aio.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #define DEBUG 0
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/file.h>
  22. #include <linux/mm.h>
  23. #include <linux/mman.h>
  24. #include <linux/slab.h>
  25. #include <linux/timer.h>
  26. #include <linux/aio.h>
  27. #include <linux/highmem.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/security.h>
  30. #include <asm/kmap_types.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/mmu_context.h>
  33. #if DEBUG > 1
  34. #define dprintk printk
  35. #else
  36. #define dprintk(x...) do { ; } while (0)
  37. #endif
  38. /*------ sysctl variables----*/
  39. static DEFINE_SPINLOCK(aio_nr_lock);
  40. unsigned long aio_nr; /* current system wide number of aio requests */
  41. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  42. /*----end sysctl variables---*/
  43. static kmem_cache_t *kiocb_cachep;
  44. static kmem_cache_t *kioctx_cachep;
  45. static struct workqueue_struct *aio_wq;
  46. /* Used for rare fput completion. */
  47. static void aio_fput_routine(void *);
  48. static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
  49. static DEFINE_SPINLOCK(fput_lock);
  50. static LIST_HEAD(fput_head);
  51. static void aio_kick_handler(void *);
  52. static void aio_queue_work(struct kioctx *);
  53. /* aio_setup
  54. * Creates the slab caches used by the aio routines, panic on
  55. * failure as this is done early during the boot sequence.
  56. */
  57. static int __init aio_setup(void)
  58. {
  59. kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
  60. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  61. kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
  62. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  63. aio_wq = create_workqueue("aio");
  64. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  65. return 0;
  66. }
  67. static void aio_free_ring(struct kioctx *ctx)
  68. {
  69. struct aio_ring_info *info = &ctx->ring_info;
  70. long i;
  71. for (i=0; i<info->nr_pages; i++)
  72. put_page(info->ring_pages[i]);
  73. if (info->mmap_size) {
  74. down_write(&ctx->mm->mmap_sem);
  75. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  76. up_write(&ctx->mm->mmap_sem);
  77. }
  78. if (info->ring_pages && info->ring_pages != info->internal_pages)
  79. kfree(info->ring_pages);
  80. info->ring_pages = NULL;
  81. info->nr = 0;
  82. }
  83. static int aio_setup_ring(struct kioctx *ctx)
  84. {
  85. struct aio_ring *ring;
  86. struct aio_ring_info *info = &ctx->ring_info;
  87. unsigned nr_events = ctx->max_reqs;
  88. unsigned long size;
  89. int nr_pages;
  90. /* Compensate for the ring buffer's head/tail overlap entry */
  91. nr_events += 2; /* 1 is required, 2 for good luck */
  92. size = sizeof(struct aio_ring);
  93. size += sizeof(struct io_event) * nr_events;
  94. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  95. if (nr_pages < 0)
  96. return -EINVAL;
  97. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  98. info->nr = 0;
  99. info->ring_pages = info->internal_pages;
  100. if (nr_pages > AIO_RING_PAGES) {
  101. info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
  102. if (!info->ring_pages)
  103. return -ENOMEM;
  104. memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
  105. }
  106. info->mmap_size = nr_pages * PAGE_SIZE;
  107. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  108. down_write(&ctx->mm->mmap_sem);
  109. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  110. PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
  111. 0);
  112. if (IS_ERR((void *)info->mmap_base)) {
  113. up_write(&ctx->mm->mmap_sem);
  114. printk("mmap err: %ld\n", -info->mmap_base);
  115. info->mmap_size = 0;
  116. aio_free_ring(ctx);
  117. return -EAGAIN;
  118. }
  119. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  120. info->nr_pages = get_user_pages(current, ctx->mm,
  121. info->mmap_base, nr_pages,
  122. 1, 0, info->ring_pages, NULL);
  123. up_write(&ctx->mm->mmap_sem);
  124. if (unlikely(info->nr_pages != nr_pages)) {
  125. aio_free_ring(ctx);
  126. return -EAGAIN;
  127. }
  128. ctx->user_id = info->mmap_base;
  129. info->nr = nr_events; /* trusted copy */
  130. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  131. ring->nr = nr_events; /* user copy */
  132. ring->id = ctx->user_id;
  133. ring->head = ring->tail = 0;
  134. ring->magic = AIO_RING_MAGIC;
  135. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  136. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  137. ring->header_length = sizeof(struct aio_ring);
  138. kunmap_atomic(ring, KM_USER0);
  139. return 0;
  140. }
  141. /* aio_ring_event: returns a pointer to the event at the given index from
  142. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  143. */
  144. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  145. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  146. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  147. #define aio_ring_event(info, nr, km) ({ \
  148. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  149. struct io_event *__event; \
  150. __event = kmap_atomic( \
  151. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  152. __event += pos % AIO_EVENTS_PER_PAGE; \
  153. __event; \
  154. })
  155. #define put_aio_ring_event(event, km) do { \
  156. struct io_event *__event = (event); \
  157. (void)__event; \
  158. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  159. } while(0)
  160. /* ioctx_alloc
  161. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  162. */
  163. static struct kioctx *ioctx_alloc(unsigned nr_events)
  164. {
  165. struct mm_struct *mm;
  166. struct kioctx *ctx;
  167. /* Prevent overflows */
  168. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  169. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  170. pr_debug("ENOMEM: nr_events too high\n");
  171. return ERR_PTR(-EINVAL);
  172. }
  173. if ((unsigned long)nr_events > aio_max_nr)
  174. return ERR_PTR(-EAGAIN);
  175. ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
  176. if (!ctx)
  177. return ERR_PTR(-ENOMEM);
  178. memset(ctx, 0, sizeof(*ctx));
  179. ctx->max_reqs = nr_events;
  180. mm = ctx->mm = current->mm;
  181. atomic_inc(&mm->mm_count);
  182. atomic_set(&ctx->users, 1);
  183. spin_lock_init(&ctx->ctx_lock);
  184. spin_lock_init(&ctx->ring_info.ring_lock);
  185. init_waitqueue_head(&ctx->wait);
  186. INIT_LIST_HEAD(&ctx->active_reqs);
  187. INIT_LIST_HEAD(&ctx->run_list);
  188. INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
  189. if (aio_setup_ring(ctx) < 0)
  190. goto out_freectx;
  191. /* limit the number of system wide aios */
  192. spin_lock(&aio_nr_lock);
  193. if (aio_nr + ctx->max_reqs > aio_max_nr ||
  194. aio_nr + ctx->max_reqs < aio_nr)
  195. ctx->max_reqs = 0;
  196. else
  197. aio_nr += ctx->max_reqs;
  198. spin_unlock(&aio_nr_lock);
  199. if (ctx->max_reqs == 0)
  200. goto out_cleanup;
  201. /* now link into global list. kludge. FIXME */
  202. write_lock(&mm->ioctx_list_lock);
  203. ctx->next = mm->ioctx_list;
  204. mm->ioctx_list = ctx;
  205. write_unlock(&mm->ioctx_list_lock);
  206. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  207. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  208. return ctx;
  209. out_cleanup:
  210. __put_ioctx(ctx);
  211. return ERR_PTR(-EAGAIN);
  212. out_freectx:
  213. mmdrop(mm);
  214. kmem_cache_free(kioctx_cachep, ctx);
  215. ctx = ERR_PTR(-ENOMEM);
  216. dprintk("aio: error allocating ioctx %p\n", ctx);
  217. return ctx;
  218. }
  219. /* aio_cancel_all
  220. * Cancels all outstanding aio requests on an aio context. Used
  221. * when the processes owning a context have all exited to encourage
  222. * the rapid destruction of the kioctx.
