache_chain_mutex);
- if (__cache_shrink(cachep)) {
- slab_error(cachep, "Can't free all objects");
- mutex_lock(&cache_chain_mutex);
- list_add(&cachep->next, &cache_chain);
- mutex_unlock(&cache_chain_mutex);
- unlock_cpu_hotplug();
- return 1;
- }
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
- synchronize_rcu();
- for_each_online_cpu(i)
- kfree(cachep->array[i]);
- /* NUMA: free the list3 structures */
- for_each_online_node(i) {
- if ((l3 = cachep->nodelists[i])) {
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- }
- }
- kmem_cache_free(&cache_cache, cachep);
- unlock_cpu_hotplug();
- return 0;
- }
- EXPORT_SYMBOL(kmem_cache_destroy);
- /* Get the memory for a slab management obj. */
- static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
- int colour_off, gfp_t local_flags)
- {
- struct slab *slabp;
- if (OFF_SLAB(cachep)) {
- /* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
- if (!slabp)
- return NULL;
- } else {
- slabp = objp + colour_off;
- colour_off += cachep->slab_size;
- }
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp + colour_off;
- return slabp;
- }
- static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
- {
- return (kmem_bufctl_t *) (slabp + 1);
- }
- static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp, unsigned long ctor_flags)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->buffer_size * i;
- #if DEBUG
- /* need to poison the objs? */
- if (cachep->flags & SLAB_POISON)
- poison_obj(cachep, objp, POISON_FREE);
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = NULL;
- if (cachep->flags & SLAB_RED_ZONE) {
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- /*
- * Constructors are not allowed to allocate memory from
- * the same cache which they are a constructor for.
- * Otherwise, deadlock. They must also be threaded.
- */
- if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp + obj_offset(cachep), cachep,
- ctor_flags);
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " end of an object");
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " start of an object");
- }
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
- && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
- #else
- if (cachep->ctor)
- cachep->ctor(objp, cachep, ctor_flags);
- #endif
- slab_bufctl(slabp)[i] = i + 1;
- }
- slab_bufctl(slabp)[i - 1] = BUFCTL_END;
- slabp->free = 0;
- }
- static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
- {
- if (flags & SLAB_DMA) {
- if (!(cachep->gfpflags & GFP_DMA))
- BUG();
- } else {
- if (cachep->gfpflags & GFP_DMA)
- BUG();
- }
- }
- static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
- {
- void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
- kmem_bufctl_t next;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
- #if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- WARN_ON(slabp->nodeid != nodeid);
- #endif
- slabp->free = next;
- return objp;
- }
- static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
- int nodeid)
- {
- unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
- #if DEBUG
- /* Verify that the slab belongs to the intended node */
- WARN_ON(slabp->nodeid != nodeid);
- if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
- printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
- BUG();
- }
- #endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- slabp->inuse--;
- }
- static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
- {
- int i;
- struct page *page;
- /* Nasty!!!!!! I hope this is OK. */
- i = 1 << cachep->gfporder;
- page = virt_to_page(objp);
- do {
- page_set_cache(page, cachep);
- page_set_slab(page, slabp);
- page++;
- } while (--i);
- }
- /*
- * Grow (by 1) the number of slabs within a cache. This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
- static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- struct slab *slabp;
- void *objp;
- size_t offset;
- gfp_t local_flags;
- unsigned long ctor_flags;
- struct kmem_list3 *l3;
- /* Be lazy and only check for valid flags here,
- * keeping it out of the critical path in kmem_cache_alloc().
- */
- if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
- BUG();
- if (flags & SLAB_NO_GROW)
- return 0;
- ctor_flags = SLAB_CTOR_CONSTRUCTOR;
- local_flags = (flags & SLAB_LEVEL_MASK);
- if (!(local_flags & __GFP_WAIT))
- /*
- * Not allowed to sleep. Need to tell a constructor about
- * this - it might need to know...
- */
- ctor_flags |= SLAB_CTOR_ATOMIC;
- /* Take the l3 list lock to change the colour_next on this node */
- check_irq_off();
- l3 = cachep->nodelists[nodeid];
- spin_lock(&l3->list_lock);
- /* Get colour for the slab, and cal the next value. */
- offset = l3->colour_next;
- l3->colour_next++;
- if (l3->colour_next >= cachep->colour)
- l3->colour_next = 0;
- spin_unlock(&l3->list_lock);
- offset *= cachep->colour_off;
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- kmem_flagcheck(cachep, flags);
- /* Get mem for the objs.
