page-writeback.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /*
  2. * mm/page-writeback.c.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains functions related to writing back dirty pages at the
  7. * address_space level.
  8. *
  9. * 10Apr2002 akpm@zip.com.au
  10. * Initial version
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/fs.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/slab.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/init.h>
  22. #include <linux/backing-dev.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/mpage.h>
  25. #include <linux/percpu.h>
  26. #include <linux/notifier.h>
  27. #include <linux/smp.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/cpu.h>
  30. #include <linux/syscalls.h>
  31. /*
  32. * The maximum number of pages to writeout in a single bdflush/kupdate
  33. * operation. We do this so we don't hold I_LOCK against an inode for
  34. * enormous amounts of time, which would block a userspace task which has
  35. * been forced to throttle against that inode. Also, the code reevaluates
  36. * the dirty each time it has written this many pages.
  37. */
  38. #define MAX_WRITEBACK_PAGES 1024
  39. /*
  40. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  41. * will look to see if it needs to force writeback or throttling.
  42. */
  43. static long ratelimit_pages = 32;
  44. static long total_pages; /* The total number of pages in the machine. */
  45. static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
  46. /*
  47. * When balance_dirty_pages decides that the caller needs to perform some
  48. * non-background writeback, this is how many pages it will attempt to write.
  49. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  50. * large amounts of I/O are submitted.
  51. */
  52. static inline long sync_writeback_pages(void)
  53. {
  54. return ratelimit_pages + ratelimit_pages / 2;
  55. }
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via pdflush) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * The generator of dirty data starts writeback at this percentage
  63. */
  64. int vm_dirty_ratio = 40;
  65. /*
  66. * The interval between `kupdate'-style writebacks, in centiseconds
  67. * (hundredths of a second)
  68. */
  69. int dirty_writeback_centisecs = 5 * 100;
  70. /*
  71. * The longest number of centiseconds for which data is allowed to remain dirty
  72. */
  73. int dirty_expire_centisecs = 30 * 100;
  74. /*
  75. * Flag that makes the machine dump writes/reads and block dirtyings.
  76. */
  77. int block_dump;
  78. /*
  79. * Flag that puts the machine in "laptop mode".
  80. */
  81. int laptop_mode;
  82. EXPORT_SYMBOL(laptop_mode);
  83. /* End of sysctl-exported parameters */
  84. static void background_writeout(unsigned long _min_pages);
  85. struct writeback_state
  86. {
  87. unsigned long nr_dirty;
  88. unsigned long nr_unstable;
  89. unsigned long nr_mapped;
  90. unsigned long nr_writeback;
  91. };
  92. static void get_writeback_state(struct writeback_state *wbs)
  93. {
  94. wbs->nr_dirty = read_page_state(nr_dirty);
  95. wbs->nr_unstable = read_page_state(nr_unstable);
  96. wbs->nr_mapped = read_page_state(nr_mapped);
  97. wbs->nr_writeback = read_page_state(nr_writeback);
  98. }
  99. /*
  100. * Work out the current dirty-memory clamping and background writeout
  101. * thresholds.
  102. *
  103. * The main aim here is to lower them aggressively if there is a lot of mapped
  104. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  105. * pages. It is better to clamp down on writers than to start swapping, and
  106. * performing lots of scanning.
  107. *
  108. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  109. *
  110. * We don't permit the clamping level to fall below 5% - that is getting rather
  111. * excessive.
  112. *
  113. * We make sure that the background writeout level is below the adjusted
  114. * clamping level.
  115. */
  116. static void
  117. get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
  118. struct address_space *mapping)
  119. {
  120. int background_ratio; /* Percentages */
  121. int dirty_ratio;
  122. int unmapped_ratio;
  123. long background;
  124. long dirty;
  125. unsigned long available_memory = total_pages;
  126. struct task_struct *tsk;
  127. get_writeback_state(wbs);
  128. #ifdef CONFIG_HIGHMEM
  129. /*
  130. * If this mapping can only allocate from low memory,
  131. * we exclude high memory from our count.