  223. */
  224. static void aio_cancel_all(struct kioctx *ctx)
  225. {
  226. int (*cancel)(struct kiocb *, struct io_event *);
  227. struct io_event res;
  228. spin_lock_irq(&ctx->ctx_lock);
  229. ctx->dead = 1;
  230. while (!list_empty(&ctx->active_reqs)) {
  231. struct list_head *pos = ctx->active_reqs.next;
  232. struct kiocb *iocb = list_kiocb(pos);
  233. list_del_init(&iocb->ki_list);
  234. cancel = iocb->ki_cancel;
  235. kiocbSetCancelled(iocb);
  236. if (cancel) {
  237. iocb->ki_users++;
  238. spin_unlock_irq(&ctx->ctx_lock);
  239. cancel(iocb, &res);
  240. spin_lock_irq(&ctx->ctx_lock);
  241. }
  242. }
  243. spin_unlock_irq(&ctx->ctx_lock);
  244. }
  245. static void wait_for_all_aios(struct kioctx *ctx)
  246. {
  247. struct task_struct *tsk = current;
  248. DECLARE_WAITQUEUE(wait, tsk);
  249. if (!ctx->reqs_active)
  250. return;
  251. add_wait_queue(&ctx->wait, &wait);
  252. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  253. while (ctx->reqs_active) {
  254. schedule();
  255. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  256. }
  257. __set_task_state(tsk, TASK_RUNNING);
  258. remove_wait_queue(&ctx->wait, &wait);
  259. }
  260. /* wait_on_sync_kiocb:
  261. * Waits on the given sync kiocb to complete.
  262. */
  263. ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
  264. {
  265. while (iocb->ki_users) {
  266. set_current_state(TASK_UNINTERRUPTIBLE);
  267. if (!iocb->ki_users)
  268. break;
  269. schedule();
  270. }
  271. __set_current_state(TASK_RUNNING);
  272. return iocb->ki_user_data;
  273. }
  274. /* exit_aio: called when the last user of mm goes away. At this point,
  275. * there is no way for any new requests to be submited or any of the
  276. * io_* syscalls to be called on the context. However, there may be
  277. * outstanding requests which hold references to the context; as they
  278. * go away, they will call put_ioctx and release any pinned memory
  279. * associated with the request (held via struct page * references).
  280. */
  281. void fastcall exit_aio(struct mm_struct *mm)
  282. {
  283. struct kioctx *ctx = mm->ioctx_list;
  284. mm->ioctx_list = NULL;
  285. while (ctx) {
  286. struct kioctx *next = ctx->next;
  287. ctx->next = NULL;
  288. aio_cancel_all(ctx);
  289. wait_for_all_aios(ctx);
  290. /*
  291. * this is an overkill, but ensures we don't leave
  292. * the ctx on the aio_wq
  293. */
  294. flush_workqueue(aio_wq);
  295. if (1 != atomic_read(&ctx->users))
  296. printk(KERN_DEBUG
  297. "exit_aio:ioctx still alive: %d %d %d\n",
  298. atomic_read(&ctx->users), ctx->dead,
  299. ctx->reqs_active);
  300. put_ioctx(ctx);
  301. ctx = next;
  302. }
  303. }
  304. /* __put_ioctx
  305. * Called when the last user of an aio context has gone away,
  306. * and the struct needs to be freed.
  307. */
  308. void fastcall __put_ioctx(struct kioctx *ctx)
  309. {
  310. unsigned nr_events = ctx->max_reqs;
  311. if (unlikely(ctx->reqs_active))
  312. BUG();
  313. cancel_delayed_work(&ctx->wq);
  314. flush_workqueue(aio_wq);
  315. aio_free_ring(ctx);
  316. mmdrop(ctx->mm);
  317. ctx->mm = NULL;
  318. pr_debug("__put_ioctx: freeing %p\n", ctx);
  319. kmem_cache_free(kioctx_cachep, ctx);
  320. if (nr_events) {
  321. spin_lock(&aio_nr_lock);
  322. BUG_ON(aio_nr - nr_events > aio_nr);
  323. aio_nr -= nr_events;
  324. spin_unlock(&aio_nr_lock);
  325. }
  326. }
  327. /* aio_get_req
  328. * Allocate a slot for an aio request. Increments the users count
  329. * of the kioctx so that the kioctx stays around until all requests are
  330. * complete. Returns NULL if no requests are free.
  331. *
  332. * Returns with kiocb->users set to 2. The io submit code path holds
  333. * an extra reference while submitting the i/o.
  334. * This prevents races between the aio code path referencing the
  335. * req (after submitting it) and aio_complete() freeing the req.
  336. */
  337. static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
  338. static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
  339. {
  340. struct kiocb *req = NULL;
  341. struct aio_ring *ring;
  342. int okay = 0;
  343. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  344. if (unlikely(!req))
  345. return NULL;
  346. req->ki_flags = 0;
  347. req->ki_users = 2;
  348. req->ki_key = 0;
  349. req->ki_ctx = ctx;
  350. req->ki_cancel = NULL;
  351. req->ki_retry = NULL;
  352. req->ki_dtor = NULL;
  353. req->private = NULL;
  354. INIT_LIST_HEAD(&req->ki_run_list);
  355. /* Check if the completion queue has enough free space to
  356. * accept an event from this io.
  357. */
  358. spin_lock_irq(&ctx->ctx_lock);
  359. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  360. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  361. list_add(&req->ki_list, &ctx->active_reqs);
  362. get_ioctx(ctx);
  363. ctx->reqs_active++;
  364. okay = 1;
  365. }
  366. kunmap_atomic(ring, KM_USER0);
  367. spin_unlock_irq(&ctx->ctx_lock);
  368. if (!okay) {
  369. kmem_cache_free(kiocb_cachep, req);
  370. req = NULL;
  371. }
  372. return req;
  373. }
  374. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  375. {
  376. struct kiocb *req;
  377. /* Handle a potential starvation case -- should be exceedingly rare as
  378. * requests will be stuck on fput_head only if the aio_fput_routine is
  379. * delayed and the requests were the last user of the struct file.
