rmap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem
  24. *
  25. * When a page fault occurs in writing from user to file, down_read
  26. * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
  27. * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
  28. * taken together; in truncation, i_mutex is taken outermost.
  29. *
  30. * mm->mmap_sem
  31. * page->flags PG_locked (lock_page)
  32. * mapping->i_mmap_lock
  33. * anon_vma->lock
  34. * mm->page_table_lock or pte_lock
  35. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  36. * swap_lock (in swap_duplicate, swap_info_get)
  37. * mmlist_lock (in mmput, drain_mmlist and others)
  38. * mapping->private_lock (in __set_page_dirty_buffers)
  39. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  40. * sb_lock (within inode_lock in fs/fs-writeback.c)
  41. * mapping->tree_lock (widely used, in set_page_dirty,
  42. * in arch-dependent flush_dcache_mmap_lock,
  43. * within inode_lock in __sync_single_inode)
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <asm/tlbflush.h>
  55. //#define RMAP_DEBUG /* can be enabled only for debugging */
  56. kmem_cache_t *anon_vma_cachep;
  57. static inline void validate_anon_vma(struct vm_area_struct *find_vma)
  58. {
  59. #ifdef RMAP_DEBUG
  60. struct anon_vma *anon_vma = find_vma->anon_vma;
  61. struct vm_area_struct *vma;
  62. unsigned int mapcount = 0;
  63. int found = 0;
  64. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  65. mapcount++;
  66. BUG_ON(mapcount > 100000);
  67. if (vma == find_vma)
  68. found = 1;
  69. }
  70. BUG_ON(!found);
  71. #endif
  72. }
  73. /* This must be called under the mmap_sem. */
  74. int anon_vma_prepare(struct vm_area_struct *vma)
  75. {
  76. struct anon_vma *anon_vma = vma->anon_vma;
  77. might_sleep();
  78. if (unlikely(!anon_vma)) {
  79. struct mm_struct *mm = vma->vm_mm;
  80. struct anon_vma *allocated, *locked;
  81. anon_vma = find_mergeable_anon_vma(vma);
  82. if (anon_vma) {
  83. allocated = NULL;
  84. locked = anon_vma;
  85. spin_lock(&locked->lock);
  86. } else {
  87. anon_vma = anon_vma_alloc();
  88. if (unlikely(!anon_vma))
  89. return -ENOMEM;
  90. allocated = anon_vma;
  91. locked = NULL;
  92. }
  93. /* page_table_lock to protect against threads */
  94. spin_lock(&mm->page_table_lock);
  95. if (likely(!vma->anon_vma)) {
  96. vma->anon_vma = anon_vma;
  97. list_add(&vma->anon_vma_node, &anon_vma->head);
  98. allocated = NULL;
  99. }
  100. spin_unlock(&mm->page_table_lock);
  101. if (locked)
  102. spin_unlock(&locked->lock);
  103. if (unlikely(allocated))
  104. anon_vma_free(allocated);
  105. }
  106. return 0;
  107. }
  108. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  109. {
  110. BUG_ON(vma->anon_vma != next->anon_vma);
  111. list_del(&next->anon_vma_node);
  112. }
  113. void __anon_vma_link(struct vm_area_struct *vma)
  114. {
  115. struct anon_vma *anon_vma = vma->anon_vma;
  116. if (anon_vma) {
  117. list_add(&vma->anon_vma_node, &anon_vma->head);
  118. validate_anon_vma(vma);
  119. }
  120. }
  121. void anon_vma_link(struct vm_area_struct *vma)
  122. {
  123. struct anon_vma *anon_vma = vma->anon_vma;
  124. if (anon_vma) {
  125. spin_lock(&anon_vma->lock);
  126. list_add(&vma->anon_vma_node, &anon_vma->head);
  127. validate_anon_vma(vma);
  128. spin_unlock(&anon_vma->lock);
  129. }
  130. }
  131. void anon_vma_unlink(struct vm_area_struct *vma)
  132. {
  133. struct anon_vma *anon_vma = vma->anon_vma;
  134. int empty;
  135. if (!anon_vma)
  136. return;
