oom_kill.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/mm.h>
  18. #include <linux/sched.h>
  19. #include <linux/swap.h>
  20. #include <linux/timex.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/cpuset.h>
  23. /* #define DEBUG */
  24. /**
  25. * oom_badness - calculate a numeric value for how bad this task has been
  26. * @p: task struct of which task we should calculate
  27. * @uptime: current uptime in seconds
  28. *
  29. * The formula used is relatively simple and documented inline in the
  30. * function. The main rationale is that we want to select a good task
  31. * to kill when we run out of memory.
  32. *
  33. * Good in this context means that:
  34. * 1) we lose the minimum amount of work done
  35. * 2) we recover a large amount of memory
  36. * 3) we don't kill anything innocent of eating tons of memory
  37. * 4) we want to kill the minimum amount of processes (one)
  38. * 5) we try to kill the process the user expects us to kill, this
  39. * algorithm has been meticulously tuned to meet the principle
  40. * of least surprise ... (be careful when you change it)
  41. */
  42. unsigned long badness(struct task_struct *p, unsigned long uptime)
  43. {
  44. unsigned long points, cpu_time, run_time, s;
  45. struct list_head *tsk;
  46. if (!p->mm)
  47. return 0;
  48. /*
  49. * The memory size of the process is the basis for the badness.
  50. */
  51. points = p->mm->total_vm;
  52. /*
  53. * Processes which fork a lot of child processes are likely
  54. * a good choice. We add the vmsize of the children if they
  55. * have an own mm. This prevents forking servers to flood the
  56. * machine with an endless amount of children
  57. */
  58. list_for_each(tsk, &p->children) {
  59. struct task_struct *chld;
  60. chld = list_entry(tsk, struct task_struct, sibling);
  61. if (chld->mm != p->mm && chld->mm)
  62. points += chld->mm->total_vm;
  63. }
  64. /*
  65. * CPU time is in tens of seconds and run time is in thousands
  66. * of seconds. There is no particular reason for this other than
  67. * that it turned out to work very well in practice.
  68. */
  69. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  70. >> (SHIFT_HZ + 3);
  71. if (uptime >= p->start_time.tv_sec)
  72. run_time = (uptime - p->start_time.tv_sec) >> 10;
  73. else
  74. run_time = 0;
  75. s = int_sqrt(cpu_time);
  76. if (s)
  77. points /= s;
  78. s = int_sqrt(int_sqrt(run_time));
  79. if (s)
  80. points /= s;
  81. /*
  82. * Niced processes are most likely less important, so double
  83. * their badness points.
  84. */
  85. if (task_nice(p) > 0)
  86. points *= 2;
  87. /*
  88. * Superuser processes are usually more important, so we make it
  89. * less likely that we kill those.
  90. */
  91. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
  92. p->uid == 0 || p->euid == 0)
  93. points /= 4;
  94. /*
  95. * We don't want to kill a process with direct hardware access.
  96. * Not only could that mess up the hardware, but usually users
  97. * tend to only have this flag set on applications they think
  98. * of as important.
  99. */
  100. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
  101. points /= 4;
  102. /*
  103. * Adjust the score by oomkilladj.
  104. */
  105. if (p->oomkilladj) {
  106. if (p->oomkilladj > 0)
  107. points <<= p->oomkilladj;
  108. else
  109. points >>= -(p->oomkilladj);
  110. }
  111. #ifdef DEBUG
  112. printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
  113. p->pid, p->comm, points);
  114. #endif
  115. return points;
  116. }
  117. /*
  118. * Simple selection loop. We chose the process with the highest
  119. * number of 'points'. We expect the caller will lock the tasklist.
  120. *
  121. * (not docbooked, we don't want this one cluttering up the manual)
  122. */
  123. static struct task_struct * select_bad_process(void)
  124. {
  125. unsigned long maxpoints = 0;
  126. struct task_struct *g, *p;
  127. struct task_struct *chosen = NULL;
  128. struct timespec uptime;
  129. do_posix_clock_monotonic_gettime(&uptime);
  130. do_each_thread(g, p) {
  131. unsigned long points;
  132. int releasing;
  133. /* skip the init task with pid == 1 */
  134. if (p->pid == 1)
  135. continue;
  136. if (p->oomkilladj == OOM_DISABLE)
  137. continue;
  138. /* If p's nodes don't overlap ours, it won't help to kill p. */
  139. if (!cpuset_excl_nodes_overlap(p))
  140. continue;
  141. /*
  142. * This is in the process of releasing memory so for wait it
  143. * to finish before killing some other task by mistake.
