hrtimer.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
  6. *
  7. * High-resolution kernel timers
  8. *
  9. * In contrast to the low-resolution timeout API implemented in
  10. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  11. * depending on system configuration and capabilities.
  12. *
  13. * These timers are currently used for:
  14. * - itimers
  15. * - POSIX timers
  16. * - nanosleep
  17. * - precise in-kernel timing
  18. *
  19. * Started by: Thomas Gleixner and Ingo Molnar
  20. *
  21. * Credits:
  22. * based on kernel/timer.c
  23. *
  24. * Help, testing, suggestions, bugfixes, improvements were
  25. * provided by:
  26. *
  27. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  28. * et. al.
  29. *
  30. * For licencing details see kernel-base/COPYING
  31. */
  32. #include <linux/cpu.h>
  33. #include <linux/module.h>
  34. #include <linux/percpu.h>
  35. #include <linux/hrtimer.h>
  36. #include <linux/notifier.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/interrupt.h>
  39. #include <asm/uaccess.h>
  40. /**
  41. * ktime_get - get the monotonic time in ktime_t format
  42. *
  43. * returns the time in ktime_t format
  44. */
  45. static ktime_t ktime_get(void)
  46. {
  47. struct timespec now;
  48. ktime_get_ts(&now);
  49. return timespec_to_ktime(now);
  50. }
  51. /**
  52. * ktime_get_real - get the real (wall-) time in ktime_t format
  53. *
  54. * returns the time in ktime_t format
  55. */
  56. static ktime_t ktime_get_real(void)
  57. {
  58. struct timespec now;
  59. getnstimeofday(&now);
  60. return timespec_to_ktime(now);
  61. }
  62. EXPORT_SYMBOL_GPL(ktime_get_real);
  63. /*
  64. * The timer bases:
  65. *
  66. * Note: If we want to add new timer bases, we have to skip the two
  67. * clock ids captured by the cpu-timers. We do this by holding empty
  68. * entries rather than doing math adjustment of the clock ids.
  69. * This ensures that we capture erroneous accesses to these clock ids
  70. * rather than moving them into the range of valid clock id's.
  71. */
  72. #define MAX_HRTIMER_BASES 2
  73. static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
  74. {
  75. {
  76. .index = CLOCK_REALTIME,
  77. .get_time = &ktime_get_real,
  78. .resolution = KTIME_REALTIME_RES,
  79. },
  80. {
  81. .index = CLOCK_MONOTONIC,
  82. .get_time = &ktime_get,
  83. .resolution = KTIME_MONOTONIC_RES,
  84. },
  85. };
  86. /**
  87. * ktime_get_ts - get the monotonic clock in timespec format
  88. *
  89. * @ts: pointer to timespec variable
  90. *
  91. * The function calculates the monotonic clock from the realtime
  92. * clock and the wall_to_monotonic offset and stores the result
  93. * in normalized timespec format in the variable pointed to by ts.
  94. */
  95. void ktime_get_ts(struct timespec *ts)
  96. {
  97. struct timespec tomono;
  98. unsigned long seq;
  99. do {
  100. seq = read_seqbegin(&xtime_lock);
  101. getnstimeofday(ts);
  102. tomono = wall_to_monotonic;
  103. } while (read_seqretry(&xtime_lock, seq));
  104. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  105. ts->tv_nsec + tomono.tv_nsec);
  106. }
  107. EXPORT_SYMBOL_GPL(ktime_get_ts);
  108. /*
  109. * Functions and macros which are different for UP/SMP systems are kept in a
  110. * single place
  111. */
  112. #ifdef CONFIG_SMP
  113. #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
  114. /*
  115. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  116. * means that all timers which are tied to this base via timer->base are
  117. * locked, and the base itself is locked too.
  118. *
  119. * So __run_timers/migrate_timers can safely modify all timers which could
  120. * be found on the lists/queues.