  380. */
  381. req = __aio_get_req(ctx);
  382. if (unlikely(NULL == req)) {
  383. aio_fput_routine(NULL);
  384. req = __aio_get_req(ctx);
  385. }
  386. return req;
  387. }
  388. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  389. {
  390. assert_spin_locked(&ctx->ctx_lock);
  391. if (req->ki_dtor)
  392. req->ki_dtor(req);
  393. kmem_cache_free(kiocb_cachep, req);
  394. ctx->reqs_active--;
  395. if (unlikely(!ctx->reqs_active && ctx->dead))
  396. wake_up(&ctx->wait);
  397. }
  398. static void aio_fput_routine(void *data)
  399. {
  400. spin_lock_irq(&fput_lock);
  401. while (likely(!list_empty(&fput_head))) {
  402. struct kiocb *req = list_kiocb(fput_head.next);
  403. struct kioctx *ctx = req->ki_ctx;
  404. list_del(&req->ki_list);
  405. spin_unlock_irq(&fput_lock);
  406. /* Complete the fput */
  407. __fput(req->ki_filp);
  408. /* Link the iocb into the context's free list */
  409. spin_lock_irq(&ctx->ctx_lock);
  410. really_put_req(ctx, req);
  411. spin_unlock_irq(&ctx->ctx_lock);
  412. put_ioctx(ctx);
  413. spin_lock_irq(&fput_lock);
  414. }
  415. spin_unlock_irq(&fput_lock);
  416. }
  417. /* __aio_put_req
  418. * Returns true if this put was the last user of the request.
  419. */
  420. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  421. {
  422. dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
  423. req, atomic_read(&req->ki_filp->f_count));
  424. assert_spin_locked(&ctx->ctx_lock);
  425. req->ki_users --;
  426. if (unlikely(req->ki_users < 0))
  427. BUG();
  428. if (likely(req->ki_users))
  429. return 0;
  430. list_del(&req->ki_list); /* remove from active_reqs */
  431. req->ki_cancel = NULL;
  432. req->ki_retry = NULL;
  433. /* Must be done under the lock to serialise against cancellation.
  434. * Call this aio_fput as it duplicates fput via the fput_work.
  435. */
  436. if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
  437. get_ioctx(ctx);
  438. spin_lock(&fput_lock);
  439. list_add(&req->ki_list, &fput_head);
  440. spin_unlock(&fput_lock);
  441. queue_work(aio_wq, &fput_work);
  442. } else
  443. really_put_req(ctx, req);
  444. return 1;
  445. }
  446. /* aio_put_req
  447. * Returns true if this put was the last user of the kiocb,
  448. * false if the request is still in use.
  449. */
  450. int fastcall aio_put_req(struct kiocb *req)
  451. {
  452. struct kioctx *ctx = req->ki_ctx;
  453. int ret;
  454. spin_lock_irq(&ctx->ctx_lock);
  455. ret = __aio_put_req(ctx, req);
  456. spin_unlock_irq(&ctx->ctx_lock);
  457. if (ret)
  458. put_ioctx(ctx);
  459. return ret;
  460. }
  461. /* Lookup an ioctx id. ioctx_list is lockless for reads.
  462. * FIXME: this is O(n) and is only suitable for development.
  463. */
  464. struct kioctx *lookup_ioctx(unsigned long ctx_id)
  465. {
  466. struct kioctx *ioctx;
  467. struct mm_struct *mm;
  468. mm = current->mm;
  469. read_lock(&mm->ioctx_list_lock);
  470. for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
  471. if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
  472. get_ioctx(ioctx);
  473. break;
  474. }
  475. read_unlock(&mm->ioctx_list_lock);
  476. return ioctx;
  477. }
  478. /*
  479. * use_mm
  480. * Makes the calling kernel thread take on the specified
  481. * mm context.
  482. * Called by the retry thread execute retries within the
  483. * iocb issuer's mm context, so that copy_from/to_user
  484. * operations work seamlessly for aio.
  485. * (Note: this routine is intended to be called only
  486. * from a kernel thread context)
  487. */
  488. static void use_mm(struct mm_struct *mm)
  489. {
  490. struct mm_struct *active_mm;
  491. struct task_struct *tsk = current;
  492. task_lock(tsk);
  493. tsk->flags |= PF_BORROWED_MM;
  494. active_mm = tsk->active_mm;
  495. atomic_inc(&mm->mm_count);
  496. tsk->mm = mm;
  497. tsk->active_mm = mm;
  498. /*
  499. * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
  500. * it won't work. Update it accordingly if you change it here
  501. */
  502. activate_mm(active_mm, mm);
  503. task_unlock(tsk);
  504. mmdrop(active_mm);
  505. }
  506. /*
  507. * unuse_mm
  508. * Reverses the effect of use_mm, i.e. releases the
  509. * specified mm context which was earlier taken on
  510. * by the calling kernel thread
  511. * (Note: this routine is intended to be called only
  512. * from a kernel thread context)
  513. *
  514. * Comments: Called with ctx->ctx_lock held. This nests
  515. * task_lock instead ctx_lock.
  516. */
  517. static void unuse_mm(struct mm_struct *mm)
  518. {
  519. struct task_struct *tsk = current;
  520. task_lock(tsk);
  521. tsk->flags &= ~PF_BORROWED_MM;
  522. tsk->mm = NULL;
  523. /* active_mm is still 'mm' */
  524. enter_lazy_tlb(mm, tsk);
  525. task_unlock(tsk);
  526. }
  527. /*
  528. * Queue up a kiocb to be retried. Assumes that the kiocb
  529. * has already been marked as kicked, and places it on
  530. * the retry run list for the corresponding ioctx, if it
  531. * isn't already queued. Returns 1 if it actually queued
  532. * the kiocb (to tell the caller to activate the work
  533. * queue to process it), or 0, if it found that it was
  534. * already queued.
  535. */
  536. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  537. {
  538. struct kioctx *ctx = iocb->ki_ctx;
  539. assert_spin_locked(&ctx->ctx_lock);
  540. if (list_empty(&iocb->ki_run_list)) {
  541. list_add_tail(&iocb->ki_run_list,
  542. &ctx->run_list);
  543. return 1;
  544. }
  545. return 0;
  546. }
  547. /* aio_run_iocb
  548. * This is the core aio execution routine. It is
  549. * invoked both for initial i/o submission and
  550. * subsequent retries via the aio_kick_handler.
  551. * Expects to be invoked with iocb->ki_ctx->lock
  552. * already held. The lock is released and reaquired
  553. * as needed during processing.
  554. *
  555. * Calls the iocb retry method (already setup for the
  556. * iocb on initial submission) for operation specific
  557. * handling, but takes care of most of common retry
  558. * execution details for a given iocb. The retry method
  559. * needs to be non-blocking as far as possible, to avoid
  560. * holding up other iocbs waiting to be serviced by the
  561. * retry kernel thread.