  137. spin_lock(&anon_vma->lock);
  138. validate_anon_vma(vma);
  139. list_del(&vma->anon_vma_node);
  140. /* We must garbage collect the anon_vma if it's empty */
  141. empty = list_empty(&anon_vma->head);
  142. spin_unlock(&anon_vma->lock);
  143. if (empty)
  144. anon_vma_free(anon_vma);
  145. }
  146. static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  147. {
  148. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  149. SLAB_CTOR_CONSTRUCTOR) {
  150. struct anon_vma *anon_vma = data;
  151. spin_lock_init(&anon_vma->lock);
  152. INIT_LIST_HEAD(&anon_vma->head);
  153. }
  154. }
  155. void __init anon_vma_init(void)
  156. {
  157. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  158. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
  159. }
  160. /*
  161. * Getting a lock on a stable anon_vma from a page off the LRU is
  162. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  163. */
  164. static struct anon_vma *page_lock_anon_vma(struct page *page)
  165. {
  166. struct anon_vma *anon_vma = NULL;
  167. unsigned long anon_mapping;
  168. rcu_read_lock();
  169. anon_mapping = (unsigned long) page->mapping;
  170. if (!(anon_mapping & PAGE_MAPPING_ANON))
  171. goto out;
  172. if (!page_mapped(page))
  173. goto out;
  174. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  175. spin_lock(&anon_vma->lock);
  176. out:
  177. rcu_read_unlock();
  178. return anon_vma;
  179. }
  180. #ifdef CONFIG_MIGRATION
  181. /*
  182. * Remove an anonymous page from swap replacing the swap pte's
  183. * through real pte's pointing to valid pages and then releasing
  184. * the page from the swap cache.
  185. *
  186. * Must hold page lock on page.
  187. */
  188. void remove_from_swap(struct page *page)
  189. {
  190. struct anon_vma *anon_vma;
  191. struct vm_area_struct *vma;
  192. if (!PageAnon(page) || !PageSwapCache(page))
  193. return;
  194. anon_vma = page_lock_anon_vma(page);
  195. if (!anon_vma)
  196. return;
  197. list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
  198. remove_vma_swap(vma, page);
  199. spin_unlock(&anon_vma->lock);
  200. delete_from_swap_cache(page);
  201. }
  202. EXPORT_SYMBOL(remove_from_swap);
  203. #endif
  204. /*
  205. * At what user virtual address is page expected in vma?
  206. */
  207. static inline unsigned long
  208. vma_address(struct page *page, struct vm_area_struct *vma)
  209. {
  210. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  211. unsigned long address;
  212. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  213. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  214. /* page should be within any vma from prio_tree_next */
  215. BUG_ON(!PageAnon(page));
  216. return -EFAULT;
  217. }
  218. return address;
  219. }
  220. /*
  221. * At what user virtual address is page expected in vma? checking that the
  222. * page matches the vma: currently only used on anon pages, by unuse_vma;
  223. */
  224. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  225. {
  226. if (PageAnon(page)) {
  227. if ((void *)vma->anon_vma !=
  228. (void *)page->mapping - PAGE_MAPPING_ANON)
  229. return -EFAULT;
  230. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  231. if (!vma->vm_file ||
  232. vma->vm_file->f_mapping != page->mapping)
  233. return -EFAULT;
  234. } else
  235. return -EFAULT;
  236. return vma_address(page, vma);
  237. }
  238. /*
  239. * Check that @page is mapped at @address into @mm.
  240. *
  241. * On success returns with pte mapped and locked.