  121. *
  122. * When the timer's base is locked, and the timer removed from list, it is
  123. * possible to set timer->base = NULL and drop the lock: the timer remains
  124. * locked.
  125. */
  126. static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
  127. unsigned long *flags)
  128. {
  129. struct hrtimer_base *base;
  130. for (;;) {
  131. base = timer->base;
  132. if (likely(base != NULL)) {
  133. spin_lock_irqsave(&base->lock, *flags);
  134. if (likely(base == timer->base))
  135. return base;
  136. /* The timer has migrated to another CPU: */
  137. spin_unlock_irqrestore(&base->lock, *flags);
  138. }
  139. cpu_relax();
  140. }
  141. }
  142. /*
  143. * Switch the timer base to the current CPU when possible.
  144. */
  145. static inline struct hrtimer_base *
  146. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
  147. {
  148. struct hrtimer_base *new_base;
  149. new_base = &__get_cpu_var(hrtimer_bases[base->index]);
  150. if (base != new_base) {
  151. /*
  152. * We are trying to schedule the timer on the local CPU.
  153. * However we can't change timer's base while it is running,
  154. * so we keep it on the same CPU. No hassle vs. reprogramming
  155. * the event source in the high resolution case. The softirq
  156. * code will take care of this when the timer function has
  157. * completed. There is no conflict as we hold the lock until
  158. * the timer is enqueued.
  159. */
  160. if (unlikely(base->curr_timer == timer))
  161. return base;
  162. /* See the comment in lock_timer_base() */
  163. timer->base = NULL;
  164. spin_unlock(&base->lock);
  165. spin_lock(&new_base->lock);
  166. timer->base = new_base;
  167. }
  168. return new_base;
  169. }
  170. #else /* CONFIG_SMP */
  171. #define set_curr_timer(b, t) do { } while (0)
  172. static inline struct hrtimer_base *
  173. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  174. {
  175. struct hrtimer_base *base = timer->base;
  176. spin_lock_irqsave(&base->lock, *flags);
  177. return base;
  178. }
  179. #define switch_hrtimer_base(t, b) (b)
  180. #endif /* !CONFIG_SMP */
  181. /*
  182. * Functions for the union type storage format of ktime_t which are
  183. * too large for inlining:
  184. */
  185. #if BITS_PER_LONG < 64
  186. # ifndef CONFIG_KTIME_SCALAR
  187. /**
  188. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  189. *
  190. * @kt: addend
  191. * @nsec: the scalar nsec value to add
  192. *
  193. * Returns the sum of kt and nsec in ktime_t format
  194. */
  195. ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
  196. {
  197. ktime_t tmp;
  198. if (likely(nsec < NSEC_PER_SEC)) {
  199. tmp.tv64 = nsec;
  200. } else {
  201. unsigned long rem = do_div(nsec, NSEC_PER_SEC);
  202. tmp = ktime_set((long)nsec, rem);
  203. }
  204. return ktime_add(kt, tmp);
  205. }
  206. #else /* CONFIG_KTIME_SCALAR */
  207. # endif /* !CONFIG_KTIME_SCALAR */
  208. /*
  209. * Divide a ktime value by a nanosecond value
  210. */
  211. static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
  212. {
  213. u64 dclc, inc, dns;
  214. int sft = 0;
  215. dclc = dns = ktime_to_ns(kt);
  216. inc = div;
  217. /* Make sure the divisor is less than 2^32: */
  218. while (div >> 32) {
  219. sft++;
  220. div >>= 1;
  221. }
  222. dclc >>= sft;
  223. do_div(dclc, (unsigned long) div);
  224. return (unsigned long) dclc;
  225. }
  226. #else /* BITS_PER_LONG < 64 */
  227. # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
  228. #endif /* BITS_PER_LONG >= 64 */
  229. /*
  230. * Counterpart to lock_timer_base above:
  231. */
  232. static inline
  233. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  234. {
  235. spin_unlock_irqrestore(&timer->base->lock, *flags);
  236. }
  237. /**
  238. * hrtimer_forward - forward the timer expiry
  239. *
  240. * @timer: hrtimer to forward
  241. * @interval: the interval to forward
  242. *
  243. * Forward the timer expiry so it will expire in the future.
