hugetlb.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <asm/page.h>
  17. #include <asm/pgtable.h>
  18. #include <linux/hugetlb.h>
  19. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  20. static unsigned long nr_huge_pages, free_huge_pages;
  21. unsigned long max_huge_pages;
  22. static struct list_head hugepage_freelists[MAX_NUMNODES];
  23. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  24. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  25. /*
  26. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  27. */
  28. static DEFINE_SPINLOCK(hugetlb_lock);
  29. static void enqueue_huge_page(struct page *page)
  30. {
  31. int nid = page_to_nid(page);
  32. list_add(&page->lru, &hugepage_freelists[nid]);
  33. free_huge_pages++;
  34. free_huge_pages_node[nid]++;
  35. }
  36. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  37. unsigned long address)
  38. {
  39. int nid = numa_node_id();
  40. struct page *page = NULL;
  41. struct zonelist *zonelist = huge_zonelist(vma, address);
  42. struct zone **z;
  43. for (z = zonelist->zones; *z; z++) {
  44. nid = (*z)->zone_pgdat->node_id;
  45. if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
  46. !list_empty(&hugepage_freelists[nid]))
  47. break;
  48. }
  49. if (*z) {
  50. page = list_entry(hugepage_freelists[nid].next,
  51. struct page, lru);
  52. list_del(&page->lru);
  53. free_huge_pages--;
  54. free_huge_pages_node[nid]--;
  55. }
  56. return page;
  57. }
  58. static struct page *alloc_fresh_huge_page(void)
  59. {
  60. static int nid = 0;
  61. struct page *page;
  62. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  63. HUGETLB_PAGE_ORDER);
  64. nid = (nid + 1) % num_online_nodes();
  65. if (page) {
  66. spin_lock(&hugetlb_lock);
  67. nr_huge_pages++;
  68. nr_huge_pages_node[page_to_nid(page)]++;
  69. spin_unlock(&hugetlb_lock);
  70. }
  71. return page;
  72. }
  73. void free_huge_page(struct page *page)
  74. {
  75. BUG_ON(page_count(page));
  76. INIT_LIST_HEAD(&page->lru);
  77. page[1].mapping = NULL;
  78. spin_lock(&hugetlb_lock);
  79. enqueue_huge_page(page);
  80. spin_unlock(&hugetlb_lock);
  81. }
  82. struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
  83. {
  84. struct page *page;
  85. int i;
  86. spin_lock(&hugetlb_lock);
  87. page = dequeue_huge_page(vma, addr);
  88. if (!page) {
  89. spin_unlock(&hugetlb_lock);
  90. return NULL;
  91. }
  92. spin_unlock(&hugetlb_lock);
  93. set_page_count(page, 1);
  94. page[1].mapping = (void *)free_huge_page;
  95. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
  96. clear_highpage(&page[i]);
  97. return page;
  98. }
  99. static int __init hugetlb_init(void)
  100. {
  101. unsigned long i;
  102. struct page *page;
  103. if (HPAGE_SHIFT == 0)
  104. return 0;
  105. for (i = 0; i < MAX_NUMNODES; ++i)
  106. INIT_LIST_HEAD(&hugepage_freelists[i]);
  107. for (i = 0; i < max_huge_pages; ++i) {
  108. page = alloc_fresh_huge_page();
  109. if (!page)
  110. break;
  111. spin_lock(&hugetlb_lock);
  112. enqueue_huge_page(page);
  113. spin_unlock(&hugetlb_lock);
  114. }
  115. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  116. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  117. return 0;
  118. }
  119. module_init(hugetlb_init);
  120. static int __init hugetlb_setup(char *s)
  121. {
  122. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  123. max_huge_pages = 0;