  242. */
  243. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  244. unsigned long address, spinlock_t **ptlp)
  245. {
  246. pgd_t *pgd;
  247. pud_t *pud;
  248. pmd_t *pmd;
  249. pte_t *pte;
  250. spinlock_t *ptl;
  251. pgd = pgd_offset(mm, address);
  252. if (!pgd_present(*pgd))
  253. return NULL;
  254. pud = pud_offset(pgd, address);
  255. if (!pud_present(*pud))
  256. return NULL;
  257. pmd = pmd_offset(pud, address);
  258. if (!pmd_present(*pmd))
  259. return NULL;
  260. pte = pte_offset_map(pmd, address);
  261. /* Make a quick check before getting the lock */
  262. if (!pte_present(*pte)) {
  263. pte_unmap(pte);
  264. return NULL;
  265. }
  266. ptl = pte_lockptr(mm, pmd);
  267. spin_lock(ptl);
  268. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  269. *ptlp = ptl;
  270. return pte;
  271. }
  272. pte_unmap_unlock(pte, ptl);
  273. return NULL;
  274. }
  275. /*
  276. * Subfunctions of page_referenced: page_referenced_one called
  277. * repeatedly from either page_referenced_anon or page_referenced_file.
  278. */
  279. static int page_referenced_one(struct page *page,
  280. struct vm_area_struct *vma, unsigned int *mapcount)
  281. {
  282. struct mm_struct *mm = vma->vm_mm;
  283. unsigned long address;
  284. pte_t *pte;
  285. spinlock_t *ptl;
  286. int referenced = 0;
  287. address = vma_address(page, vma);
  288. if (address == -EFAULT)
  289. goto out;
  290. pte = page_check_address(page, mm, address, &ptl);
  291. if (!pte)
  292. goto out;
  293. if (ptep_clear_flush_young(vma, address, pte))
  294. referenced++;
  295. /* Pretend the page is referenced if the task has the
  296. swap token and is in the middle of a page fault. */
  297. if (mm != current->mm && has_swap_token(mm) &&
  298. rwsem_is_locked(&mm->mmap_sem))
  299. referenced++;
  300. (*mapcount)--;
  301. pte_unmap_unlock(pte, ptl);
  302. out:
  303. return referenced;
  304. }
  305. static int page_referenced_anon(struct page *page)
  306. {
  307. unsigned int mapcount;
  308. struct anon_vma *anon_vma;
  309. struct vm_area_struct *vma;
  310. int referenced = 0;
  311. anon_vma = page_lock_anon_vma(page);
  312. if (!anon_vma)
  313. return referenced;
  314. mapcount = page_mapcount(page);
  315. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  316. referenced += page_referenced_one(page, vma, &mapcount);
  317. if (!mapcount)
  318. break;
  319. }
  320. spin_unlock(&anon_vma->lock);
  321. return referenced;
  322. }
  323. /**
  324. * page_referenced_file - referenced check for object-based rmap
  325. * @page: the page we're checking references on.
  326. *
  327. * For an object-based mapped page, find all the places it is mapped and
  328. * check/clear the referenced flag. This is done by following the page->mapping
  329. * pointer, then walking the chain of vmas it holds. It returns the number
  330. * of references it found.
  331. *
  332. * This function is only called from page_referenced for object-based pages.
  333. */
  334. static int page_referenced_file(struct page *page)
  335. {
  336. unsigned int mapcount;
  337. struct address_space *mapping = page->mapping;
  338. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  339. struct vm_area_struct *vma;
  340. struct prio_tree_iter iter;
  341. int referenced = 0;
  342. /*
  343. * The caller's checks on page->mapping and !PageAnon have made
  344. * sure that this is a file page: the check for page->mapping
  345. * excludes the case just before it gets set on an anon page.
  346. */
  347. BUG_ON(PageAnon(page));
  348. /*
  349. * The page lock not only makes sure that page->mapping cannot
  350. * suddenly be NULLified by truncation, it makes sure that the
  351. * structure at mapping cannot be freed and reused yet,
  352. * so we can safely take mapping->i_mmap_lock.