  562. *
  563. * The trickier parts in this code have to do with
  564. * ensuring that only one retry instance is in progress
  565. * for a given iocb at any time. Providing that guarantee
  566. * simplifies the coding of individual aio operations as
  567. * it avoids various potential races.
  568. */
  569. static ssize_t aio_run_iocb(struct kiocb *iocb)
  570. {
  571. struct kioctx *ctx = iocb->ki_ctx;
  572. ssize_t (*retry)(struct kiocb *);
  573. ssize_t ret;
  574. if (iocb->ki_retried++ > 1024*1024) {
  575. printk("Maximal retry count. Bytes done %Zd\n",
  576. iocb->ki_nbytes - iocb->ki_left);
  577. return -EAGAIN;
  578. }
  579. if (!(iocb->ki_retried & 0xff)) {
  580. pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
  581. iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
  582. }
  583. if (!(retry = iocb->ki_retry)) {
  584. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  585. return 0;
  586. }
  587. /*
  588. * We don't want the next retry iteration for this
  589. * operation to start until this one has returned and
  590. * updated the iocb state. However, wait_queue functions
  591. * can trigger a kick_iocb from interrupt context in the
  592. * meantime, indicating that data is available for the next
  593. * iteration. We want to remember that and enable the
  594. * next retry iteration _after_ we are through with
  595. * this one.
  596. *
  597. * So, in order to be able to register a "kick", but
  598. * prevent it from being queued now, we clear the kick
  599. * flag, but make the kick code *think* that the iocb is
  600. * still on the run list until we are actually done.
  601. * When we are done with this iteration, we check if
  602. * the iocb was kicked in the meantime and if so, queue
  603. * it up afresh.
  604. */
  605. kiocbClearKicked(iocb);
  606. /*
  607. * This is so that aio_complete knows it doesn't need to
  608. * pull the iocb off the run list (We can't just call
  609. * INIT_LIST_HEAD because we don't want a kick_iocb to
  610. * queue this on the run list yet)
  611. */
  612. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  613. spin_unlock_irq(&ctx->ctx_lock);
  614. /* Quit retrying if the i/o has been cancelled */
  615. if (kiocbIsCancelled(iocb)) {
  616. ret = -EINTR;
  617. aio_complete(iocb, ret, 0);
  618. /* must not access the iocb after this */
  619. goto out;
  620. }
  621. /*
  622. * Now we are all set to call the retry method in async
  623. * context. By setting this thread's io_wait context
  624. * to point to the wait queue entry inside the currently
  625. * running iocb for the duration of the retry, we ensure
  626. * that async notification wakeups are queued by the
  627. * operation instead of blocking waits, and when notified,
  628. * cause the iocb to be kicked for continuation (through
  629. * the aio_wake_function callback).
  630. */
  631. BUG_ON(current->io_wait != NULL);
  632. current->io_wait = &iocb->ki_wait;
  633. ret = retry(iocb);
  634. current->io_wait = NULL;
  635. if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
  636. BUG_ON(!list_empty(&iocb->ki_wait.task_list));
  637. aio_complete(iocb, ret, 0);
  638. }
  639. out:
  640. spin_lock_irq(&ctx->ctx_lock);
  641. if (-EIOCBRETRY == ret) {
  642. /*
  643. * OK, now that we are done with this iteration
  644. * and know that there is more left to go,
  645. * this is where we let go so that a subsequent
  646. * "kick" can start the next iteration
  647. */
  648. /* will make __queue_kicked_iocb succeed from here on */
  649. INIT_LIST_HEAD(&iocb->ki_run_list);
  650. /* we must queue the next iteration ourselves, if it
  651. * has already been kicked */
  652. if (kiocbIsKicked(iocb)) {
  653. __queue_kicked_iocb(iocb);
  654. /*
  655. * __queue_kicked_iocb will always return 1 here, because
  656. * iocb->ki_run_list is empty at this point so it should
  657. * be safe to unconditionally queue the context into the
  658. * work queue.
  659. */
  660. aio_queue_work(ctx);
  661. }
  662. }
  663. return ret;
  664. }
  665. /*
  666. * __aio_run_iocbs:
  667. * Process all pending retries queued on the ioctx
  668. * run list.
  669. * Assumes it is operating within the aio issuer's mm
  670. * context.
  671. */
  672. static int __aio_run_iocbs(struct kioctx *ctx)
  673. {
  674. struct kiocb *iocb;
  675. LIST_HEAD(run_list);
  676. assert_spin_locked(&ctx->ctx_lock);
  677. list_splice_init(&ctx->run_list, &run_list);
  678. while (!list_empty(&run_list)) {
  679. iocb = list_entry(run_list.next, struct kiocb,
  680. ki_run_list);
  681. list_del(&iocb->ki_run_list);
  682. /*
  683. * Hold an extra reference while retrying i/o.
  684. */
  685. iocb->ki_users++; /* grab extra reference */
  686. aio_run_iocb(iocb);
  687. if (__aio_put_req(ctx, iocb)) /* drop extra ref */
  688. put_ioctx(ctx);
  689. }
  690. if (!list_empty(&ctx->run_list))
  691. return 1;
  692. return 0;
  693. }
  694. static void aio_queue_work(struct kioctx * ctx)
  695. {
  696. unsigned long timeout;
  697. /*
  698. * if someone is waiting, get the work started right
  699. * away, otherwise, use a longer delay
  700. */
  701. smp_mb();
  702. if (waitqueue_active(&ctx->wait))
  703. timeout = 1;
  704. else
  705. timeout = HZ/10;
  706. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  707. }
  708. /*
  709. * aio_run_iocbs:
  710. * Process all pending retries queued on the ioctx
  711. * run list.
  712. * Assumes it is operating within the aio issuer's mm
  713. * context.
  714. */
  715. static inline void aio_run_iocbs(struct kioctx *ctx)
  716. {
  717. int requeue;
  718. spin_lock_irq(&ctx->ctx_lock);
  719. requeue = __aio_run_iocbs(ctx);
  720. spin_unlock_irq(&ctx->ctx_lock);
  721. if (requeue)
  722. aio_queue_work(ctx);
  723. }
  724. /*
  725. * just like aio_run_iocbs, but keeps running them until
  726. * the list stays empty
  727. */
  728. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  729. {
  730. spin_lock_irq(&ctx->ctx_lock);
  731. while (__aio_run_iocbs(ctx))
  732. ;
  733. spin_unlock_irq(&ctx->ctx_lock);
  734. }
  735. /*
  736. * aio_kick_handler:
  737. * Work queue handler triggered to process pending
  738. * retries on an ioctx. Takes on the aio issuer's
  739. * mm context before running the iocbs, so that
  740. * copy_xxx_user operates on the issuer's address
  741. * space.
  742. * Run on aiod's context.