  132. */
  133. if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
  134. available_memory -= totalhigh_pages;
  135. #endif
  136. unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
  137. dirty_ratio = vm_dirty_ratio;
  138. if (dirty_ratio > unmapped_ratio / 2)
  139. dirty_ratio = unmapped_ratio / 2;
  140. if (dirty_ratio < 5)
  141. dirty_ratio = 5;
  142. background_ratio = dirty_background_ratio;
  143. if (background_ratio >= dirty_ratio)
  144. background_ratio = dirty_ratio / 2;
  145. background = (background_ratio * available_memory) / 100;
  146. dirty = (dirty_ratio * available_memory) / 100;
  147. tsk = current;
  148. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  149. background += background / 4;
  150. dirty += dirty / 4;
  151. }
  152. *pbackground = background;
  153. *pdirty = dirty;
  154. }
  155. /*
  156. * balance_dirty_pages() must be called by processes which are generating dirty
  157. * data. It looks at the number of dirty pages in the machine and will force
  158. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  159. * If we're over `background_thresh' then pdflush is woken to perform some
  160. * writeout.
  161. */
  162. static void balance_dirty_pages(struct address_space *mapping)
  163. {
  164. struct writeback_state wbs;
  165. long nr_reclaimable;
  166. long background_thresh;
  167. long dirty_thresh;
  168. unsigned long pages_written = 0;
  169. unsigned long write_chunk = sync_writeback_pages();
  170. struct backing_dev_info *bdi = mapping->backing_dev_info;
  171. for (;;) {
  172. struct writeback_control wbc = {
  173. .bdi = bdi,
  174. .sync_mode = WB_SYNC_NONE,
  175. .older_than_this = NULL,
  176. .nr_to_write = write_chunk,
  177. };
  178. get_dirty_limits(&wbs, &background_thresh,
  179. &dirty_thresh, mapping);
  180. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  181. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  182. break;
  183. if (!dirty_exceeded)
  184. dirty_exceeded = 1;
  185. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  186. * Unstable writes are a feature of certain networked
  187. * filesystems (i.e. NFS) in which data may have been
  188. * written to the server's write cache, but has not yet
  189. * been flushed to permanent storage.
  190. */
  191. if (nr_reclaimable) {
  192. writeback_inodes(&wbc);
  193. get_dirty_limits(&wbs, &background_thresh,
  194. &dirty_thresh, mapping);
  195. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  196. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  197. break;
  198. pages_written += write_chunk - wbc.nr_to_write;
  199. if (pages_written >= write_chunk)
  200. break; /* We've done our duty */
  201. }
  202. blk_congestion_wait(WRITE, HZ/10);
  203. }
  204. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
  205. dirty_exceeded = 0;
  206. if (writeback_in_progress(bdi))
  207. return; /* pdflush is already working this queue */
  208. /*
  209. * In laptop mode, we wait until hitting the higher threshold before
  210. * starting background writeout, and then write out all the way down
  211. * to the lower threshold. So slow writers cause minimal disk activity.
  212. *
  213. * In normal mode, we start background writeout at the lower
  214. * background_thresh, to keep the amount of dirty memory low.
  215. */
  216. if ((laptop_mode && pages_written) ||
  217. (!laptop_mode && (nr_reclaimable > background_thresh)))
  218. pdflush_operation(background_writeout, 0);
  219. }
  220. /**
  221. * balance_dirty_pages_ratelimited - balance dirty memory state
  222. * @mapping: address_space which was dirtied
  223. *
  224. * Processes which are dirtying memory should call in here once for each page
  225. * which was newly dirtied. The function will periodically check the system's
  226. * dirty state and will initiate writeback if needed.
  227. *
  228. * On really big machines, get_writeback_state is expensive, so try to avoid
  229. * calling it too often (ratelimiting). But once we're over the dirty memory
  230. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  231. * from overshooting the limit by (ratelimit_pages) each.
  232. */
  233. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  234. {
  235. static DEFINE_PER_CPU(int, ratelimits) = 0;
  236. long ratelimit;
  237. ratelimit = ratelimit_pages;
  238. if (dirty_exceeded)
  239. ratelimit = 8;
  240. /*
  241. * Check the rate limiting. Also, we do not want to throttle real-time
  242. * tasks in balance_dirty_pages(). Period.