  244. * Returns the number of overruns.
  245. */
  246. unsigned long
  247. hrtimer_forward(struct hrtimer *timer, ktime_t interval)
  248. {
  249. unsigned long orun = 1;
  250. ktime_t delta, now;
  251. now = timer->base->get_time();
  252. delta = ktime_sub(now, timer->expires);
  253. if (delta.tv64 < 0)
  254. return 0;
  255. if (interval.tv64 < timer->base->resolution.tv64)
  256. interval.tv64 = timer->base->resolution.tv64;
  257. if (unlikely(delta.tv64 >= interval.tv64)) {
  258. nsec_t incr = ktime_to_ns(interval);
  259. orun = ktime_divns(delta, incr);
  260. timer->expires = ktime_add_ns(timer->expires, incr * orun);
  261. if (timer->expires.tv64 > now.tv64)
  262. return orun;
  263. /*
  264. * This (and the ktime_add() below) is the
  265. * correction for exact:
  266. */
  267. orun++;
  268. }
  269. timer->expires = ktime_add(timer->expires, interval);
  270. return orun;
  271. }
  272. /*
  273. * enqueue_hrtimer - internal function to (re)start a timer
  274. *
  275. * The timer is inserted in expiry order. Insertion into the
  276. * red black tree is O(log(n)). Must hold the base lock.
  277. */
  278. static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
  279. {
  280. struct rb_node **link = &base->active.rb_node;
  281. struct rb_node *parent = NULL;
  282. struct hrtimer *entry;
  283. /*
  284. * Find the right place in the rbtree:
  285. */
  286. while (*link) {
  287. parent = *link;
  288. entry = rb_entry(parent, struct hrtimer, node);
  289. /*
  290. * We dont care about collisions. Nodes with
  291. * the same expiry time stay together.
  292. */
  293. if (timer->expires.tv64 < entry->expires.tv64)
  294. link = &(*link)->rb_left;
  295. else
  296. link = &(*link)->rb_right;
  297. }
  298. /*
  299. * Insert the timer to the rbtree and check whether it
  300. * replaces the first pending timer
  301. */
  302. rb_link_node(&timer->node, parent, link);
  303. rb_insert_color(&timer->node, &base->active);
  304. timer->state = HRTIMER_PENDING;
  305. if (!base->first || timer->expires.tv64 <
  306. rb_entry(base->first, struct hrtimer, node)->expires.tv64)
  307. base->first = &timer->node;
  308. }
  309. /*
  310. * __remove_hrtimer - internal function to remove a timer
  311. *
  312. * Caller must hold the base lock.
  313. */
  314. static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
  315. {
  316. /*
  317. * Remove the timer from the rbtree and replace the
  318. * first entry pointer if necessary.