  743. */
  744. static void aio_kick_handler(void *data)
  745. {
  746. struct kioctx *ctx = data;
  747. mm_segment_t oldfs = get_fs();
  748. int requeue;
  749. set_fs(USER_DS);
  750. use_mm(ctx->mm);
  751. spin_lock_irq(&ctx->ctx_lock);
  752. requeue =__aio_run_iocbs(ctx);
  753. unuse_mm(ctx->mm);
  754. spin_unlock_irq(&ctx->ctx_lock);
  755. set_fs(oldfs);
  756. /*
  757. * we're in a worker thread already, don't use queue_delayed_work,
  758. */
  759. if (requeue)
  760. queue_work(aio_wq, &ctx->wq);
  761. }
  762. /*
  763. * Called by kick_iocb to queue the kiocb for retry
  764. * and if required activate the aio work queue to process
  765. * it
  766. */
  767. static void try_queue_kicked_iocb(struct kiocb *iocb)
  768. {
  769. struct kioctx *ctx = iocb->ki_ctx;
  770. unsigned long flags;
  771. int run = 0;
  772. /* We're supposed to be the only path putting the iocb back on the run
  773. * list. If we find that the iocb is *back* on a wait queue already
  774. * than retry has happened before we could queue the iocb. This also
  775. * means that the retry could have completed and freed our iocb, no
  776. * good. */
  777. BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
  778. spin_lock_irqsave(&ctx->ctx_lock, flags);
  779. /* set this inside the lock so that we can't race with aio_run_iocb()
  780. * testing it and putting the iocb on the run list under the lock */
  781. if (!kiocbTryKick(iocb))
  782. run = __queue_kicked_iocb(iocb);
  783. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  784. if (run)
  785. aio_queue_work(ctx);
  786. }
  787. /*
  788. * kick_iocb:
  789. * Called typically from a wait queue callback context
  790. * (aio_wake_function) to trigger a retry of the iocb.
  791. * The retry is usually executed by aio workqueue
  792. * threads (See aio_kick_handler).
  793. */
  794. void fastcall kick_iocb(struct kiocb *iocb)
  795. {
  796. /* sync iocbs are easy: they can only ever be executing from a
  797. * single context. */
  798. if (is_sync_kiocb(iocb)) {
  799. kiocbSetKicked(iocb);
  800. wake_up_process(iocb->ki_obj.tsk);
  801. return;
  802. }
  803. try_queue_kicked_iocb(iocb);
  804. }
  805. EXPORT_SYMBOL(kick_iocb);
  806. /* aio_complete
  807. * Called when the io request on the given iocb is complete.
  808. * Returns true if this is the last user of the request. The
  809. * only other user of the request can be the cancellation code.
  810. */
  811. int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
  812. {
  813. struct kioctx *ctx = iocb->ki_ctx;
  814. struct aio_ring_info *info;
  815. struct aio_ring *ring;
  816. struct io_event *event;
  817. unsigned long flags;
  818. unsigned long tail;
  819. int ret;
  820. /*
  821. * Special case handling for sync iocbs:
  822. * - events go directly into the iocb for fast handling
  823. * - the sync task with the iocb in its stack holds the single iocb
  824. * ref, no other paths have a way to get another ref
  825. * - the sync task helpfully left a reference to itself in the iocb
  826. */
  827. if (is_sync_kiocb(iocb)) {
  828. BUG_ON(iocb->ki_users != 1);
  829. iocb->ki_user_data = res;
  830. iocb->ki_users = 0;
  831. wake_up_process(iocb->ki_obj.tsk);
  832. return 1;
  833. }
  834. info = &ctx->ring_info;
  835. /* add a completion event to the ring buffer.
  836. * must be done holding ctx->ctx_lock to prevent
  837. * other code from messing with the tail
  838. * pointer since we might be called from irq
  839. * context.
  840. */
  841. spin_lock_irqsave(&ctx->ctx_lock, flags);
  842. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  843. list_del_init(&iocb->ki_run_list);
  844. /*
  845. * cancelled requests don't get events, userland was given one
  846. * when the event got cancelled.
  847. */
  848. if (kiocbIsCancelled(iocb))
  849. goto put_rq;
  850. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  851. tail = info->tail;
  852. event = aio_ring_event(info, tail, KM_IRQ0);
  853. if (++tail >= info->nr)
  854. tail = 0;
  855. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  856. event->data = iocb->ki_user_data;
  857. event->res = res;
  858. event->res2 = res2;
  859. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  860. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  861. res, res2);
  862. /* after flagging the request as done, we
  863. * must never even look at it again
  864. */
  865. smp_wmb(); /* make event visible before updating tail */
  866. info->tail = tail;
  867. ring->tail = tail;
  868. put_aio_ring_event(event, KM_IRQ0);
  869. kunmap_atomic(ring, KM_IRQ1);
  870. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  871. pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
  872. iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
  873. put_rq:
  874. /* everything turned out well, dispose of the aiocb. */
  875. ret = __aio_put_req(ctx, iocb);
  876. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  877. if (waitqueue_active(&ctx->wait))
  878. wake_up(&ctx->wait);
  879. if (ret)
  880. put_ioctx(ctx);
  881. return ret;
  882. }
  883. /* aio_read_evt
  884. * Pull an event off of the ioctx's event ring. Returns the number of
  885. * events fetched (0 or 1 ;-)
  886. * FIXME: make this use cmpxchg.
  887. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  888. */
  889. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  890. {
  891. struct aio_ring_info *info = &ioctx->ring_info;
  892. struct aio_ring *ring;
  893. unsigned long head;
  894. int ret = 0;
  895. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  896. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  897. (unsigned long)ring->head, (unsigned long)ring->tail,
  898. (unsigned long)ring->nr);
  899. if (ring->head == ring->tail)
  900. goto out;
  901. spin_lock(&info->ring_lock);
  902. head = ring->head % info->nr;
  903. if (head != ring->tail) {
  904. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  905. *ent = *evp;
  906. head = (head + 1) % info->nr;
  907. smp_mb(); /* finish reading the event before updatng the head */
  908. ring->head = head;
  909. ret = 1;
  910. put_aio_ring_event(evp, KM_USER1);
  911. }
  912. spin_unlock(&info->ring_lock);
  913. out:
  914. kunmap_atomic(ring, KM_USER0);
  915. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  916. (unsigned long)ring->head, (unsigned long)ring->tail);
  917. return ret;
  918. }
  919. struct aio_timeout {
  920. struct timer_list timer;
  921. int timed_out;
  922. struct task_struct *p;
  923. };
  924. static void timeout_func(unsigned long data)
  925. {
  926. struct aio_timeout *to = (struct aio_timeout *)data;
  927. to->timed_out = 1;
  928. wake_up_process(to->p);
  929. }
  930. static inline void init_timeout(struct aio_timeout *to)
  931. {
  932. init_timer(&to->timer);
  933. to->timer.data = (unsigned long)to;
  934. to->timer.function = timeout_func;
  935. to->timed_out = 0;
  936. to->p = current;
  937. }
  938. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  939. const struct timespec *ts)
  940. {
  941. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  942. if (time_after(to->timer.expires, jiffies))
  943. add_timer(&to->timer);
  944. else
  945. to->timed_out = 1;
  946. }
  947. static inline void clear_timeout(struct aio_timeout *to)
  948. {
  949. del_singleshot_timer_sync(&to->timer);
  950. }
  951. static int read_events(struct kioctx *ctx,
  952. long min_nr, long nr,
  953. struct io_event __user *event,
  954. struct timespec __user *timeout)
  955. {
  956. long start_jiffies = jiffies;
  957. struct task_struct *tsk = current;
  958. DECLARE_WAITQUEUE(wait, tsk);
  959. int ret;
  960. int i = 0;
  961. struct io_event ent;
  962. struct aio_timeout to;
  963. int retry = 0;
  964. /* needed to zero any padding within an entry (there shouldn't be
  965. * any, but C is fun!