  243. */
  244. if (get_cpu_var(ratelimits)++ >= ratelimit) {
  245. __get_cpu_var(ratelimits) = 0;
  246. put_cpu_var(ratelimits);
  247. balance_dirty_pages(mapping);
  248. return;
  249. }
  250. put_cpu_var(ratelimits);
  251. }
  252. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  253. void throttle_vm_writeout(void)
  254. {
  255. struct writeback_state wbs;
  256. long background_thresh;
  257. long dirty_thresh;
  258. for ( ; ; ) {
  259. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  260. /*
  261. * Boost the allowable dirty threshold a bit for page
  262. * allocators so they don't get DoS'ed by heavy writers
  263. */
  264. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  265. if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
  266. break;
  267. blk_congestion_wait(WRITE, HZ/10);
  268. }
  269. }
  270. /*
  271. * writeback at least _min_pages, and keep writing until the amount of dirty
  272. * memory is less than the background threshold, or until we're all clean.
  273. */
  274. static void background_writeout(unsigned long _min_pages)
  275. {
  276. long min_pages = _min_pages;
  277. struct writeback_control wbc = {
  278. .bdi = NULL,
  279. .sync_mode = WB_SYNC_NONE,
  280. .older_than_this = NULL,
  281. .nr_to_write = 0,
  282. .nonblocking = 1,
  283. };
  284. for ( ; ; ) {
  285. struct writeback_state wbs;
  286. long background_thresh;
  287. long dirty_thresh;
  288. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  289. if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
  290. && min_pages <= 0)
  291. break;
  292. wbc.encountered_congestion = 0;
  293. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  294. wbc.pages_skipped = 0;
  295. writeback_inodes(&wbc);
  296. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  297. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  298. /* Wrote less than expected */
  299. blk_congestion_wait(WRITE, HZ/10);
  300. if (!wbc.encountered_congestion)
  301. break;
  302. }
  303. }
  304. }
  305. /*
  306. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  307. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  308. * -1 if all pdflush threads were busy.
  309. */
  310. int wakeup_pdflush(long nr_pages)
  311. {
  312. if (nr_pages == 0) {
  313. struct writeback_state wbs;
  314. get_writeback_state(&wbs);
  315. nr_pages = wbs.nr_dirty + wbs.nr_unstable;
  316. }
  317. return pdflush_operation(background_writeout, nr_pages);
  318. }
  319. static void wb_timer_fn(unsigned long unused);
  320. static void laptop_timer_fn(unsigned long unused);
  321. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  322. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  323. /*
  324. * Periodic writeback of "old" data.
  325. *
  326. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  327. * dirtying-time in the inode's address_space. So this periodic writeback code
  328. * just walks the superblock inode list, writing back any inodes which are
  329. * older than a specific point in time.
  330. *
  331. * Try to run once per dirty_writeback_centisecs. But if a writeback event
  332. * takes longer than a dirty_writeback_centisecs interval, then leave a
  333. * one-second gap.
  334. *
  335. * older_than_this takes precedence over nr_to_write. So we'll only write back
  336. * all dirty pages if they are all attached to "old" mappings.
  337. */
  338. static void wb_kupdate(unsigned long arg)
  339. {
  340. unsigned long oldest_jif;
  341. unsigned long start_jif;
  342. unsigned long next_jif;
  343. long nr_to_write;
  344. struct writeback_state wbs;
  345. struct writeback_control wbc = {
  346. .bdi = NULL,
  347. .sync_mode = WB_SYNC_NONE,
  348. .older_than_this = &oldest_jif,
  349. .nr_to_write = 0,
  350. .nonblocking = 1,
  351. .for_kupdate = 1,
  352. };
  353. sync_supers();
  354. get_writeback_state(&wbs);
  355. oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
  356. start_jif = jiffies;
  357. next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
  358. nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
  359. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  360. while (nr_to_write > 0) {
  361. wbc.encountered_congestion = 0;
  362. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  363. writeback_inodes(&wbc);
  364. if (wbc.nr_to_write > 0) {
  365. if (wbc.encountered_congestion)
  366. blk_congestion_wait(WRITE, HZ/10);
  367. else
  368. break; /* All the old data is written */
  369. }
  370. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  371. }
  372. if (time_before(next_jif, jiffies + HZ))
  373. next_jif = jiffies + HZ;
  374. if (dirty_writeback_centisecs)
  375. mod_timer(&wb_timer, next_jif);
  376. }
  377. /*
  378. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  379. */
  380. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  381. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  382. {
  383. proc_dointvec(table, write, file, buffer, length, ppos);
  384. if (dirty_writeback_centisecs) {
  385. mod_timer(&wb_timer,
  386. jiffies + (dirty_writeback_centisecs * HZ) / 100);
  387. } else {
  388. del_timer(&wb_timer);
  389. }
  390. return 0;
  391. }
  392. static void wb_timer_fn(unsigned long unused)
  393. {
  394. if (pdflush_operation(wb_kupdate, 0) < 0)
  395. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  396. }
  397. static void laptop_flush(unsigned long unused)
  398. {
  399. sys_sync();
  400. }
  401. static void laptop_timer_fn(unsigned long unused)
  402. {
  403. pdflush_operation(laptop_flush, 0);
  404. }
  405. /*
  406. * We've spun up the disk and we're in laptop mode: schedule writeback
  407. * of all dirty data a few seconds from now. If the flush is already scheduled
  408. * then push it back - the user is still using the disk.