- * Attempt to allocate a physical page from 'nodeid',
- */
- if (!(objp = kmem_getpages(cachep, flags, nodeid)))
- goto failed;
- /* Get slab management. */
- if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
- goto opps1;
- slabp->nodeid = nodeid;
- set_slab_attr(cachep, slabp, objp);
- cache_init_objs(cachep, slabp, ctor_flags);
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- check_irq_off();
- spin_lock(&l3->list_lock);
- /* Make slab active. */
- list_add_tail(&slabp->list, &(l3->slabs_free));
- STATS_INC_GROWN(cachep);
- l3->free_objects += cachep->num;
- spin_unlock(&l3->list_lock);
- return 1;
- opps1:
- kmem_freepages(cachep, objp);
- failed:
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- return 0;
- }
- #if DEBUG
- /*
- * Perform extra freeing checks:
- * - detect bad pointers.
- * - POISON/RED_ZONE checking
- * - destructor calls, for caches with POISON+dtor
- */
- static void kfree_debugcheck(const void *objp)
- {
- struct page *page;
- if (!virt_addr_valid(objp)) {
- printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
- }
- page = virt_to_page(objp);
- if (!PageSlab(page)) {
- printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
- }
- }
- static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
- void *caller)
- {
- struct page *page;
- unsigned int objnr;
- struct slab *slabp;
- objp -= obj_offset(cachep);
- kfree_debugcheck(objp);
- page = virt_to_page(objp);
- if (page_get_cache(page) != cachep) {
- printk(KERN_ERR
- "mismatch in kmem_cache_free: expected cache %p, got %p\n",
- page_get_cache(page), cachep);
- printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
- printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
- page_get_cache(page)->name);
- WARN_ON(1);
- }
- slabp = page_get_slab(page);
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
- || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
- slab_error(cachep,
- "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR
- "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
- BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
- if (cachep->flags & SLAB_DEBUG_INITIAL) {
- /* Need to call the slab's constructor so the
- * caller can perform a verify of its state (debugging).
- * Called without the cache-lock held.
- */
- cachep->ctor(objp + obj_offset(cachep),
- cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
- }
- if (cachep->flags & SLAB_POISON && cachep->dtor) {
- /* we want to cache poison the object,
- * call the destruction callback
- */
- cachep->dtor(objp + obj_offset(cachep), cachep, 0);
- }
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
- store_stackinfo(cachep, objp, (unsigned long)caller);
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
- } else {
- poison_obj(cachep, objp, POISON_FREE);
- }
- #else
- poison_obj(cachep, objp, POISON_FREE);
- #endif
- }
- return objp;
- }
- static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
- {
- kmem_bufctl_t i;
- int entries = 0;
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
- bad:
- printk(KERN_ERR
- "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
- for (i = 0;
- i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
- i++) {
- if ((i % 16) == 0)
- printk("\n%03x:", i);
- printk(" %02x", ((unsigned char *)slabp)[i]);
- }
- printk("\n");
- BUG();
- }
- }
- #else
- #define kfree_debugcheck(x) do { } while(0)
- #define cache_free_debugcheck(x,objp,z) (objp)
- #define check_slabp(x,y) do { } while(0)
- #endif
- static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
- {
- int batchcount;
- struct kmem_list3 *l3;
- struct array_cache *ac;
- check_irq_off();
- ac = cpu_cache_get(cachep);
- retry:
- batchcount = ac->batchcount;
- if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /* if there was little recent activity on this
- * cache, then perform only a partial refill.
- * Otherwise we could generate refill bouncing.
- */
- batchcount = BATCHREFILL_LIMIT;
- }
- l3 = cachep->nodelists[numa_node_id()];
- BUG_ON(ac->avail > 0 || !l3);
- spin_lock(&l3->list_lock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- if (shared_array->avail) {
- if (batchcount > shared_array->avail)
- batchcount = shared_array->avail;
- shared_array->avail -= batchcount;
- ac->avail = batchcount;
- memcpy(ac->entry,
- &(shared_array->entry[shared_array->avail]),
- sizeof(void *) * batchcount);
- shared_array->touched = 1;
- goto alloc_done;
- }
- }
- while (batchcount > 0) {
- struct list_head *entry;
- struct slab *slabp;
- /* Get slab alloc is to come from. */
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
- check_spinlock_acquired(cachep);
- while (slabp->inuse < cachep->num && batchcount--) {
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
- numa_node_id());
- }
- check_slabp(cachep, slabp);
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- }
- must_grow:
- l3->free_objects -= ac->avail;
- alloc_done:
- spin_unlock(&l3->list_lock);
- if (unlikely(!ac->avail)) {
- int x;
- x = cache_grow(cachep, flags, numa_node_id());
- // cache_grow can reenable interrupts, then ac could change.