  353. */
  354. BUG_ON(!PageLocked(page));
  355. spin_lock(&mapping->i_mmap_lock);
  356. /*
  357. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  358. * is more likely to be accurate if we note it after spinning.
  359. */
  360. mapcount = page_mapcount(page);
  361. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  362. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  363. == (VM_LOCKED|VM_MAYSHARE)) {
  364. referenced++;
  365. break;
  366. }
  367. referenced += page_referenced_one(page, vma, &mapcount);
  368. if (!mapcount)
  369. break;
  370. }
  371. spin_unlock(&mapping->i_mmap_lock);
  372. return referenced;
  373. }
  374. /**
  375. * page_referenced - test if the page was referenced
  376. * @page: the page to test
  377. * @is_locked: caller holds lock on the page
  378. *
  379. * Quick test_and_clear_referenced for all mappings to a page,
  380. * returns the number of ptes which referenced the page.
  381. */
  382. int page_referenced(struct page *page, int is_locked)
  383. {
  384. int referenced = 0;
  385. if (page_test_and_clear_young(page))
  386. referenced++;
  387. if (TestClearPageReferenced(page))
  388. referenced++;
  389. if (page_mapped(page) && page->mapping) {
  390. if (PageAnon(page))
  391. referenced += page_referenced_anon(page);
  392. else if (is_locked)
  393. referenced += page_referenced_file(page);
  394. else if (TestSetPageLocked(page))
  395. referenced++;
  396. else {
  397. if (page->mapping)
  398. referenced += page_referenced_file(page);
  399. unlock_page(page);
  400. }
  401. }
  402. return referenced;
  403. }
  404. /**
  405. * page_set_anon_rmap - setup new anonymous rmap
  406. * @page: the page to add the mapping to
  407. * @vma: the vm area in which the mapping is added
  408. * @address: the user virtual address mapped
  409. */
  410. static void __page_set_anon_rmap(struct page *page,
  411. struct vm_area_struct *vma, unsigned long address)
  412. {
  413. struct anon_vma *anon_vma = vma->anon_vma;
  414. BUG_ON(!anon_vma);
  415. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  416. page->mapping = (struct address_space *) anon_vma;
  417. page->index = linear_page_index(vma, address);
  418. /*
  419. * nr_mapped state can be updated without turning off
  420. * interrupts because it is not modified via interrupt.
  421. */
  422. __inc_page_state(nr_mapped);
  423. }
  424. /**
  425. * page_add_anon_rmap - add pte mapping to an anonymous page
  426. * @page: the page to add the mapping to
  427. * @vma: the vm area in which the mapping is added
  428. * @address: the user virtual address mapped
  429. *
  430. * The caller needs to hold the pte lock.
  431. */
  432. void page_add_anon_rmap(struct page *page,
  433. struct vm_area_struct *vma, unsigned long address)
  434. {
  435. if (atomic_inc_and_test(&page->_mapcount))
  436. __page_set_anon_rmap(page, vma, address);
  437. /* else checking page index and mapping is racy */
  438. }
  439. /*
  440. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  441. * @page: the page to add the mapping to
  442. * @vma: the vm area in which the mapping is added
  443. * @address: the user virtual address mapped
  444. *
  445. * Same as page_add_anon_rmap but must only be called on *new* pages.
  446. * This means the inc-and-test can be bypassed.
  447. */
  448. void page_add_new_anon_rmap(struct page *page,
  449. struct vm_area_struct *vma, unsigned long address)
  450. {
  451. atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
  452. __page_set_anon_rmap(page, vma, address);
  453. }
  454. /**
  455. * page_add_file_rmap - add pte mapping to a file page
  456. * @page: the page to add the mapping to
  457. *
  458. * The caller needs to hold the pte lock.