  409. */
  410. void laptop_io_completion(void)
  411. {
  412. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ);
  413. }
  414. /*
  415. * We're in laptop mode and we've just synced. The sync's writes will have
  416. * caused another writeback to be scheduled by laptop_io_completion.
  417. * Nothing needs to be written back anymore, so we unschedule the writeback.
  418. */
  419. void laptop_sync_completion(void)
  420. {
  421. del_timer(&laptop_mode_wb_timer);
  422. }
  423. /*
  424. * If ratelimit_pages is too high then we can get into dirty-data overload
  425. * if a large number of processes all perform writes at the same time.
  426. * If it is too low then SMP machines will call the (expensive)
  427. * get_writeback_state too often.
  428. *
  429. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  430. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  431. * thresholds before writeback cuts in.
  432. *
  433. * But the limit should not be set too high. Because it also controls the
  434. * amount of memory which the balance_dirty_pages() caller has to write back.
  435. * If this is too large then the caller will block on the IO queue all the
  436. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  437. * will write six megabyte chunks, max.
  438. */
  439. static void set_ratelimit(void)
  440. {
  441. ratelimit_pages = total_pages / (num_online_cpus() * 32);
  442. if (ratelimit_pages < 16)
  443. ratelimit_pages = 16;
  444. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  445. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  446. }
  447. static int
  448. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  449. {
  450. set_ratelimit();
  451. return 0;
  452. }
  453. static struct notifier_block ratelimit_nb = {
  454. .notifier_call = ratelimit_handler,
  455. .next = NULL,
  456. };
  457. /*
  458. * If the machine has a large highmem:lowmem ratio then scale back the default
  459. * dirty memory thresholds: allowing too much dirty highmem pins an excessive
  460. * number of buffer_heads.
  461. */
  462. void __init page_writeback_init(void)
  463. {
  464. long buffer_pages = nr_free_buffer_pages();
  465. long correction;
  466. total_pages = nr_free_pagecache_pages();
  467. correction = (100 * 4 * buffer_pages) / total_pages;
  468. if (correction < 100) {
  469. dirty_background_ratio *= correction;
  470. dirty_background_ratio /= 100;
  471. vm_dirty_ratio *= correction;
  472. vm_dirty_ratio /= 100;
  473. if (dirty_background_ratio <= 0)
  474. dirty_background_ratio = 1;
  475. if (vm_dirty_ratio <= 0)
  476. vm_dirty_ratio = 1;
  477. }
  478. mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
  479. set_ratelimit();
  480. register_cpu_notifier(&ratelimit_nb);
  481. }
  482. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  483. {
  484. int ret;
  485. if (wbc->nr_to_write <= 0)
  486. return 0;
  487. wbc->for_writepages = 1;
  488. if (mapping->a_ops->writepages)
  489. ret = mapping->a_ops->writepages(mapping, wbc);
  490. else
  491. ret = generic_writepages(mapping, wbc);
  492. wbc->for_writepages = 0;
  493. return ret;
  494. }
  495. /**
  496. * write_one_page - write out a single page and optionally wait on I/O
  497. *
  498. * @page: the page to write
  499. * @wait: if true, wait on writeout
  500. *
  501. * The page must be locked by the caller and will be unlocked upon return.
  502. *
  503. * write_one_page() returns a negative error code if I/O failed.