  144. */
  145. releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
  146. p->flags & PF_EXITING;
  147. if (releasing && !(p->flags & PF_DEAD))
  148. return ERR_PTR(-1UL);
  149. if (p->flags & PF_SWAPOFF)
  150. return p;
  151. points = badness(p, uptime.tv_sec);
  152. if (points > maxpoints || !chosen) {
  153. chosen = p;
  154. maxpoints = points;
  155. }
  156. } while_each_thread(g, p);
  157. return chosen;
  158. }
  159. /**
  160. * We must be careful though to never send SIGKILL a process with
  161. * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
  162. * we select a process with CAP_SYS_RAW_IO set).
  163. */
  164. static void __oom_kill_task(task_t *p)
  165. {
  166. if (p->pid == 1) {
  167. WARN_ON(1);
  168. printk(KERN_WARNING "tried to kill init!\n");
  169. return;
  170. }
  171. task_lock(p);
  172. if (!p->mm || p->mm == &init_mm) {
  173. WARN_ON(1);
  174. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  175. task_unlock(p);
  176. return;
  177. }
  178. task_unlock(p);
  179. printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n",
  180. p->pid, p->comm);
  181. /*
  182. * We give our sacrificial lamb high priority and access to
  183. * all the memory it needs. That way it should be able to
  184. * exit() and clear out its resources quickly...
  185. */
  186. p->time_slice = HZ;
  187. set_tsk_thread_flag(p, TIF_MEMDIE);
  188. force_sig(SIGKILL, p);
  189. }
  190. static struct mm_struct *oom_kill_task(task_t *p)
  191. {
  192. struct mm_struct *mm = get_task_mm(p);
  193. task_t * g, * q;
  194. if (!mm)
  195. return NULL;
  196. if (mm == &init_mm) {
  197. mmput(mm);
  198. return NULL;
  199. }
  200. __oom_kill_task(p);
  201. /*
  202. * kill all processes that share the ->mm (i.e. all threads),
  203. * but are in a different thread group
  204. */
  205. do_each_thread(g, q)
  206. if (q->mm == mm && q->tgid != p->tgid)
  207. __oom_kill_task(q);
  208. while_each_thread(g, q);
  209. return mm;
  210. }
  211. static struct mm_struct *oom_kill_process(struct task_struct *p)
  212. {
  213. struct mm_struct *mm;
  214. struct task_struct *c;
  215. struct list_head *tsk;
  216. /* Try to kill a child first */
  217. list_for_each(tsk, &p->children) {
  218. c = list_entry(tsk, struct task_struct, sibling);
  219. if (c->mm == p->mm)
  220. continue;
  221. mm = oom_kill_task(c);
  222. if (mm)
  223. return mm;
  224. }
  225. return oom_kill_task(p);
  226. }
  227. /**
  228. * oom_kill - kill the "best" process when we run out of memory
  229. *
  230. * If we run out of memory, we have the choice between either
  231. * killing a random task (bad), letting the system crash (worse)
  232. * OR try to be smart about which process to kill. Note that we
  233. * don't have to be perfect here, we just have to be good.
  234. */
  235. void out_of_memory(gfp_t gfp_mask, int order)
  236. {
  237. struct mm_struct *mm = NULL;
  238. task_t * p;
  239. if (printk_ratelimit()) {
  240. printk("oom-killer: gfp_mask=0x%x, order=%d\n",
  241. gfp_mask, order);
  242. dump_stack();
  243. show_mem();
  244. }
  245. cpuset_lock();
  246. read_lock(&tasklist_lock);
  247. retry:
  248. p = select_bad_process();
  249. if (PTR_ERR(p) == -1UL)
  250. goto out;
  251. /* Found nothing?!?! Either we hang forever, or we panic. */
  252. if (!p) {
  253. read_unlock(&tasklist_lock);
  254. cpuset_unlock();
  255. panic("Out of memory and no killable processes...\n");
  256. }
  257. mm = oom_kill_process(p);
  258. if (!mm)
  259. goto retry;
  260. out:
  261. read_unlock(&tasklist_lock);
  262. cpuset_unlock();
  263. if (mm)
  264. mmput(mm);
  265. /*
  266. * Give "p" a good chance of killing itself before we
  267. * retry to allocate memory unless "p" is current
  268. */
  269. if (!test_thread_flag(TIF_MEMDIE))
  270. schedule_timeout_interruptible(1);
  271. }