- ac = cpu_cache_get(cachep);
- if (!x && ac->avail == 0) // no objects in sight? abort
- return NULL;
- if (!ac->avail) // objects refilled by interrupt?
- goto retry;
- }
- ac->touched = 1;
- return ac->entry[--ac->avail];
- }
- static inline void
- cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
- {
- might_sleep_if(flags & __GFP_WAIT);
- #if DEBUG
- kmem_flagcheck(cachep, flags);
- #endif
- }
- #if DEBUG
- static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
- void *objp, void *caller)
- {
- if (!objp)
- return objp;
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- poison_obj(cachep, objp, POISON_INUSE);
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
- || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep,
- "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR
- "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_ACTIVE;
- *dbg_redzone2(cachep, objp) = RED_ACTIVE;
- }
- objp += obj_offset(cachep);
- if (cachep->ctor && cachep->flags & SLAB_POISON) {
- unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
- if (!(flags & __GFP_WAIT))
- ctor_flags |= SLAB_CTOR_ATOMIC;
- cachep->ctor(objp, cachep, ctor_flags);
- }
- return objp;
- }
- #else
- #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
- #endif
- static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- void *objp;
- struct array_cache *ac;
- #ifdef CONFIG_NUMA
- if (unlikely(current->mempolicy && !in_interrupt())) {
- int nid = slab_node(current->mempolicy);
- if (nid != numa_node_id())
- return __cache_alloc_node(cachep, flags, nid);
- }
- #endif
- check_irq_off();
- ac = cpu_cache_get(cachep);
- if (likely(ac->avail)) {
- STATS_INC_ALLOCHIT(cachep);
- ac->touched = 1;
- objp = ac->entry[--ac->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags);
- }
- return objp;
- }
- static __always_inline void *
- __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
- {
- unsigned long save_flags;
- void *objp;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- objp = ____cache_alloc(cachep, flags);
- local_irq_restore(save_flags);
- objp = cache_alloc_debugcheck_after(cachep, flags, objp,
- caller);
- prefetchw(objp);
- return objp;
- }
- #ifdef CONFIG_NUMA
- /*
- * A interface to enable slab creation on nodeid
- */
- static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- struct list_head *entry;
- struct slab *slabp;
- struct kmem_list3 *l3;
- void *obj;
- int x;
- l3 = cachep->nodelists[nodeid];
- BUG_ON(!l3);
- retry:
- check_irq_off();
- spin_lock(&l3->list_lock);
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
- STATS_INC_NODEALLOCS(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- BUG_ON(slabp->inuse == cachep->num);
- obj = slab_get_obj(cachep, slabp, nodeid);
- check_slabp(cachep, slabp);
- l3->free_objects--;
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END) {
- list_add(&slabp->list, &l3->slabs_full);
- } else {
- list_add(&slabp->list, &l3->slabs_partial);
- }
- spin_unlock(&l3->list_lock);
- goto done;
- must_grow:
- spin_unlock(&l3->list_lock);
- x = cache_grow(cachep, flags, nodeid);
- if (!x)
- return NULL;
- goto retry;
- done:
- return obj;
- }
- #endif
- /*
- * Caller needs to acquire correct kmem_list's list_lock
- */
- static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
- int node)
- {
- int i;
- struct kmem_list3 *l3;
- for (i = 0; i < nr_objects; i++) {
- void *objp = objpp[i];
- struct slab *slabp;
- slabp = virt_to_slab(objp);
- l3 = cachep->nodelists[node];
- list_del(&slabp->list);
- check_spinlock_acquired_node(cachep, node);
- check_slabp(cachep, slabp);
- slab_put_obj(cachep, slabp, objp, node);
- STATS_DEC_ACTIVE(cachep);
- l3->free_objects++;
- check_slabp(cachep, slabp);
- /* fixup slab chains */
- if (slabp->inuse == 0) {
- if (l3->free_objects > l3->free_limit) {
- l3->free_objects -= cachep->num;
- slab_destroy(cachep, slabp);
- } else {
- list_add(&slabp->list, &l3->slabs_free);
- }
- } else {
- /* Unconditionally move a slab to the end of the
- * partial list on free - maximum time for the
- * other objects to be freed, too.