  504. */
  505. int write_one_page(struct page *page, int wait)
  506. {
  507. struct address_space *mapping = page->mapping;
  508. int ret = 0;
  509. struct writeback_control wbc = {
  510. .sync_mode = WB_SYNC_ALL,
  511. .nr_to_write = 1,
  512. };
  513. BUG_ON(!PageLocked(page));
  514. if (wait)
  515. wait_on_page_writeback(page);
  516. if (clear_page_dirty_for_io(page)) {
  517. page_cache_get(page);
  518. ret = mapping->a_ops->writepage(page, &wbc);
  519. if (ret == 0 && wait) {
  520. wait_on_page_writeback(page);
  521. if (PageError(page))
  522. ret = -EIO;
  523. }
  524. page_cache_release(page);
  525. } else {
  526. unlock_page(page);
  527. }
  528. return ret;
  529. }
  530. EXPORT_SYMBOL(write_one_page);
  531. /*
  532. * For address_spaces which do not use buffers. Just tag the page as dirty in
  533. * its radix tree.
  534. *
  535. * This is also used when a single buffer is being dirtied: we want to set the
  536. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  537. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  538. *
  539. * Most callers have locked the page, which pins the address_space in memory.
  540. * But zap_pte_range() does not lock the page, however in that case the
  541. * mapping is pinned by the vma's ->vm_file reference.
  542. *
  543. * We take care to handle the case where the page was truncated from the
  544. * mapping by re-checking page_mapping() insode tree_lock.
  545. */
  546. int __set_page_dirty_nobuffers(struct page *page)
  547. {
  548. int ret = 0;
  549. if (!TestSetPageDirty(page)) {
  550. struct address_space *mapping = page_mapping(page);
  551. struct address_space *mapping2;
  552. if (mapping) {
  553. write_lock_irq(&mapping->tree_lock);
  554. mapping2 = page_mapping(page);
  555. if (mapping2) { /* Race with truncate? */
  556. BUG_ON(mapping2 != mapping);
  557. if (mapping_cap_account_dirty(mapping))
  558. inc_page_state(nr_dirty);
  559. radix_tree_tag_set(&mapping->page_tree,
  560. page_index(page), PAGECACHE_TAG_DIRTY);
  561. }
  562. write_unlock_irq(&mapping->tree_lock);
  563. if (mapping->host) {
  564. /* !PageAnon && !swapper_space */
  565. __mark_inode_dirty(mapping->host,
  566. I_DIRTY_PAGES);
  567. }
  568. }
  569. }
  570. return ret;
  571. }
  572. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  573. /*
  574. * When a writepage implementation decides that it doesn't want to write this
  575. * page for some reason, it should redirty the locked page via
  576. * redirty_page_for_writepage() and it should then unlock the page and return 0
  577. */
  578. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  579. {
  580. wbc->pages_skipped++;
  581. return __set_page_dirty_nobuffers(page);
  582. }
  583. EXPORT_SYMBOL(redirty_page_for_writepage);
  584. /*
  585. * If the mapping doesn't provide a set_page_dirty a_op, then
  586. * just fall through and assume that it wants buffer_heads.
  587. */
  588. int fastcall set_page_dirty(struct page *page)
  589. {
  590. struct address_space *mapping = page_mapping(page);
  591. if (likely(mapping)) {
  592. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  593. if (spd)
  594. return (*spd)(page);
  595. return __set_page_dirty_buffers(page);
  596. }
  597. if (!PageDirty(page))
  598. SetPageDirty(page);
  599. return 0;
  600. }
  601. EXPORT_SYMBOL(set_page_dirty);
  602. /*
  603. * set_page_dirty() is racy if the caller has no reference against
  604. * page->mapping->host, and if the page is unlocked. This is because another
  605. * CPU could truncate the page off the mapping and then free the mapping.
  606. *
  607. * Usually, the page _is_ locked, or the caller is a user-space process which
  608. * holds a reference on the inode by having an open file.
  609. *
  610. * In other cases, the page should be locked before running set_page_dirty().
  611. */
  612. int set_page_dirty_lock(struct page *page)
  613. {
  614. int ret;
  615. lock_page(page);
  616. ret = set_page_dirty(page);
  617. unlock_page(page);
  618. return ret;
  619. }
  620. EXPORT_SYMBOL(set_page_dirty_lock);
  621. /*
  622. * Clear a page's dirty flag, while caring for dirty memory accounting.