  124. return 1;
  125. }
  126. __setup("hugepages=", hugetlb_setup);
  127. #ifdef CONFIG_SYSCTL
  128. static void update_and_free_page(struct page *page)
  129. {
  130. int i;
  131. nr_huge_pages--;
  132. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  133. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  134. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  135. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  136. 1 << PG_private | 1<< PG_writeback);
  137. set_page_count(&page[i], 0);
  138. }
  139. set_page_count(page, 1);
  140. __free_pages(page, HUGETLB_PAGE_ORDER);
  141. }
  142. #ifdef CONFIG_HIGHMEM
  143. static void try_to_free_low(unsigned long count)
  144. {
  145. int i, nid;
  146. for (i = 0; i < MAX_NUMNODES; ++i) {
  147. struct page *page, *next;
  148. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  149. if (PageHighMem(page))
  150. continue;
  151. list_del(&page->lru);
  152. update_and_free_page(page);
  153. nid = page_zone(page)->zone_pgdat->node_id;
  154. free_huge_pages--;
  155. free_huge_pages_node[nid]--;
  156. if (count >= nr_huge_pages)
  157. return;
  158. }
  159. }
  160. }
  161. #else
  162. static inline void try_to_free_low(unsigned long count)
  163. {
  164. }
  165. #endif
  166. static unsigned long set_max_huge_pages(unsigned long count)
  167. {
  168. while (count > nr_huge_pages) {
  169. struct page *page = alloc_fresh_huge_page();
  170. if (!page)
  171. return nr_huge_pages;
  172. spin_lock(&hugetlb_lock);
  173. enqueue_huge_page(page);
  174. spin_unlock(&hugetlb_lock);
  175. }
  176. if (count >= nr_huge_pages)
  177. return nr_huge_pages;
  178. spin_lock(&hugetlb_lock);
  179. try_to_free_low(count);
  180. while (count < nr_huge_pages) {
  181. struct page *page = dequeue_huge_page(NULL, 0);
  182. if (!page)
  183. break;
  184. update_and_free_page(page);
  185. }
  186. spin_unlock(&hugetlb_lock);
  187. return nr_huge_pages;
  188. }
  189. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  190. struct file *file, void __user *buffer,
  191. size_t *length, loff_t *ppos)
  192. {
  193. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  194. max_huge_pages = set_max_huge_pages(max_huge_pages);
  195. return 0;
  196. }
  197. #endif /* CONFIG_SYSCTL */
  198. int hugetlb_report_meminfo(char *buf)
  199. {
  200. return sprintf(buf,
  201. "HugePages_Total: %5lu\n"
  202. "HugePages_Free: %5lu\n"
  203. "Hugepagesize: %5lu kB\n",
  204. nr_huge_pages,
  205. free_huge_pages,
  206. HPAGE_SIZE/1024);
  207. }
  208. int hugetlb_report_node_meminfo(int nid, char *buf)
  209. {
  210. return sprintf(buf,
  211. "Node %d HugePages_Total: %5u\n"
  212. "Node %d HugePages_Free: %5u\n",
  213. nid, nr_huge_pages_node[nid],
  214. nid, free_huge_pages_node[nid]);
  215. }
  216. int is_hugepage_mem_enough(size_t size)
  217. {
  218. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  219. }
  220. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  221. unsigned long hugetlb_total_pages(void)
  222. {
  223. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  224. }
  225. /*
  226. * We cannot handle pagefaults against hugetlb pages at all. They cause
  227. * handle_mm_fault() to try to instantiate regular-sized pages in the
  228. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  229. * this far.