- */
- list_add_tail(&slabp->list, &l3->slabs_partial);
- }
- }
- }
- static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
- {
- int batchcount;
- struct kmem_list3 *l3;
- int node = numa_node_id();
- batchcount = ac->batchcount;
- #if DEBUG
- BUG_ON(!batchcount || batchcount > ac->avail);
- #endif
- check_irq_off();
- l3 = cachep->nodelists[node];
- spin_lock(&l3->list_lock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- int max = shared_array->limit - shared_array->avail;
- if (max) {
- if (batchcount > max)
- batchcount = max;
- memcpy(&(shared_array->entry[shared_array->avail]),
- ac->entry, sizeof(void *) * batchcount);
- shared_array->avail += batchcount;
- goto free_done;
- }
- }
- free_block(cachep, ac->entry, batchcount, node);
- free_done:
- #if STATS
- {
- int i = 0;
- struct list_head *p;
- p = l3->slabs_free.next;
- while (p != &(l3->slabs_free)) {
- struct slab *slabp;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
- i++;
- p = p->next;
- }
- STATS_SET_FREEABLE(cachep, i);
- }
- #endif
- spin_unlock(&l3->list_lock);
- ac->avail -= batchcount;
- memmove(ac->entry, &(ac->entry[batchcount]),
- sizeof(void *) * ac->avail);
- }
- /*
- * __cache_free
- * Release an obj back to its cache. If the obj has a constructed
- * state, it must be in this state _before_ it is released.
- *
- * Called with disabled ints.
- */
- static inline void __cache_free(struct kmem_cache *cachep, void *objp)
- {
- struct array_cache *ac = cpu_cache_get(cachep);
- check_irq_off();
- objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
- /* Make sure we are not freeing a object from another
- * node to the array cache on this cpu.
- */
- #ifdef CONFIG_NUMA
- {
- struct slab *slabp;
- slabp = virt_to_slab(objp);
- if (unlikely(slabp->nodeid != numa_node_id())) {
- struct array_cache *alien = NULL;
- int nodeid = slabp->nodeid;
- struct kmem_list3 *l3 =
- cachep->nodelists[numa_node_id()];
- STATS_INC_NODEFREES(cachep);
- if (l3->alien && l3->alien[nodeid]) {
- alien = l3->alien[nodeid];
- spin_lock(&alien->lock);
- if (unlikely(alien->avail == alien->limit))
- __drain_alien_cache(cachep,
- alien, nodeid);
- alien->entry[alien->avail++] = objp;
- spin_unlock(&alien->lock);
- } else {
- spin_lock(&(cachep->nodelists[nodeid])->
- list_lock);
- free_block(cachep, &objp, 1, nodeid);
- spin_unlock(&(cachep->nodelists[nodeid])->
- list_lock);
- }
- return;
- }
- }
- #endif
- if (likely(ac->avail < ac->limit)) {
- STATS_INC_FREEHIT(cachep);
- ac->entry[ac->avail++] = objp;
- return;
- } else {
- STATS_INC_FREEMISS(cachep);
- cache_flusharray(cachep, ac);
- ac->entry[ac->avail++] = objp;
- }
- }
- /**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache. The flags are only relevant
- * if the cache has no available objects.
- */
- void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- return __cache_alloc(cachep, flags, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- /**
- * kmem_ptr_validate - check if an untrusted pointer might
- * be a slab entry.
- * @cachep: the cache we're checking against
- * @ptr: pointer to validate
- *
- * This verifies that the untrusted pointer looks sane:
- * it is _not_ a guarantee that the pointer is actually
- * part of the slab cache in question, but it at least
- * validates that the pointer can be dereferenced and
- * looks half-way sane.
- *
- * Currently only used for dentry validation.
- */
- int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
- {
- unsigned long addr = (unsigned long)ptr;
- unsigned long min_addr = PAGE_OFFSET;
- unsigned long align_mask = BYTES_PER_WORD - 1;
- unsigned long size = cachep->buffer_size;
- struct page *page;
- if (unlikely(addr < min_addr))
- goto out;
- if (unlikely(addr > (unsigned long)high_memory - size))
- goto out;
- if (unlikely(addr & align_mask))
- goto out;
- if (unlikely(!kern_addr_valid(addr)))
- goto out;
- if (unlikely(!kern_addr_valid(addr + size - 1)))
- goto out;
- page = virt_to_page(ptr);
- if (unlikely(!PageSlab(page)))
- goto out;
- if (unlikely(page_get_cache(page) != cachep))
- goto out;
- return 1;
- out:
- return 0;
- }
- #ifdef CONFIG_NUMA
- /**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- * @nodeid: node number of the target node.