  623. * Returns true if the page was previously dirty.
  624. */
  625. int test_clear_page_dirty(struct page *page)
  626. {
  627. struct address_space *mapping = page_mapping(page);
  628. unsigned long flags;
  629. if (mapping) {
  630. write_lock_irqsave(&mapping->tree_lock, flags);
  631. if (TestClearPageDirty(page)) {
  632. radix_tree_tag_clear(&mapping->page_tree,
  633. page_index(page),
  634. PAGECACHE_TAG_DIRTY);
  635. write_unlock_irqrestore(&mapping->tree_lock, flags);
  636. if (mapping_cap_account_dirty(mapping))
  637. dec_page_state(nr_dirty);
  638. return 1;
  639. }
  640. write_unlock_irqrestore(&mapping->tree_lock, flags);
  641. return 0;
  642. }
  643. return TestClearPageDirty(page);
  644. }
  645. EXPORT_SYMBOL(test_clear_page_dirty);
  646. /*
  647. * Clear a page's dirty flag, while caring for dirty memory accounting.
  648. * Returns true if the page was previously dirty.
  649. *
  650. * This is for preparing to put the page under writeout. We leave the page
  651. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  652. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  653. * implementation will run either set_page_writeback() or set_page_dirty(),
  654. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  655. * back into sync.
  656. *
  657. * This incoherency between the page's dirty flag and radix-tree tag is
  658. * unfortunate, but it only exists while the page is locked.
  659. */
  660. int clear_page_dirty_for_io(struct page *page)
  661. {
  662. struct address_space *mapping = page_mapping(page);
  663. if (mapping) {
  664. if (TestClearPageDirty(page)) {
  665. if (mapping_cap_account_dirty(mapping))
  666. dec_page_state(nr_dirty);
  667. return 1;
  668. }
  669. return 0;
  670. }
  671. return TestClearPageDirty(page);
  672. }
  673. EXPORT_SYMBOL(clear_page_dirty_for_io);
  674. int test_clear_page_writeback(struct page *page)
  675. {
  676. struct address_space *mapping = page_mapping(page);
  677. int ret;
  678. if (mapping) {
  679. unsigned long flags;
  680. write_lock_irqsave(&mapping->tree_lock, flags);
  681. ret = TestClearPageWriteback(page);
  682. if (ret)
  683. radix_tree_tag_clear(&mapping->page_tree,
  684. page_index(page),
  685. PAGECACHE_TAG_WRITEBACK);
  686. write_unlock_irqrestore(&mapping->tree_lock, flags);
  687. } else {
  688. ret = TestClearPageWriteback(page);
  689. }
  690. return ret;
  691. }
  692. int test_set_page_writeback(struct page *page)
  693. {
  694. struct address_space *mapping = page_mapping(page);
  695. int ret;
  696. if (mapping) {
  697. unsigned long flags;
  698. write_lock_irqsave(&mapping->tree_lock, flags);
  699. ret = TestSetPageWriteback(page);
  700. if (!ret)
  701. radix_tree_tag_set(&mapping->page_tree,
  702. page_index(page),
  703. PAGECACHE_TAG_WRITEBACK);
  704. if (!PageDirty(page))
  705. radix_tree_tag_clear(&mapping->page_tree,
  706. page_index(page),
  707. PAGECACHE_TAG_DIRTY);
  708. write_unlock_irqrestore(&mapping->tree_lock, flags);
  709. } else {
  710. ret = TestSetPageWriteback(page);
  711. }
  712. return ret;
  713. }
  714. EXPORT_SYMBOL(test_set_page_writeback);
  715. /*
  716. * Return true if any of the pages in the mapping are marged with the
  717. * passed tag.
  718. */
  719. int mapping_tagged(struct address_space *mapping, int tag)
  720. {
  721. unsigned long flags;
  722. int ret;
  723. read_lock_irqsave(&mapping->tree_lock, flags);
  724. ret = radix_tree_tagged(&mapping->page_tree, tag);
  725. read_unlock_irqrestore(&mapping->tree_lock, flags);
  726. return ret;
  727. }
  728. EXPORT_SYMBOL(mapping_tagged);