  230. */
  231. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  232. unsigned long address, int *unused)
  233. {
  234. BUG();
  235. return NULL;
  236. }
  237. struct vm_operations_struct hugetlb_vm_ops = {
  238. .nopage = hugetlb_nopage,
  239. };
  240. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  241. int writable)
  242. {
  243. pte_t entry;
  244. if (writable) {
  245. entry =
  246. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  247. } else {
  248. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  249. }
  250. entry = pte_mkyoung(entry);
  251. entry = pte_mkhuge(entry);
  252. return entry;
  253. }
  254. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  255. unsigned long address, pte_t *ptep)
  256. {
  257. pte_t entry;
  258. entry = pte_mkwrite(pte_mkdirty(*ptep));
  259. ptep_set_access_flags(vma, address, ptep, entry, 1);
  260. update_mmu_cache(vma, address, entry);
  261. lazy_mmu_prot_update(entry);
  262. }
  263. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  264. struct vm_area_struct *vma)
  265. {
  266. pte_t *src_pte, *dst_pte, entry;
  267. struct page *ptepage;
  268. unsigned long addr;
  269. int cow;
  270. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  271. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  272. src_pte = huge_pte_offset(src, addr);
  273. if (!src_pte)
  274. continue;
  275. dst_pte = huge_pte_alloc(dst, addr);
  276. if (!dst_pte)
  277. goto nomem;
  278. spin_lock(&dst->page_table_lock);
  279. spin_lock(&src->page_table_lock);
  280. if (!pte_none(*src_pte)) {
  281. if (cow)
  282. ptep_set_wrprotect(src, addr, src_pte);
  283. entry = *src_pte;
  284. ptepage = pte_page(entry);
  285. get_page(ptepage);
  286. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  287. set_huge_pte_at(dst, addr, dst_pte, entry);
  288. }
  289. spin_unlock(&src->page_table_lock);
  290. spin_unlock(&dst->page_table_lock);
  291. }
  292. return 0;
  293. nomem:
  294. return -ENOMEM;
  295. }
  296. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  297. unsigned long end)
  298. {
  299. struct mm_struct *mm = vma->vm_mm;
  300. unsigned long address;
  301. pte_t *ptep;
  302. pte_t pte;
  303. struct page *page;
  304. WARN_ON(!is_vm_hugetlb_page(vma));
  305. BUG_ON(start & ~HPAGE_MASK);
  306. BUG_ON(end & ~HPAGE_MASK);
  307. spin_lock(&mm->page_table_lock);
  308. /* Update high watermark before we lower rss */
  309. update_hiwater_rss(mm);
  310. for (address = start; address < end; address += HPAGE_SIZE) {
  311. ptep = huge_pte_offset(mm, address);
  312. if (!ptep)
  313. continue;
  314. pte = huge_ptep_get_and_clear(mm, address, ptep);
  315. if (pte_none(pte))
  316. continue;
  317. page = pte_page(pte);
  318. put_page(page);
  319. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  320. }
  321. spin_unlock(&mm->page_table_lock);
  322. flush_tlb_range(vma, start, end);
  323. }
  324. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  325. unsigned long address, pte_t *ptep, pte_t pte)
  326. {
  327. struct page *old_page, *new_page;
  328. int i, avoidcopy;
  329. old_page = pte_page(pte);
  330. /* If no-one else is actually using this page, avoid the copy
  331. * and just make the page writable */
  332. avoidcopy = (page_count(old_page) == 1);
  333. if (avoidcopy) {
  334. set_huge_ptep_writable(vma, address, ptep);
  335. return VM_FAULT_MINOR;
  336. }
  337. page_cache_get(old_page);
  338. new_page = alloc_huge_page(vma, address);
  339. if (!new_page) {
  340. page_cache_release(old_page);
  341. /* Logically this is OOM, not a SIGBUS, but an OOM
  342. * could cause the kernel to go killing other
  343. * processes which won't help the hugepage situation
  344. * at all (?) */
  345. return VM_FAULT_SIGBUS;
  346. }
  347. spin_unlock(&mm->page_table_lock);
  348. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
  349. copy_user_highpage(new_page + i, old_page + i,
  350. address + i*PAGE_SIZE);
  351. spin_lock(&mm->page_table_lock);
  352. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  353. if (likely(pte_same(*ptep, pte))) {
  354. /* Break COW */
  355. set_huge_pte_at(mm, address, ptep,
  356. make_huge_pte(vma, new_page, 1));
  357. /* Make the old page be freed below */
  358. new_page = old_page;
  359. }
  360. page_cache_release(new_page);
  361. page_cache_release(old_page);
  362. return VM_FAULT_MINOR;
  363. }
  364. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  365. unsigned long address, pte_t *ptep, int write_access)
  366. {
  367. int ret = VM_FAULT_SIGBUS;
  368. unsigned long idx;
  369. unsigned long size;
  370. struct page *page;
  371. struct address_space *mapping;
  372. pte_t new_pte;
  373. mapping = vma->vm_file->f_mapping;
  374. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  375. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  376. /*
  377. * Use page lock to guard against racing truncation
  378. * before we get page_table_lock.