- *
- * Identical to kmem_cache_alloc, except that this function is slow
- * and can sleep. And it will allocate memory on the given node, which
- * can improve the performance for cpu bound structures.
- * New and improved: it will now make sure that the object gets
- * put on the correct node list so that there is no false sharing.
- */
- void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- unsigned long save_flags;
- void *ptr;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- if (nodeid == -1 || nodeid == numa_node_id() ||
- !cachep->nodelists[nodeid])
- ptr = ____cache_alloc(cachep, flags);
- else
- ptr = __cache_alloc_node(cachep, flags, nodeid);
- local_irq_restore(save_flags);
- ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
- __builtin_return_address(0));
- return ptr;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- void *kmalloc_node(size_t size, gfp_t flags, int node)
- {
- struct kmem_cache *cachep;
- cachep = kmem_find_general_cachep(size, flags);
- if (unlikely(cachep == NULL))
- return NULL;
- return kmem_cache_alloc_node(cachep, flags, node);
- }
- EXPORT_SYMBOL(kmalloc_node);
- #endif
- /**
- * kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * kmalloc is the normal method of allocating memory
- * in the kernel.
- *
- * The @flags argument may be one of:
- *
- * %GFP_USER - Allocate memory on behalf of user. May sleep.
- *
- * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
- *
- * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
- *
- * Additionally, the %GFP_DMA flag may be set to indicate the memory
- * must be suitable for DMA. This can mean different things on different
- * platforms. For example, on i386, it means that the memory must come
- * from the first 16MB.
- */
- static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
- void *caller)
- {
- struct kmem_cache *cachep;
- /* If you want to save a few bytes .text space: replace
- * __ with kmem_.
- * Then kmalloc uses the uninlined functions instead of the inline
- * functions.
- */
- cachep = __find_general_cachep(size, flags);
- if (unlikely(cachep == NULL))
- return NULL;
- return __cache_alloc(cachep, flags, caller);
- }
- #ifndef CONFIG_DEBUG_SLAB
- void *__kmalloc(size_t size, gfp_t flags)
- {
- return __do_kmalloc(size, flags, NULL);
- }
- EXPORT_SYMBOL(__kmalloc);
- #else
- void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
- {
- return __do_kmalloc(size, flags, caller);
- }
- EXPORT_SYMBOL(__kmalloc_track_caller);
- #endif
- #ifdef CONFIG_SMP
- /**
- * __alloc_percpu - allocate one copy of the object for every present
- * cpu in the system, zeroing them.
- * Objects should be dereferenced using the per_cpu_ptr macro only.
- *
- * @size: how many bytes of memory are required.
- */
- void *__alloc_percpu(size_t size)
- {
- int i;
- struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
- if (!pdata)
- return NULL;
- /*
- * Cannot use for_each_online_cpu since a cpu may come online
- * and we have no way of figuring out how to fix the array
- * that we have allocated then....
- */
- for_each_cpu(i) {
- int node = cpu_to_node(i);
- if (node_online(node))
- pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
- else
- pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
- if (!pdata->ptrs[i])
- goto unwind_oom;
- memset(pdata->ptrs[i], 0, size);
- }
- /* Catch derefs w/o wrappers */
- return (void *)(~(unsigned long)pdata);
- unwind_oom:
- while (--i >= 0) {
- if (!cpu_possible(i))
- continue;
- kfree(pdata->ptrs[i]);
- }
- kfree(pdata);
- return NULL;
- }
- EXPORT_SYMBOL(__alloc_percpu);
- #endif
- /**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
- void kmem_cache_free(struct kmem_cache *cachep, void *objp)
- {
- unsigned long flags;
- local_irq_save(flags);
- __cache_free(cachep, objp);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- /**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * If @objp is NULL, no operation is performed.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
- void kfree(const void *objp)
- {
- struct kmem_cache *c;
- unsigned long flags;
- if (unlikely(!objp))
- return;
- local_irq_save(flags);
- kfree_debugcheck(objp);
- c = virt_to_cache(objp);
- mutex_debug_check_no_locks_freed(objp, obj_size(c));
- __cache_free(c, (void *)objp);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL(kfree);
- #ifdef CONFIG_SMP
- /**
- * free_percpu - free previously allocated percpu memory
- * @objp: pointer returned by alloc_percpu.
- *
- * Don't free memory not originally allocated by alloc_percpu()
- * The complemented objp is to check for that.
- */
- void free_percpu(const void *objp)
- {
- int i;
- struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
- /*
- * We allocate for all cpus so we cannot use for online cpu here.