  319. */
  320. if (base->first == &timer->node)
  321. base->first = rb_next(&timer->node);
  322. rb_erase(&timer->node, &base->active);
  323. }
  324. /*
  325. * remove hrtimer, called with base lock held
  326. */
  327. static inline int
  328. remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
  329. {
  330. if (hrtimer_active(timer)) {
  331. __remove_hrtimer(timer, base);
  332. timer->state = HRTIMER_INACTIVE;
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. /**
  338. * hrtimer_start - (re)start an relative timer on the current CPU
  339. *
  340. * @timer: the timer to be added
  341. * @tim: expiry time
  342. * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
  343. *
  344. * Returns:
  345. * 0 on success
  346. * 1 when the timer was active
  347. */
  348. int
  349. hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
  350. {
  351. struct hrtimer_base *base, *new_base;
  352. unsigned long flags;
  353. int ret;
  354. base = lock_hrtimer_base(timer, &flags);
  355. /* Remove an active timer from the queue: */
  356. ret = remove_hrtimer(timer, base);
  357. /* Switch the timer base, if necessary: */
  358. new_base = switch_hrtimer_base(timer, base);
  359. if (mode == HRTIMER_REL)
  360. tim = ktime_add(tim, new_base->get_time());
  361. timer->expires = tim;
  362. enqueue_hrtimer(timer, new_base);
  363. unlock_hrtimer_base(timer, &flags);
  364. return ret;
  365. }
  366. /**
  367. * hrtimer_try_to_cancel - try to deactivate a timer
  368. *
  369. * @timer: hrtimer to stop
  370. *
  371. * Returns:
  372. * 0 when the timer was not active
  373. * 1 when the timer was active
  374. * -1 when the timer is currently excuting the callback function and
  375. * can not be stopped
  376. */
  377. int hrtimer_try_to_cancel(struct hrtimer *timer)
  378. {
  379. struct hrtimer_base *base;
  380. unsigned long flags;
  381. int ret = -1;
  382. base = lock_hrtimer_base(timer, &flags);
  383. if (base->curr_timer != timer)
  384. ret = remove_hrtimer(timer, base);
  385. unlock_hrtimer_base(timer, &flags);
  386. return ret;
  387. }
  388. /**
  389. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  390. *
  391. * @timer: the timer to be cancelled
  392. *
  393. * Returns:
  394. * 0 when the timer was not active
  395. * 1 when the timer was active
  396. */
  397. int hrtimer_cancel(struct hrtimer *timer)
  398. {
  399. for (;;) {
  400. int ret = hrtimer_try_to_cancel(timer);
  401. if (ret >= 0)
  402. return ret;
  403. }
  404. }
  405. /**
  406. * hrtimer_get_remaining - get remaining time for the timer
  407. *
  408. * @timer: the timer to read
  409. */
  410. ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
  411. {
  412. struct hrtimer_base *base;
  413. unsigned long flags;
  414. ktime_t rem;
  415. base = lock_hrtimer_base(timer, &flags);
  416. rem = ktime_sub(timer->expires, timer->base->get_time());
  417. unlock_hrtimer_base(timer, &flags);
  418. return rem;
  419. }
  420. /**
  421. * hrtimer_init - initialize a timer to the given clock
  422. *
  423. * @timer: the timer to be initialized
  424. * @clock_id: the clock to be used
  425. * @mode: timer mode abs/rel
  426. */
  427. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  428. enum hrtimer_mode mode)
  429. {
  430. struct hrtimer_base *bases;
  431. memset(timer, 0, sizeof(struct hrtimer));
  432. bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
  433. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
  434. clock_id = CLOCK_MONOTONIC;
  435. timer->base = &bases[clock_id];
  436. }
  437. /**
  438. * hrtimer_get_res - get the timer resolution for a clock
  439. *
  440. * @which_clock: which clock to query
  441. * @tp: pointer to timespec variable to store the resolution
  442. *
  443. * Store the resolution of the clock selected by which_clock in the
  444. * variable pointed to by tp.