  379. */
  380. retry:
  381. page = find_lock_page(mapping, idx);
  382. if (!page) {
  383. if (hugetlb_get_quota(mapping))
  384. goto out;
  385. page = alloc_huge_page(vma, address);
  386. if (!page) {
  387. hugetlb_put_quota(mapping);
  388. /*
  389. * No huge pages available. So this is an OOM
  390. * condition but we do not want to trigger the OOM
  391. * killer, so we return VM_FAULT_SIGBUS.
  392. *
  393. * A program using hugepages may fault with Bus Error
  394. * because no huge pages are available in the cpuset, per
  395. * memory policy or because all are in use!
  396. */
  397. goto out;
  398. }
  399. if (vma->vm_flags & VM_SHARED) {
  400. int err;
  401. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  402. if (err) {
  403. put_page(page);
  404. hugetlb_put_quota(mapping);
  405. if (err == -EEXIST)
  406. goto retry;
  407. goto out;
  408. }
  409. } else
  410. lock_page(page);
  411. }
  412. spin_lock(&mm->page_table_lock);
  413. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  414. if (idx >= size)
  415. goto backout;
  416. ret = VM_FAULT_MINOR;
  417. if (!pte_none(*ptep))
  418. goto backout;
  419. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  420. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  421. && (vma->vm_flags & VM_SHARED)));
  422. set_huge_pte_at(mm, address, ptep, new_pte);
  423. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  424. /* Optimization, do the COW without a second fault */
  425. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  426. }
  427. spin_unlock(&mm->page_table_lock);
  428. unlock_page(page);
  429. out:
  430. return ret;
  431. backout:
  432. spin_unlock(&mm->page_table_lock);
  433. hugetlb_put_quota(mapping);
  434. unlock_page(page);
  435. put_page(page);
  436. goto out;
  437. }
  438. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  439. unsigned long address, int write_access)
  440. {
  441. pte_t *ptep;
  442. pte_t entry;
  443. int ret;
  444. ptep = huge_pte_alloc(mm, address);
  445. if (!ptep)
  446. return VM_FAULT_OOM;
  447. entry = *ptep;
  448. if (pte_none(entry))
  449. return hugetlb_no_page(mm, vma, address, ptep, write_access);
  450. ret = VM_FAULT_MINOR;
  451. spin_lock(&mm->page_table_lock);
  452. /* Check for a racing update before calling hugetlb_cow */
  453. if (likely(pte_same(entry, *ptep)))
  454. if (write_access && !pte_write(entry))
  455. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  456. spin_unlock(&mm->page_table_lock);
  457. return ret;
  458. }
  459. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  460. struct page **pages, struct vm_area_struct **vmas,
  461. unsigned long *position, int *length, int i)
  462. {
  463. unsigned long vpfn, vaddr = *position;
  464. int remainder = *length;
  465. vpfn = vaddr/PAGE_SIZE;
  466. spin_lock(&mm->page_table_lock);
  467. while (vaddr < vma->vm_end && remainder) {
  468. pte_t *pte;
  469. struct page *page;
  470. /*
  471. * Some archs (sparc64, sh*) have multiple pte_ts to
  472. * each hugepage. We have to make * sure we get the
  473. * first, for the page indexing below to work.
  474. */
  475. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  476. if (!pte || pte_none(*pte)) {
  477. int ret;
  478. spin_unlock(&mm->page_table_lock);
  479. ret = hugetlb_fault(mm, vma, vaddr, 0);
  480. spin_lock(&mm->page_table_lock);
  481. if (ret == VM_FAULT_MINOR)
  482. continue;
  483. remainder = 0;
  484. if (!i)
  485. i = -EFAULT;
  486. break;
  487. }
  488. if (pages) {
  489. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  490. get_page(page);
  491. pages[i] = page;
  492. }
  493. if (vmas)
  494. vmas[i] = vma;
  495. vaddr += PAGE_SIZE;
  496. ++vpfn;
  497. --remainder;
  498. ++i;
  499. }
  500. spin_unlock(&mm->page_table_lock);
  501. *length = remainder;
  502. *position = vaddr;
  503. return i;
  504. }