  459. */
  460. void page_add_file_rmap(struct page *page)
  461. {
  462. BUG_ON(PageAnon(page));
  463. BUG_ON(!pfn_valid(page_to_pfn(page)));
  464. if (atomic_inc_and_test(&page->_mapcount))
  465. __inc_page_state(nr_mapped);
  466. }
  467. /**
  468. * page_remove_rmap - take down pte mapping from a page
  469. * @page: page to remove mapping from
  470. *
  471. * The caller needs to hold the pte lock.
  472. */
  473. void page_remove_rmap(struct page *page)
  474. {
  475. if (atomic_add_negative(-1, &page->_mapcount)) {
  476. if (page_mapcount(page) < 0) {
  477. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  478. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  479. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  480. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  481. }
  482. BUG_ON(page_mapcount(page) < 0);
  483. /*
  484. * It would be tidy to reset the PageAnon mapping here,
  485. * but that might overwrite a racing page_add_anon_rmap
  486. * which increments mapcount after us but sets mapping
  487. * before us: so leave the reset to free_hot_cold_page,
  488. * and remember that it's only reliable while mapped.
  489. * Leaving it set also helps swapoff to reinstate ptes
  490. * faster for those pages still in swapcache.
  491. */
  492. if (page_test_and_clear_dirty(page))
  493. set_page_dirty(page);
  494. __dec_page_state(nr_mapped);
  495. }
  496. }
  497. /*
  498. * Subfunctions of try_to_unmap: try_to_unmap_one called
  499. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  500. */
  501. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  502. int ignore_refs)
  503. {
  504. struct mm_struct *mm = vma->vm_mm;
  505. unsigned long address;
  506. pte_t *pte;
  507. pte_t pteval;
  508. spinlock_t *ptl;
  509. int ret = SWAP_AGAIN;
  510. address = vma_address(page, vma);
  511. if (address == -EFAULT)
  512. goto out;
  513. pte = page_check_address(page, mm, address, &ptl);
  514. if (!pte)
  515. goto out;
  516. /*
  517. * If the page is mlock()d, we cannot swap it out.
  518. * If it's recently referenced (perhaps page_referenced
  519. * skipped over this mm) then we should reactivate it.
  520. */
  521. if ((vma->vm_flags & VM_LOCKED) ||
  522. (ptep_clear_flush_young(vma, address, pte)
  523. && !ignore_refs)) {
  524. ret = SWAP_FAIL;
  525. goto out_unmap;
  526. }
  527. /* Nuke the page table entry. */
  528. flush_cache_page(vma, address, page_to_pfn(page));
  529. pteval = ptep_clear_flush(vma, address, pte);
  530. /* Move the dirty bit to the physical page now the pte is gone. */
  531. if (pte_dirty(pteval))
  532. set_page_dirty(page);
  533. /* Update high watermark before we lower rss */
  534. update_hiwater_rss(mm);
  535. if (PageAnon(page)) {
  536. swp_entry_t entry = { .val = page_private(page) };
  537. /*
  538. * Store the swap location in the pte.
  539. * See handle_pte_fault() ...
  540. */
  541. BUG_ON(!PageSwapCache(page));
  542. swap_duplicate(entry);
  543. if (list_empty(&mm->mmlist)) {
  544. spin_lock(&mmlist_lock);
  545. if (list_empty(&mm->mmlist))
  546. list_add(&mm->mmlist, &init_mm.mmlist);
  547. spin_unlock(&mmlist_lock);
  548. }
  549. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  550. BUG_ON(pte_file(*pte));
  551. dec_mm_counter(mm, anon_rss);
  552. } else
  553. dec_mm_counter(mm, file_rss);
  554. page_remove_rmap(page);
  555. page_cache_release(page);
  556. out_unmap:
  557. pte_unmap_unlock(pte, ptl);
  558. out:
  559. return ret;
  560. }
  561. /*
  562. * objrmap doesn't work for nonlinear VMAs because the assumption that
  563. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  564. * Consequently, given a particular page and its ->index, we cannot locate the
  565. * ptes which are mapping that page without an exhaustive linear search.