- */
- for_each_cpu(i)
- kfree(p->ptrs[i]);
- kfree(p);
- }
- EXPORT_SYMBOL(free_percpu);
- #endif
- unsigned int kmem_cache_size(struct kmem_cache *cachep)
- {
- return obj_size(cachep);
- }
- EXPORT_SYMBOL(kmem_cache_size);
- const char *kmem_cache_name(struct kmem_cache *cachep)
- {
- return cachep->name;
- }
- EXPORT_SYMBOL_GPL(kmem_cache_name);
- /*
- * This initializes kmem_list3 for all nodes.
- */
- static int alloc_kmemlist(struct kmem_cache *cachep)
- {
- int node;
- struct kmem_list3 *l3;
- int err = 0;
- for_each_online_node(node) {
- struct array_cache *nc = NULL, *new;
- struct array_cache **new_alien = NULL;
- #ifdef CONFIG_NUMA
- if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
- goto fail;
- #endif
- if (!(new = alloc_arraycache(node, (cachep->shared *
- cachep->batchcount),
- 0xbaadf00d)))
- goto fail;
- if ((l3 = cachep->nodelists[node])) {
- spin_lock_irq(&l3->list_lock);
- if ((nc = cachep->nodelists[node]->shared))
- free_block(cachep, nc->entry, nc->avail, node);
- l3->shared = new;
- if (!cachep->nodelists[node]->alien) {
- l3->alien = new_alien;
- new_alien = NULL;
- }
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&l3->list_lock);
- kfree(nc);
- free_alien_cache(new_alien);
- continue;
- }
- if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node)))
- goto fail;
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- l3->shared = new;
- l3->alien = new_alien;
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- cachep->nodelists[node] = l3;
- }
- return err;
- fail:
- err = -ENOMEM;
- return err;
- }
- struct ccupdate_struct {
- struct kmem_cache *cachep;
- struct array_cache *new[NR_CPUS];
- };
- static void do_ccupdate_local(void *info)
- {
- struct ccupdate_struct *new = (struct ccupdate_struct *)info;
- struct array_cache *old;
- check_irq_off();
- old = cpu_cache_get(new->cachep);
- new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
- }
- static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
- int shared)
- {
- struct ccupdate_struct new;
- int i, err;
- memset(&new.new, 0, sizeof(new.new));
- for_each_online_cpu(i) {
- new.new[i] =
- alloc_arraycache(cpu_to_node(i), limit, batchcount);
- if (!new.new[i]) {
- for (i--; i >= 0; i--)
- kfree(new.new[i]);
- return -ENOMEM;
- }
- }
- new.cachep = cachep;
- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
- check_irq_on();
- spin_lock(&cachep->spinlock);
- cachep->batchcount = batchcount;
- cachep->limit = limit;
- cachep->shared = shared;
- spin_unlock(&cachep->spinlock);
- for_each_online_cpu(i) {
- struct array_cache *ccold = new.new[i];
- if (!ccold)
- continue;
- spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
- free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
- spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
- kfree(ccold);
- }
- err = alloc_kmemlist(cachep);
- if (err) {
- printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
- cachep->name, -err);
- BUG();
- }
- return 0;
- }
- static void enable_cpucache(struct kmem_cache *cachep)
- {
- int err;
- int limit, shared;
- /* The head array serves three purposes:
- * - create a LIFO ordering, i.e. return objects that are cache-warm
- * - reduce the number of spinlock operations.
- * - reduce the number of linked list operations on the slab and
- * bufctl chains: array operations are cheaper.
- * The numbers are guessed, we should auto-tune as described by
- * Bonwick.
- */
- if (cachep->buffer_size > 131072)
- limit = 1;
- else if (cachep->buffer_size > PAGE_SIZE)
- limit = 8;
- else if (cachep->buffer_size > 1024)
- limit = 24;
- else if (cachep->buffer_size > 256)
- limit = 54;
- else
- limit = 120;
- /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
- * allocation behaviour: Most allocs on one cpu, most free operations
- * on another cpu. For these cases, an efficient object passing between
- * cpus is necessary. This is provided by a shared array. The array
- * replaces Bonwick's magazine layer.
- * On uniprocessor, it's functionally equivalent (but less efficient)
- * to a larger limit. Thus disabled by default.