  445. */
  446. int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
  447. {
  448. struct hrtimer_base *bases;
  449. bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
  450. *tp = ktime_to_timespec(bases[which_clock].resolution);
  451. return 0;
  452. }
  453. /*
  454. * Expire the per base hrtimer-queue:
  455. */
  456. static inline void run_hrtimer_queue(struct hrtimer_base *base)
  457. {
  458. ktime_t now = base->get_time();
  459. struct rb_node *node;
  460. spin_lock_irq(&base->lock);
  461. while ((node = base->first)) {
  462. struct hrtimer *timer;
  463. int (*fn)(void *);
  464. int restart;
  465. void *data;
  466. timer = rb_entry(node, struct hrtimer, node);
  467. if (now.tv64 <= timer->expires.tv64)
  468. break;
  469. fn = timer->function;
  470. data = timer->data;
  471. set_curr_timer(base, timer);
  472. timer->state = HRTIMER_RUNNING;
  473. __remove_hrtimer(timer, base);
  474. spin_unlock_irq(&base->lock);
  475. /*
  476. * fn == NULL is special case for the simplest timer
  477. * variant - wake up process and do not restart:
  478. */
  479. if (!fn) {
  480. wake_up_process(data);
  481. restart = HRTIMER_NORESTART;
  482. } else
  483. restart = fn(data);
  484. spin_lock_irq(&base->lock);
  485. /* Another CPU has added back the timer */
  486. if (timer->state != HRTIMER_RUNNING)
  487. continue;
  488. if (restart == HRTIMER_RESTART)
  489. enqueue_hrtimer(timer, base);
  490. else
  491. timer->state = HRTIMER_EXPIRED;
  492. }
  493. set_curr_timer(base, NULL);
  494. spin_unlock_irq(&base->lock);
  495. }
  496. /*
  497. * Called from timer softirq every jiffy, expire hrtimers:
  498. */
  499. void hrtimer_run_queues(void)
  500. {
  501. struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
  502. int i;
  503. for (i = 0; i < MAX_HRTIMER_BASES; i++)
  504. run_hrtimer_queue(&base[i]);
  505. }
  506. /*
  507. * Sleep related functions:
  508. */
  509. /**
  510. * schedule_hrtimer - sleep until timeout
  511. *
  512. * @timer: hrtimer variable initialized with the correct clock base
  513. * @mode: timeout value is abs/rel
  514. *
  515. * Make the current task sleep until @timeout is
  516. * elapsed.
  517. *
  518. * You can set the task state as follows -
  519. *
  520. * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
  521. * pass before the routine returns. The routine will return 0
  522. *
  523. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  524. * delivered to the current task. In this case the remaining time
  525. * will be returned
  526. *
  527. * The current task state is guaranteed to be TASK_RUNNING when this
  528. * routine returns.
  529. */
  530. static ktime_t __sched
  531. schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
  532. {
  533. /* fn stays NULL, meaning single-shot wakeup: */
  534. timer->data = current;
  535. hrtimer_start(timer, timer->expires, mode);
  536. schedule();
  537. hrtimer_cancel(timer);
  538. /* Return the remaining time: */
  539. if (timer->state != HRTIMER_EXPIRED)
  540. return ktime_sub(timer->expires, timer->base->get_time());
  541. else
  542. return (ktime_t) {.tv64 = 0 };
  543. }
  544. static inline ktime_t __sched
  545. schedule_hrtimer_interruptible(struct hrtimer *timer,
  546. const enum hrtimer_mode mode)
  547. {
  548. set_current_state(TASK_INTERRUPTIBLE);
  549. return schedule_hrtimer(timer, mode);
  550. }
  551. static long __sched nanosleep_restart(struct restart_block *restart)
  552. {
  553. struct timespec __user *rmtp;
  554. struct timespec tu;
  555. void *rfn_save = restart->fn;
  556. struct hrtimer timer;
  557. ktime_t rem;
  558. restart->fn = do_no_restart_syscall;
  559. hrtimer_init(&timer, (clockid_t) restart->arg3, HRTIMER_ABS);
  560. timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
  561. rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
  562. if (rem.tv64 <= 0)
  563. return 0;