  566. *
  567. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  568. * maps the file to which the target page belongs. The ->vm_private_data field
  569. * holds the current cursor into that scan. Successive searches will circulate
  570. * around the vma's virtual address space.
  571. *
  572. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  573. * more scanning pressure is placed against them as well. Eventually pages
  574. * will become fully unmapped and are eligible for eviction.
  575. *
  576. * For very sparsely populated VMAs this is a little inefficient - chances are
  577. * there there won't be many ptes located within the scan cluster. In this case
  578. * maybe we could scan further - to the end of the pte page, perhaps.
  579. */
  580. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  581. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  582. static void try_to_unmap_cluster(unsigned long cursor,
  583. unsigned int *mapcount, struct vm_area_struct *vma)
  584. {
  585. struct mm_struct *mm = vma->vm_mm;
  586. pgd_t *pgd;
  587. pud_t *pud;
  588. pmd_t *pmd;
  589. pte_t *pte;
  590. pte_t pteval;
  591. spinlock_t *ptl;
  592. struct page *page;
  593. unsigned long address;
  594. unsigned long end;
  595. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  596. end = address + CLUSTER_SIZE;
  597. if (address < vma->vm_start)
  598. address = vma->vm_start;
  599. if (end > vma->vm_end)
  600. end = vma->vm_end;
  601. pgd = pgd_offset(mm, address);
  602. if (!pgd_present(*pgd))
  603. return;
  604. pud = pud_offset(pgd, address);
  605. if (!pud_present(*pud))
  606. return;
  607. pmd = pmd_offset(pud, address);
  608. if (!pmd_present(*pmd))
  609. return;
  610. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  611. /* Update high watermark before we lower rss */
  612. update_hiwater_rss(mm);
  613. for (; address < end; pte++, address += PAGE_SIZE) {
  614. if (!pte_present(*pte))
  615. continue;
  616. page = vm_normal_page(vma, address, *pte);
  617. BUG_ON(!page || PageAnon(page));
  618. if (ptep_clear_flush_young(vma, address, pte))
  619. continue;
  620. /* Nuke the page table entry. */
  621. flush_cache_page(vma, address, pte_pfn(*pte));
  622. pteval = ptep_clear_flush(vma, address, pte);
  623. /* If nonlinear, store the file page offset in the pte. */
  624. if (page->index != linear_page_index(vma, address))
  625. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  626. /* Move the dirty bit to the physical page now the pte is gone. */
  627. if (pte_dirty(pteval))
  628. set_page_dirty(page);
  629. page_remove_rmap(page);
  630. page_cache_release(page);
  631. dec_mm_counter(mm, file_rss);
  632. (*mapcount)--;
  633. }
  634. pte_unmap_unlock(pte - 1, ptl);
  635. }
  636. static int try_to_unmap_anon(struct page *page, int ignore_refs)
  637. {
  638. struct anon_vma *anon_vma;
  639. struct vm_area_struct *vma;
  640. int ret = SWAP_AGAIN;
  641. anon_vma = page_lock_anon_vma(page);
  642. if (!anon_vma)
  643. return ret;
  644. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  645. ret = try_to_unmap_one(page, vma, ignore_refs);
  646. if (ret == SWAP_FAIL || !page_mapped(page))
  647. break;
  648. }
  649. spin_unlock(&anon_vma->lock);
  650. return ret;
  651. }
  652. /**
  653. * try_to_unmap_file - unmap file page using the object-based rmap method
  654. * @page: the page to unmap
  655. *
  656. * Find all the mappings of a page using the mapping pointer and the vma chains
  657. * contained in the address_space struct it points to.
  658. *
  659. * This function is only called from try_to_unmap for object-based pages.