  966. */
  967. memset(&ent, 0, sizeof(ent));
  968. retry:
  969. ret = 0;
  970. while (likely(i < nr)) {
  971. ret = aio_read_evt(ctx, &ent);
  972. if (unlikely(ret <= 0))
  973. break;
  974. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  975. ent.data, ent.obj, ent.res, ent.res2);
  976. /* Could we split the check in two? */
  977. ret = -EFAULT;
  978. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  979. dprintk("aio: lost an event due to EFAULT.\n");
  980. break;
  981. }
  982. ret = 0;
  983. /* Good, event copied to userland, update counts. */
  984. event ++;
  985. i ++;
  986. }
  987. if (min_nr <= i)
  988. return i;
  989. if (ret)
  990. return ret;
  991. /* End fast path */
  992. /* racey check, but it gets redone */
  993. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  994. retry = 1;
  995. aio_run_all_iocbs(ctx);
  996. goto retry;
  997. }
  998. init_timeout(&to);
  999. if (timeout) {
  1000. struct timespec ts;
  1001. ret = -EFAULT;
  1002. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  1003. goto out;
  1004. set_timeout(start_jiffies, &to, &ts);
  1005. }
  1006. while (likely(i < nr)) {
  1007. add_wait_queue_exclusive(&ctx->wait, &wait);
  1008. do {
  1009. set_task_state(tsk, TASK_INTERRUPTIBLE);
  1010. ret = aio_read_evt(ctx, &ent);
  1011. if (ret)
  1012. break;
  1013. if (min_nr <= i)
  1014. break;
  1015. ret = 0;
  1016. if (to.timed_out) /* Only check after read evt */
  1017. break;
  1018. schedule();
  1019. if (signal_pending(tsk)) {
  1020. ret = -EINTR;
  1021. break;
  1022. }
  1023. /*ret = aio_read_evt(ctx, &ent);*/
  1024. } while (1) ;
  1025. set_task_state(tsk, TASK_RUNNING);
  1026. remove_wait_queue(&ctx->wait, &wait);
  1027. if (unlikely(ret <= 0))
  1028. break;
  1029. ret = -EFAULT;
  1030. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1031. dprintk("aio: lost an event due to EFAULT.\n");
  1032. break;
  1033. }
  1034. /* Good, event copied to userland, update counts. */
  1035. event ++;
  1036. i ++;
  1037. }
  1038. if (timeout)
  1039. clear_timeout(&to);
  1040. out:
  1041. return i ? i : ret;
  1042. }
  1043. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1044. * against races with itself via ->dead.
  1045. */
  1046. static void io_destroy(struct kioctx *ioctx)
  1047. {
  1048. struct mm_struct *mm = current->mm;
  1049. struct kioctx **tmp;
  1050. int was_dead;
  1051. /* delete the entry from the list is someone else hasn't already */
  1052. write_lock(&mm->ioctx_list_lock);
  1053. was_dead = ioctx->dead;
  1054. ioctx->dead = 1;
  1055. for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
  1056. tmp = &(*tmp)->next)
  1057. ;
  1058. if (*tmp)
  1059. *tmp = ioctx->next;
  1060. write_unlock(&mm->ioctx_list_lock);
  1061. dprintk("aio_release(%p)\n", ioctx);
  1062. if (likely(!was_dead))
  1063. put_ioctx(ioctx); /* twice for the list */
  1064. aio_cancel_all(ioctx);
  1065. wait_for_all_aios(ioctx);
  1066. put_ioctx(ioctx); /* once for the lookup */
  1067. }
  1068. /* sys_io_setup:
  1069. * Create an aio_context capable of receiving at least nr_events.
  1070. * ctxp must not point to an aio_context that already exists, and
  1071. * must be initialized to 0 prior to the call. On successful
  1072. * creation of the aio_context, *ctxp is filled in with the resulting
  1073. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1074. * if the specified nr_events exceeds internal limits. May fail
  1075. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1076. * of available events. May fail with -ENOMEM if insufficient kernel
  1077. * resources are available. May fail with -EFAULT if an invalid
  1078. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1079. * implemented.
  1080. */
  1081. asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
  1082. {
  1083. struct kioctx *ioctx = NULL;
  1084. unsigned long ctx;
  1085. long ret;
  1086. ret = get_user(ctx, ctxp);
  1087. if (unlikely(ret))
  1088. goto out;
  1089. ret = -EINVAL;
  1090. if (unlikely(ctx || nr_events == 0)) {
  1091. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1092. ctx, nr_events);
  1093. goto out;
  1094. }
  1095. ioctx = ioctx_alloc(nr_events);
  1096. ret = PTR_ERR(ioctx);
  1097. if (!IS_ERR(ioctx)) {
  1098. ret = put_user(ioctx->user_id, ctxp);
  1099. if (!ret)
  1100. return 0;
  1101. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1102. io_destroy(ioctx);
  1103. }
  1104. out:
  1105. return ret;
  1106. }
  1107. /* sys_io_destroy:
  1108. * Destroy the aio_context specified. May cancel any outstanding
  1109. * AIOs and block on completion. Will fail with -ENOSYS if not
  1110. * implemented. May fail with -EFAULT if the context pointed to
  1111. * is invalid.
  1112. */
  1113. asmlinkage long sys_io_destroy(aio_context_t ctx)
  1114. {
  1115. struct kioctx *ioctx = lookup_ioctx(ctx);
  1116. if (likely(NULL != ioctx)) {
  1117. io_destroy(ioctx);
  1118. return 0;
  1119. }
  1120. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1121. return -EINVAL;
  1122. }
  1123. /*
  1124. * aio_p{read,write} are the default ki_retry methods for
  1125. * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially
  1126. * multiple calls to f_op->aio_read(). They loop around partial progress
  1127. * instead of returning -EIOCBRETRY because they don't have the means to call
  1128. * kick_iocb().