- */
- shared = 0;
- #ifdef CONFIG_SMP
- if (cachep->buffer_size <= PAGE_SIZE)
- shared = 8;
- #endif
- #if DEBUG
- /* With debugging enabled, large batchcount lead to excessively
- * long periods with disabled local interrupts. Limit the
- * batchcount
- */
- if (limit > 32)
- limit = 32;
- #endif
- err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
- if (err)
- printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
- }
- static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
- int force, int node)
- {
- int tofree;
- check_spinlock_acquired_node(cachep, node);
- if (ac->touched && !force) {
- ac->touched = 0;
- } else if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit + 4) / 5;
- if (tofree > ac->avail) {
- tofree = (ac->avail + 1) / 2;
- }
- free_block(cachep, ac->entry, tofree, node);
- ac->avail -= tofree;
- memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void *) * ac->avail);
- }
- }
- /**
- * cache_reap - Reclaim memory from caches.
- * @unused: unused parameter
- *
- * Called from workqueue/eventd every few seconds.
- * Purpose:
- * - clear the per-cpu caches for this CPU.
- * - return freeable pages to the main free memory pool.
- *
- * If we cannot acquire the cache chain mutex then just give up - we'll
- * try again on the next iteration.
- */
- static void cache_reap(void *unused)
- {
- struct list_head *walk;
- struct kmem_list3 *l3;
- if (!mutex_trylock(&cache_chain_mutex)) {
- /* Give up. Setup the next iteration. */
- schedule_delayed_work(&__get_cpu_var(reap_work),
- REAPTIMEOUT_CPUC);
- return;
- }
- list_for_each(walk, &cache_chain) {
- struct kmem_cache *searchp;
- struct list_head *p;
- int tofree;
- struct slab *slabp;
- searchp = list_entry(walk, struct kmem_cache, next);
- if (searchp->flags & SLAB_NO_REAP)
- goto next;
- check_irq_on();
- l3 = searchp->nodelists[numa_node_id()];
- if (l3->alien)
- drain_alien_cache(searchp, l3->alien);
- spin_lock_irq(&l3->list_lock);
- drain_array_locked(searchp, cpu_cache_get(searchp), 0,
- numa_node_id());
- if (time_after(l3->next_reap, jiffies))
- goto next_unlock;
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
- if (l3->shared)
- drain_array_locked(searchp, l3->shared, 0,
- numa_node_id());
- if (l3->free_touched) {
- l3->free_touched = 0;
- goto next_unlock;
- }
- tofree =
- (l3->free_limit + 5 * searchp->num -
- 1) / (5 * searchp->num);
- do {
- p = l3->slabs_free.next;
- if (p == &(l3->slabs_free))
- break;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
- list_del(&slabp->list);
- STATS_INC_REAPED(searchp);
- /* Safe to drop the lock. The slab is no longer
- * linked to the cache.
- * searchp cannot disappear, we hold
- * cache_chain_lock
- */
- l3->free_objects -= searchp->num;
- spin_unlock_irq(&l3->list_lock);
- slab_destroy(searchp, slabp);
- spin_lock_irq(&l3->list_lock);
- } while (--tofree > 0);
- next_unlock:
- spin_unlock_irq(&l3->list_lock);
- next:
- cond_resched();
- }
- check_irq_on();
- mutex_unlock(&cache_chain_mutex);
- drain_remote_pages();
- /* Setup the next iteration */
- schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
- }
- #ifdef CONFIG_PROC_FS
- static void print_slabinfo_header(struct seq_file *m)
- {
- /*
- * Output format version, so at least we can change it
- * without _too_ many complaints.