  660. */
  661. static int try_to_unmap_file(struct page *page, int ignore_refs)
  662. {
  663. struct address_space *mapping = page->mapping;
  664. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  665. struct vm_area_struct *vma;
  666. struct prio_tree_iter iter;
  667. int ret = SWAP_AGAIN;
  668. unsigned long cursor;
  669. unsigned long max_nl_cursor = 0;
  670. unsigned long max_nl_size = 0;
  671. unsigned int mapcount;
  672. spin_lock(&mapping->i_mmap_lock);
  673. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  674. ret = try_to_unmap_one(page, vma, ignore_refs);
  675. if (ret == SWAP_FAIL || !page_mapped(page))
  676. goto out;
  677. }
  678. if (list_empty(&mapping->i_mmap_nonlinear))
  679. goto out;
  680. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  681. shared.vm_set.list) {
  682. if (vma->vm_flags & VM_LOCKED)
  683. continue;
  684. cursor = (unsigned long) vma->vm_private_data;
  685. if (cursor > max_nl_cursor)
  686. max_nl_cursor = cursor;
  687. cursor = vma->vm_end - vma->vm_start;
  688. if (cursor > max_nl_size)
  689. max_nl_size = cursor;
  690. }
  691. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  692. ret = SWAP_FAIL;
  693. goto out;
  694. }
  695. /*
  696. * We don't try to search for this page in the nonlinear vmas,
  697. * and page_referenced wouldn't have found it anyway. Instead
  698. * just walk the nonlinear vmas trying to age and unmap some.
  699. * The mapcount of the page we came in with is irrelevant,
  700. * but even so use it as a guide to how hard we should try?
  701. */
  702. mapcount = page_mapcount(page);
  703. if (!mapcount)
  704. goto out;
  705. cond_resched_lock(&mapping->i_mmap_lock);
  706. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  707. if (max_nl_cursor == 0)
  708. max_nl_cursor = CLUSTER_SIZE;
  709. do {
  710. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  711. shared.vm_set.list) {
  712. if (vma->vm_flags & VM_LOCKED)
  713. continue;
  714. cursor = (unsigned long) vma->vm_private_data;
  715. while ( cursor < max_nl_cursor &&
  716. cursor < vma->vm_end - vma->vm_start) {
  717. try_to_unmap_cluster(cursor, &mapcount, vma);
  718. cursor += CLUSTER_SIZE;
  719. vma->vm_private_data = (void *) cursor;
  720. if ((int)mapcount <= 0)
  721. goto out;
  722. }
  723. vma->vm_private_data = (void *) max_nl_cursor;
  724. }
  725. cond_resched_lock(&mapping->i_mmap_lock);
  726. max_nl_cursor += CLUSTER_SIZE;
  727. } while (max_nl_cursor <= max_nl_size);
  728. /*
  729. * Don't loop forever (perhaps all the remaining pages are
  730. * in locked vmas). Reset cursor on all unreserved nonlinear
  731. * vmas, now forgetting on which ones it had fallen behind.
  732. */
  733. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  734. vma->vm_private_data = NULL;
  735. out:
  736. spin_unlock(&mapping->i_mmap_lock);
  737. return ret;
  738. }
  739. /**
  740. * try_to_unmap - try to remove all page table mappings to a page
  741. * @page: the page to get unmapped
  742. *
  743. * Tries to remove all the page table entries which are mapping this
  744. * page, used in the pageout path. Caller must hold the page lock.
  745. * Return values are:
  746. *
  747. * SWAP_SUCCESS - we succeeded in removing all mappings
  748. * SWAP_AGAIN - we missed a mapping, try again later
  749. * SWAP_FAIL - the page is unswappable
  750. */
  751. int try_to_unmap(struct page *page, int ignore_refs)
  752. {
  753. int ret;
  754. BUG_ON(!PageLocked(page));
  755. if (PageAnon(page))
  756. ret = try_to_unmap_anon(page, ignore_refs);
  757. else
  758. ret = try_to_unmap_file(page, ignore_refs);
  759. if (!page_mapped(page))
  760. ret = SWAP_SUCCESS;
  761. return ret;
  762. }