  1129. */
  1130. static ssize_t aio_pread(struct kiocb *iocb)
  1131. {
  1132. struct file *file = iocb->ki_filp;
  1133. struct address_space *mapping = file->f_mapping;
  1134. struct inode *inode = mapping->host;
  1135. ssize_t ret = 0;
  1136. do {
  1137. ret = file->f_op->aio_read(iocb, iocb->ki_buf,
  1138. iocb->ki_left, iocb->ki_pos);
  1139. /*
  1140. * Can't just depend on iocb->ki_left to determine
  1141. * whether we are done. This may have been a short read.
  1142. */
  1143. if (ret > 0) {
  1144. iocb->ki_buf += ret;
  1145. iocb->ki_left -= ret;
  1146. }
  1147. /*
  1148. * For pipes and sockets we return once we have some data; for
  1149. * regular files we retry till we complete the entire read or
  1150. * find that we can't read any more data (e.g short reads).
  1151. */
  1152. } while (ret > 0 && iocb->ki_left > 0 &&
  1153. !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode));
  1154. /* This means we must have transferred all that we could */
  1155. /* No need to retry anymore */
  1156. if ((ret == 0) || (iocb->ki_left == 0))
  1157. ret = iocb->ki_nbytes - iocb->ki_left;
  1158. return ret;
  1159. }
  1160. /* see aio_pread() */
  1161. static ssize_t aio_pwrite(struct kiocb *iocb)
  1162. {
  1163. struct file *file = iocb->ki_filp;
  1164. ssize_t ret = 0;
  1165. do {
  1166. ret = file->f_op->aio_write(iocb, iocb->ki_buf,
  1167. iocb->ki_left, iocb->ki_pos);
  1168. if (ret > 0) {
  1169. iocb->ki_buf += ret;
  1170. iocb->ki_left -= ret;
  1171. }
  1172. } while (ret > 0 && iocb->ki_left > 0);
  1173. if ((ret == 0) || (iocb->ki_left == 0))
  1174. ret = iocb->ki_nbytes - iocb->ki_left;
  1175. return ret;
  1176. }
  1177. static ssize_t aio_fdsync(struct kiocb *iocb)
  1178. {
  1179. struct file *file = iocb->ki_filp;
  1180. ssize_t ret = -EINVAL;
  1181. if (file->f_op->aio_fsync)
  1182. ret = file->f_op->aio_fsync(iocb, 1);
  1183. return ret;
  1184. }
  1185. static ssize_t aio_fsync(struct kiocb *iocb)
  1186. {
  1187. struct file *file = iocb->ki_filp;
  1188. ssize_t ret = -EINVAL;
  1189. if (file->f_op->aio_fsync)
  1190. ret = file->f_op->aio_fsync(iocb, 0);
  1191. return ret;
  1192. }
  1193. /*
  1194. * aio_setup_iocb:
  1195. * Performs the initial checks and aio retry method
  1196. * setup for the kiocb at the time of io submission.
  1197. */
  1198. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1199. {
  1200. struct file *file = kiocb->ki_filp;
  1201. ssize_t ret = 0;
  1202. switch (kiocb->ki_opcode) {
  1203. case IOCB_CMD_PREAD:
  1204. ret = -EBADF;
  1205. if (unlikely(!(file->f_mode & FMODE_READ)))
  1206. break;
  1207. ret = -EFAULT;
  1208. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1209. kiocb->ki_left)))
  1210. break;
  1211. ret = security_file_permission(file, MAY_READ);
  1212. if (unlikely(ret))
  1213. break;
  1214. ret = -EINVAL;
  1215. if (file->f_op->aio_read)
  1216. kiocb->ki_retry = aio_pread;
  1217. break;
  1218. case IOCB_CMD_PWRITE:
  1219. ret = -EBADF;
  1220. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1221. break;
  1222. ret = -EFAULT;
  1223. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1224. kiocb->ki_left)))
  1225. break;
  1226. ret = security_file_permission(file, MAY_WRITE);
  1227. if (unlikely(ret))
  1228. break;
  1229. ret = -EINVAL;
  1230. if (file->f_op->aio_write)
  1231. kiocb->ki_retry = aio_pwrite;
  1232. break;
  1233. case IOCB_CMD_FDSYNC:
  1234. ret = -EINVAL;
  1235. if (file->f_op->aio_fsync)
  1236. kiocb->ki_retry = aio_fdsync;
  1237. break;
  1238. case IOCB_CMD_FSYNC:
  1239. ret = -EINVAL;
  1240. if (file->f_op->aio_fsync)
  1241. kiocb->ki_retry = aio_fsync;
  1242. break;
  1243. default:
  1244. dprintk("EINVAL: io_submit: no operation provided\n");
  1245. ret = -EINVAL;
  1246. }
  1247. if (!kiocb->ki_retry)
  1248. return ret;
  1249. return 0;
  1250. }
  1251. /*
  1252. * aio_wake_function:
  1253. * wait queue callback function for aio notification,
  1254. * Simply triggers a retry of the operation via kick_iocb.
  1255. *
  1256. * This callback is specified in the wait queue entry in
  1257. * a kiocb (current->io_wait points to this wait queue
  1258. * entry when an aio operation executes; it is used
  1259. * instead of a synchronous wait when an i/o blocking
  1260. * condition is encountered during aio).
  1261. *
  1262. * Note:
  1263. * This routine is executed with the wait queue lock held.