  564. rmtp = (struct timespec __user *) restart->arg2;
  565. tu = ktime_to_timespec(rem);
  566. if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
  567. return -EFAULT;
  568. restart->fn = rfn_save;
  569. /* The other values in restart are already filled in */
  570. return -ERESTART_RESTARTBLOCK;
  571. }
  572. long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
  573. const enum hrtimer_mode mode, const clockid_t clockid)
  574. {
  575. struct restart_block *restart;
  576. struct hrtimer timer;
  577. struct timespec tu;
  578. ktime_t rem;
  579. hrtimer_init(&timer, clockid, mode);
  580. timer.expires = timespec_to_ktime(*rqtp);
  581. rem = schedule_hrtimer_interruptible(&timer, mode);
  582. if (rem.tv64 <= 0)
  583. return 0;
  584. /* Absolute timers do not update the rmtp value and restart: */
  585. if (mode == HRTIMER_ABS)
  586. return -ERESTARTNOHAND;
  587. tu = ktime_to_timespec(rem);
  588. if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
  589. return -EFAULT;
  590. restart = &current_thread_info()->restart_block;
  591. restart->fn = nanosleep_restart;
  592. restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
  593. restart->arg1 = timer.expires.tv64 >> 32;
  594. restart->arg2 = (unsigned long) rmtp;
  595. restart->arg3 = (unsigned long) timer.base->index;
  596. return -ERESTART_RESTARTBLOCK;
  597. }
  598. asmlinkage long
  599. sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
  600. {
  601. struct timespec tu;
  602. if (copy_from_user(&tu, rqtp, sizeof(tu)))
  603. return -EFAULT;
  604. if (!timespec_valid(&tu))
  605. return -EINVAL;
  606. return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
  607. }
  608. /*
  609. * Functions related to boot-time initialization:
  610. */
  611. static void __devinit init_hrtimers_cpu(int cpu)
  612. {
  613. struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
  614. int i;
  615. for (i = 0; i < MAX_HRTIMER_BASES; i++, base++)
  616. spin_lock_init(&base->lock);
  617. }
  618. #ifdef CONFIG_HOTPLUG_CPU
  619. static void migrate_hrtimer_list(struct hrtimer_base *old_base,
  620. struct hrtimer_base *new_base)
  621. {
  622. struct hrtimer *timer;
  623. struct rb_node *node;
  624. while ((node = rb_first(&old_base->active))) {
  625. timer = rb_entry(node, struct hrtimer, node);
  626. __remove_hrtimer(timer, old_base);
  627. timer->base = new_base;
  628. enqueue_hrtimer(timer, new_base);
  629. }
  630. }
  631. static void migrate_hrtimers(int cpu)
  632. {
  633. struct hrtimer_base *old_base, *new_base;
  634. int i;
  635. BUG_ON(cpu_online(cpu));
  636. old_base = per_cpu(hrtimer_bases, cpu);
  637. new_base = get_cpu_var(hrtimer_bases);
  638. local_irq_disable();
  639. for (i = 0; i < MAX_HRTIMER_BASES; i++) {
  640. spin_lock(&new_base->lock);
  641. spin_lock(&old_base->lock);
  642. BUG_ON(old_base->curr_timer);
  643. migrate_hrtimer_list(old_base, new_base);
  644. spin_unlock(&old_base->lock);
  645. spin_unlock(&new_base->lock);
  646. old_base++;
  647. new_base++;
  648. }
  649. local_irq_enable();
  650. put_cpu_var(hrtimer_bases);
  651. }
  652. #endif /* CONFIG_HOTPLUG_CPU */
  653. static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
  654. unsigned long action, void *hcpu)
  655. {
  656. long cpu = (long)hcpu;
  657. switch (action) {
  658. case CPU_UP_PREPARE:
  659. init_hrtimers_cpu(cpu);
  660. break;
  661. #ifdef CONFIG_HOTPLUG_CPU
  662. case CPU_DEAD:
  663. migrate_hrtimers(cpu);
  664. break;
  665. #endif
  666. default:
  667. break;
  668. }
  669. return NOTIFY_OK;
  670. }
  671. static struct notifier_block __devinitdata hrtimers_nb = {
  672. .notifier_call = hrtimer_cpu_notify,
  673. };
  674. void __init hrtimers_init(void)
  675. {
  676. hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
  677. (void *)(long)smp_processor_id());
  678. register_cpu_notifier(&hrtimers_nb);
  679. }