btree.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. /*
  2. * linux/fs/hfs/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/pagemap.h>
  11. #include "btree.h"
  12. /* Get a reference to a B*Tree and do some initial checks */
  13. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
  14. {
  15. struct hfs_btree *tree;
  16. struct hfs_btree_header_rec *head;
  17. struct address_space *mapping;
  18. struct page *page;
  19. unsigned int size;
  20. tree = kmalloc(sizeof(*tree), GFP_KERNEL);
  21. if (!tree)
  22. return NULL;
  23. memset(tree, 0, sizeof(*tree));
  24. init_MUTEX(&tree->tree_lock);
  25. spin_lock_init(&tree->hash_lock);
  26. /* Set the correct compare function */
  27. tree->sb = sb;
  28. tree->cnid = id;
  29. tree->keycmp = keycmp;
  30. tree->inode = iget_locked(sb, id);
  31. if (!tree->inode)
  32. goto free_tree;
  33. if (!(tree->inode->i_state & I_NEW))
  34. BUG();
  35. {
  36. struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
  37. HFS_I(tree->inode)->flags = 0;
  38. init_MUTEX(&HFS_I(tree->inode)->extents_lock);
  39. switch (id) {
  40. case HFS_EXT_CNID:
  41. hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
  42. mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
  43. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  44. break;
  45. case HFS_CAT_CNID:
  46. hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
  47. mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
  48. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  49. break;
  50. default:
  51. BUG();
  52. }
  53. }
  54. unlock_new_inode(tree->inode);
  55. mapping = tree->inode->i_mapping;
  56. page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage, NULL);
  57. if (IS_ERR(page))
  58. goto free_tree;
  59. /* Load the header */
  60. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  61. tree->root = be32_to_cpu(head->root);
  62. tree->leaf_count = be32_to_cpu(head->leaf_count);
  63. tree->leaf_head = be32_to_cpu(head->leaf_head);
  64. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  65. tree->node_count = be32_to_cpu(head->node_count);
  66. tree->free_nodes = be32_to_cpu(head->free_nodes);
  67. tree->attributes = be32_to_cpu(head->attributes);
  68. tree->node_size = be16_to_cpu(head->node_size);
  69. tree->max_key_len = be16_to_cpu(head->max_key_len);
  70. tree->depth = be16_to_cpu(head->depth);
  71. size = tree->node_size;
  72. if (!size || size & (size - 1))
  73. goto fail_page;
  74. if (!tree->node_count)
  75. goto fail_page;
  76. tree->node_size_shift = ffs(size) - 1;
  77. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  78. kunmap(page);
  79. page_cache_release(page);
  80. return tree;
  81. fail_page:
  82. tree->inode->i_mapping->a_ops = &hfs_aops;
  83. page_cache_release(page);
  84. free_tree:
  85. iput(tree->inode);
  86. kfree(tree);
  87. return NULL;
  88. }
  89. /* Release resources used by a btree */
  90. void hfs_btree_close(struct hfs_btree *tree)
  91. {
  92. struct hfs_bnode *node;
  93. int i;
  94. if (!tree)
  95. return;
  96. for (i = 0; i < NODE_HASH_SIZE; i++) {
  97. while ((node = tree->node_hash[i])) {
  98. tree->node_hash[i] = node->next_hash;
  99. if (atomic_read(&node->refcnt))
  100. printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
  101. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  102. hfs_bnode_free(node);
  103. tree->node_hash_cnt--;
  104. }
  105. }
  106. iput(tree->inode);
  107. kfree(tree);
  108. }
  109. void hfs_btree_write(struct hfs_btree *tree)
  110. {
  111. struct hfs_btree_header_rec *head;
  112. struct hfs_bnode *node;
  113. struct page *page;
  114. node = hfs_bnode_find(tree, 0);
  115. if (IS_ERR(node))
  116. /* panic? */
  117. return;
  118. /* Load the header */
  119. page = node->page[0];
  120. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  121. head->root = cpu_to_be32(tree->root);
  122. head->leaf_count = cpu_to_be32(tree->leaf_count);
  123. head->leaf_head = cpu_to_be32(tree->leaf_head);
  124. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  125. head->node_count = cpu_to_be32(tree->node_count);
  126. head->free_nodes = cpu_to_be32(tree->free_nodes);
  127. head->attributes = cpu_to_be32(tree->attributes);
  128. head->depth = cpu_to_be16(tree->depth);
  129. kunmap(page);
  130. set_page_dirty(page);
  131. hfs_bnode_put(node);
  132. }
  133. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  134. {
  135. struct hfs_btree *tree = prev->tree;
  136. struct hfs_bnode *node;
  137. struct hfs_bnode_desc desc;
  138. __be32 cnid;