- */
- #if STATS
- seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
- #else
- seq_puts(m, "slabinfo - version: 2.1\n");
- #endif
- seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
- "<objperslab> <pagesperslab>");
- seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
- seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
- #if STATS
- seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
- "<error> <maxfreeable> <nodeallocs> <remotefrees>");
- seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
- #endif
- seq_putc(m, '\n');
- }
- static void *s_start(struct seq_file *m, loff_t *pos)
- {
- loff_t n = *pos;
- struct list_head *p;
- mutex_lock(&cache_chain_mutex);
- if (!n)
- print_slabinfo_header(m);
- p = cache_chain.next;
- while (n--) {
- p = p->next;
- if (p == &cache_chain)
- return NULL;
- }
- return list_entry(p, struct kmem_cache, next);
- }
- static void *s_next(struct seq_file *m, void *p, loff_t *pos)
- {
- struct kmem_cache *cachep = p;
- ++*pos;
- return cachep->next.next == &cache_chain ? NULL
- : list_entry(cachep->next.next, struct kmem_cache, next);
- }
- static void s_stop(struct seq_file *m, void *p)
- {
- mutex_unlock(&cache_chain_mutex);
- }
- static int s_show(struct seq_file *m, void *p)
- {
- struct kmem_cache *cachep = p;
- struct list_head *q;
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs, free_objects = 0, shared_avail = 0;
- const char *name;
- char *error = NULL;
- int node;
- struct kmem_list3 *l3;
- spin_lock(&cachep->spinlock);
- active_objs = 0;
- num_slabs = 0;
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
- list_for_each(q, &l3->slabs_full) {
- slabp = list_entry(q, struct slab, list);
- if (slabp->inuse != cachep->num && !error)
- error = "slabs_full accounting error";
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each(q, &l3->slabs_partial) {
- slabp = list_entry(q, struct slab, list);
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each(q, &l3->slabs_free) {
- slabp = list_entry(q, struct slab, list);
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
- num_slabs++;
- }
- free_objects += l3->free_objects;
- if (l3->shared)
- shared_avail += l3->shared->avail;
- spin_unlock_irq(&l3->list_lock);
- }
- num_slabs += active_slabs;
- num_objs = num_slabs * cachep->num;
- if (num_objs - active_objs != free_objects && !error)
- error = "free_objects accounting error";
- name = cachep->name;
- if (error)
- printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->buffer_size,
- cachep->num, (1 << cachep->gfporder));
- seq_printf(m, " : tunables %4u %4u %4u",
- cachep->limit, cachep->batchcount, cachep->shared);
- seq_printf(m, " : slabdata %6lu %6lu %6lu",
- active_slabs, num_slabs, shared_avail);
- #if STATS
- { /* list3 stats */
- unsigned long high = cachep->high_mark;
- unsigned long allocs = cachep->num_allocations;
- unsigned long grown = cachep->grown;
- unsigned long reaped = cachep->reaped;
- unsigned long errors = cachep->errors;
- unsigned long max_freeable = cachep->max_freeable;
- unsigned long node_allocs = cachep->node_allocs;
- unsigned long node_frees = cachep->node_frees;
- seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
- %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
- }
- /* cpu stats */
- {
- unsigned long allochit = atomic_read(&cachep->allochit);
- unsigned long allocmiss = atomic_read(&cachep->allocmiss);
- unsigned long freehit = atomic_read(&cachep->freehit);
- unsigned long freemiss = atomic_read(&cachep->freemiss);
- seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
- }
- #endif
- seq_putc(m, '\n');
- spin_unlock(&cachep->spinlock);
- return 0;
- }
- /*
- * slabinfo_op - iterator that generates /proc/slabinfo
- *
- * Output layout:
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
- struct seq_operations slabinfo_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
- };
- #define MAX_SLABINFO_WRITE 128
- /**
- * slabinfo_write - Tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data length
- * @ppos: unused
- */
- ssize_t slabinfo_write(struct file *file, const char __user * buffer,
- size_t count, loff_t *ppos)
- {
- char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
- int limit, batchcount, shared, res;
- struct list_head *p;
- if (count > MAX_SLABINFO_WRITE)
- return -EINVAL;
- if (copy_from_user(&kbuf, buffer, count))
- return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = '\0';
- tmp = strchr(kbuf, ' ');
- if (!tmp)
- return -EINVAL;
- *tmp = '\0';
- tmp++;
- if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
- return -EINVAL;
- /* Find the cache in the chain of caches. */
- mutex_lock(&cache_chain_mutex);
- res = -EINVAL;
- list_for_each(p, &cache_chain) {
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
- next);
- if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 ||
- batchcount < 1 ||
- batchcount > limit || shared < 0) {
- res = 0;
- } else {
- res = do_tune_cpucache(cachep, limit,
- batchcount, shared);
- }
- break;
- }
- }
- mutex_unlock(&cache_chain_mutex);
- if (res >= 0)
- res = count;
- return res;
- }
- #endif
- /**
- * ksize - get the actual amount of memory allocated for a given object
- * @objp: Pointer to the object
- *
- * kmalloc may internally round up allocations and return more memory
- * than requested. ksize() can be used to determine the actual amount of
- * memory allocated. The caller may use this additional memory, even though
- * a smaller amount of memory was initially specified with the kmalloc call.
- * The caller must guarantee that objp points to a valid object previously
- * allocated with either kmalloc() or kmem_cache_alloc(). The object
- * must not be freed during the duration of the call.
- */
- unsigned int ksize(const void *objp)
- {
- if (unlikely(objp == NULL))
- return 0;
- return obj_size(virt_to_cache(objp));
- }
|