  1264. * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
  1265. * the ioctx lock inside the wait queue lock. This is safe
  1266. * because this callback isn't used for wait queues which
  1267. * are nested inside ioctx lock (i.e. ctx->wait)
  1268. */
  1269. static int aio_wake_function(wait_queue_t *wait, unsigned mode,
  1270. int sync, void *key)
  1271. {
  1272. struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
  1273. list_del_init(&wait->task_list);
  1274. kick_iocb(iocb);
  1275. return 1;
  1276. }
  1277. int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1278. struct iocb *iocb)
  1279. {
  1280. struct kiocb *req;
  1281. struct file *file;
  1282. ssize_t ret;
  1283. /* enforce forwards compatibility on users */
  1284. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
  1285. iocb->aio_reserved3)) {
  1286. pr_debug("EINVAL: io_submit: reserve field set\n");
  1287. return -EINVAL;
  1288. }
  1289. /* prevent overflows */
  1290. if (unlikely(
  1291. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1292. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1293. ((ssize_t)iocb->aio_nbytes < 0)
  1294. )) {
  1295. pr_debug("EINVAL: io_submit: overflow check\n");
  1296. return -EINVAL;
  1297. }
  1298. file = fget(iocb->aio_fildes);
  1299. if (unlikely(!file))
  1300. return -EBADF;
  1301. req = aio_get_req(ctx); /* returns with 2 references to req */
  1302. if (unlikely(!req)) {
  1303. fput(file);
  1304. return -EAGAIN;
  1305. }
  1306. req->ki_filp = file;
  1307. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1308. if (unlikely(ret)) {
  1309. dprintk("EFAULT: aio_key\n");
  1310. goto out_put_req;
  1311. }
  1312. req->ki_obj.user = user_iocb;
  1313. req->ki_user_data = iocb->aio_data;
  1314. req->ki_pos = iocb->aio_offset;
  1315. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1316. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1317. req->ki_opcode = iocb->aio_lio_opcode;
  1318. init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
  1319. INIT_LIST_HEAD(&req->ki_wait.task_list);
  1320. req->ki_retried = 0;
  1321. ret = aio_setup_iocb(req);
  1322. if (ret)
  1323. goto out_put_req;
  1324. spin_lock_irq(&ctx->ctx_lock);
  1325. aio_run_iocb(req);
  1326. if (!list_empty(&ctx->run_list)) {
  1327. /* drain the run list */
  1328. while (__aio_run_iocbs(ctx))
  1329. ;
  1330. }
  1331. spin_unlock_irq(&ctx->ctx_lock);
  1332. aio_put_req(req); /* drop extra ref to req */
  1333. return 0;
  1334. out_put_req:
  1335. aio_put_req(req); /* drop extra ref to req */
  1336. aio_put_req(req); /* drop i/o ref to req */
  1337. return ret;
  1338. }
  1339. /* sys_io_submit:
  1340. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1341. * the number of iocbs queued. May return -EINVAL if the aio_context
  1342. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1343. * *iocbpp[0] is not properly initialized, if the operation specified
  1344. * is invalid for the file descriptor in the iocb. May fail with
  1345. * -EFAULT if any of the data structures point to invalid data. May
  1346. * fail with -EBADF if the file descriptor specified in the first
  1347. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1348. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1349. * fail with -ENOSYS if not implemented.
  1350. */
  1351. asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
  1352. struct iocb __user * __user *iocbpp)
  1353. {
  1354. struct kioctx *ctx;
  1355. long ret = 0;
  1356. int i;
  1357. if (unlikely(nr < 0))
  1358. return -EINVAL;
  1359. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1360. return -EFAULT;
  1361. ctx = lookup_ioctx(ctx_id);
  1362. if (unlikely(!ctx)) {
  1363. pr_debug("EINVAL: io_submit: invalid context id\n");
  1364. return -EINVAL;
  1365. }
  1366. /*
  1367. * AKPM: should this return a partial result if some of the IOs were
  1368. * successfully submitted?
  1369. */
  1370. for (i=0; i<nr; i++) {
  1371. struct iocb __user *user_iocb;
  1372. struct iocb tmp;
  1373. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1374. ret = -EFAULT;
  1375. break;
  1376. }
  1377. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1378. ret = -EFAULT;
  1379. break;
  1380. }
  1381. ret = io_submit_one(ctx, user_iocb, &tmp);
  1382. if (ret)
  1383. break;
  1384. }
  1385. put_ioctx(ctx);
  1386. return i ? i : ret;
  1387. }
  1388. /* lookup_kiocb
  1389. * Finds a given iocb for cancellation.
  1390. */
  1391. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1392. u32 key)
  1393. {
  1394. struct list_head *pos;
  1395. assert_spin_locked(&ctx->ctx_lock);
  1396. /* TODO: use a hash or array, this sucks. */
  1397. list_for_each(pos, &ctx->active_reqs) {
  1398. struct kiocb *kiocb = list_kiocb(pos);
  1399. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1400. return kiocb;
  1401. }
  1402. return NULL;
  1403. }
  1404. /* sys_io_cancel:
  1405. * Attempts to cancel an iocb previously passed to io_submit. If
  1406. * the operation is successfully cancelled, the resulting event is
  1407. * copied into the memory pointed to by result without being placed
  1408. * into the completion queue and 0 is returned. May fail with
  1409. * -EFAULT if any of the data structures pointed to are invalid.
  1410. * May fail with -EINVAL if aio_context specified by ctx_id is
  1411. * invalid. May fail with -EAGAIN if the iocb specified was not
  1412. * cancelled. Will fail with -ENOSYS if not implemented.
  1413. */
  1414. asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
  1415. struct io_event __user *result)
  1416. {
  1417. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1418. struct kioctx *ctx;
  1419. struct kiocb *kiocb;
  1420. u32 key;
  1421. int ret;
  1422. ret = get_user(key, &iocb->aio_key);
  1423. if (unlikely(ret))
  1424. return -EFAULT;
  1425. ctx = lookup_ioctx(ctx_id);
  1426. if (unlikely(!ctx))
  1427. return -EINVAL;
  1428. spin_lock_irq(&ctx->ctx_lock);
  1429. ret = -EAGAIN;
  1430. kiocb = lookup_kiocb(ctx, iocb, key);
  1431. if (kiocb && kiocb->ki_cancel) {
  1432. cancel = kiocb->ki_cancel;
  1433. kiocb->ki_users ++;
  1434. kiocbSetCancelled(kiocb);
  1435. } else
  1436. cancel = NULL;
  1437. spin_unlock_irq(&ctx->ctx_lock);
  1438. if (NULL != cancel) {
  1439. struct io_event tmp;
  1440. pr_debug("calling cancel\n");
  1441. memset(&tmp, 0, sizeof(tmp));
  1442. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1443. tmp.data = kiocb->ki_user_data;
  1444. ret = cancel(kiocb, &tmp);
  1445. if (!ret) {
  1446. /* Cancellation succeeded -- copy the result
  1447. * into the user's buffer.
  1448. */
  1449. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1450. ret = -EFAULT;
  1451. }
  1452. } else
  1453. ret = -EINVAL;
  1454. put_ioctx(ctx);
  1455. return ret;
  1456. }
  1457. /* io_getevents:
  1458. * Attempts to read at least min_nr events and up to nr events from
  1459. * the completion queue for the aio_context specified by ctx_id. May
  1460. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1461. * if nr is out of range, if when is out of range. May fail with
  1462. * -EFAULT if any of the memory specified to is invalid. May return
  1463. * 0 or < min_nr if no events are available and the timeout specified
  1464. * by when has elapsed, where when == NULL specifies an infinite
  1465. * timeout. Note that the timeout pointed to by when is relative and
  1466. * will be updated if not NULL and the operation blocks. Will fail
  1467. * with -ENOSYS if not implemented.
  1468. */
  1469. asmlinkage long sys_io_getevents(aio_context_t ctx_id,
  1470. long min_nr,
  1471. long nr,
  1472. struct io_event __user *events,
  1473. struct timespec __user *timeout)
  1474. {
  1475. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1476. long ret = -EINVAL;
  1477. if (likely(ioctx)) {
  1478. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1479. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1480. put_ioctx(ioctx);
  1481. }
  1482. return ret;
  1483. }
  1484. __initcall(aio_setup);
  1485. EXPORT_SYMBOL(aio_complete);
  1486. EXPORT_SYMBOL(aio_put_req);
  1487. EXPORT_SYMBOL(wait_on_sync_kiocb);