  139. node = hfs_bnode_create(tree, idx);
  140. if (IS_ERR(node))
  141. return node;
  142. if (!tree->free_nodes)
  143. panic("FIXME!!!");
  144. tree->free_nodes--;
  145. prev->next = idx;
  146. cnid = cpu_to_be32(idx);
  147. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  148. node->type = HFS_NODE_MAP;
  149. node->num_recs = 1;
  150. hfs_bnode_clear(node, 0, tree->node_size);
  151. desc.next = 0;
  152. desc.prev = 0;
  153. desc.type = HFS_NODE_MAP;
  154. desc.height = 0;
  155. desc.num_recs = cpu_to_be16(1);
  156. desc.reserved = 0;
  157. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  158. hfs_bnode_write_u16(node, 14, 0x8000);
  159. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  160. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  161. return node;
  162. }
  163. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  164. {
  165. struct hfs_bnode *node, *next_node;
  166. struct page **pagep;
  167. u32 nidx, idx;
  168. u16 off, len;
  169. u8 *data, byte, m;
  170. int i;
  171. while (!tree->free_nodes) {
  172. struct inode *inode = tree->inode;
  173. u32 count;
  174. int res;
  175. res = hfs_extend_file(inode);
  176. if (res)
  177. return ERR_PTR(res);
  178. HFS_I(inode)->phys_size = inode->i_size =
  179. (loff_t)HFS_I(inode)->alloc_blocks *
  180. HFS_SB(tree->sb)->alloc_blksz;
  181. HFS_I(inode)->fs_blocks = inode->i_size >>
  182. tree->sb->s_blocksize_bits;
  183. inode_set_bytes(inode, inode->i_size);
  184. count = inode->i_size >> tree->node_size_shift;
  185. tree->free_nodes = count - tree->node_count;
  186. tree->node_count = count;
  187. }
  188. nidx = 0;
  189. node = hfs_bnode_find(tree, nidx);
  190. if (IS_ERR(node))
  191. return node;
  192. len = hfs_brec_lenoff(node, 2, &off);
  193. off += node->page_offset;
  194. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  195. data = kmap(*pagep);
  196. off &= ~PAGE_CACHE_MASK;
  197. idx = 0;
  198. for (;;) {
  199. while (len) {
  200. byte = data[off];
  201. if (byte != 0xff) {
  202. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  203. if (!(byte & m)) {
  204. idx += i;
  205. data[off] |= m;
  206. set_page_dirty(*pagep);
  207. kunmap(*pagep);
  208. tree->free_nodes--;
  209. mark_inode_dirty(tree->inode);
  210. hfs_bnode_put(node);
  211. return hfs_bnode_create(tree, idx);
  212. }
  213. }
  214. }
  215. if (++off >= PAGE_CACHE_SIZE) {
  216. kunmap(*pagep);
  217. data = kmap(*++pagep);
  218. off = 0;
  219. }
  220. idx += 8;
  221. len--;
  222. }
  223. kunmap(*pagep);
  224. nidx = node->next;
  225. if (!nidx) {
  226. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  227. next_node = hfs_bmap_new_bmap(node, idx);
  228. } else
  229. next_node = hfs_bnode_find(tree, nidx);
  230. hfs_bnode_put(node);
  231. if (IS_ERR(next_node))
  232. return next_node;
  233. node = next_node;
  234. len = hfs_brec_lenoff(node, 0, &off);
  235. off += node->page_offset;
  236. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  237. data = kmap(*pagep);
  238. off &= ~PAGE_CACHE_MASK;
  239. }
  240. }
  241. void hfs_bmap_free(struct hfs_bnode *node)
  242. {
  243. struct hfs_btree *tree;
  244. struct page *page;
  245. u16 off, len;
  246. u32 nidx;
  247. u8 *data, byte, m;
  248. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  249. tree = node->tree;
  250. nidx = node->this;
  251. node = hfs_bnode_find(tree, 0);
  252. if (IS_ERR(node))
  253. return;
  254. len = hfs_brec_lenoff(node, 2, &off);
  255. while (nidx >= len * 8) {
  256. u32 i;
  257. nidx -= len * 8;
  258. i = node->next;
  259. hfs_bnode_put(node);
  260. if (!i) {
  261. /* panic */;
  262. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  263. return;
  264. }
  265. node = hfs_bnode_find(tree, i);
  266. if (IS_ERR(node))
  267. return;
  268. if (node->type != HFS_NODE_MAP) {
  269. /* panic */;
  270. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  271. hfs_bnode_put(node);
  272. return;
  273. }
  274. len = hfs_brec_lenoff(node, 0, &off);
  275. }
  276. off += node->page_offset + nidx / 8;
  277. page = node->page[off >> PAGE_CACHE_SHIFT];
  278. data = kmap(page);
  279. off &= ~PAGE_CACHE_MASK;
  280. m = 1 << (~nidx & 7);
  281. byte = data[off];
  282. if (!(byte & m)) {
  283. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  284. kunmap(page);
  285. hfs_bnode_put(node);
  286. return;
  287. }
  288. data[off] = byte & ~m;
  289. set_page_dirty(page);
  290. kunmap(page);
  291. hfs_bnode_put(node);
  292. tree->free_nodes++;
  293. mark_inode_dirty(tree->inode);
  294. }