imsttfb.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622
  1. /*
  2. * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
  3. *
  4. * This file is derived from the powermac console "imstt" driver:
  5. * Copyright (C) 1997 Sigurdur Asgeirsson
  6. * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
  7. * Modified by Danilo Beuche 1998
  8. * Some register values added by Damien Doligez, INRIA Rocquencourt
  9. * Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
  10. *
  11. * This file was written by Ryan Nielsen (ran@krazynet.com)
  12. * Most of the frame buffer device stuff was copied from atyfb.c
  13. *
  14. * This file is subject to the terms and conditions of the GNU General Public
  15. * License. See the file COPYING in the main directory of this archive for
  16. * more details.
  17. */
  18. #include <linux/config.h>
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/tty.h>
  25. #include <linux/slab.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/fb.h>
  30. #include <linux/init.h>
  31. #include <linux/pci.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #if defined(CONFIG_PPC)
  35. #include <linux/nvram.h>
  36. #include <asm/prom.h>
  37. #include <asm/pci-bridge.h>
  38. #include "macmodes.h"
  39. #endif
  40. #ifndef __powerpc__
  41. #define eieio() /* Enforce In-order Execution of I/O */
  42. #endif
  43. /* TwinTurbo (Cosmo) registers */
  44. enum {
  45. S1SA = 0, /* 0x00 */
  46. S2SA = 1, /* 0x04 */
  47. SP = 2, /* 0x08 */
  48. DSA = 3, /* 0x0C */
  49. CNT = 4, /* 0x10 */
  50. DP_OCTL = 5, /* 0x14 */
  51. CLR = 6, /* 0x18 */
  52. BI = 8, /* 0x20 */
  53. MBC = 9, /* 0x24 */
  54. BLTCTL = 10, /* 0x28 */
  55. /* Scan Timing Generator Registers */
  56. HES = 12, /* 0x30 */
  57. HEB = 13, /* 0x34 */
  58. HSB = 14, /* 0x38 */
  59. HT = 15, /* 0x3C */
  60. VES = 16, /* 0x40 */
  61. VEB = 17, /* 0x44 */
  62. VSB = 18, /* 0x48 */
  63. VT = 19, /* 0x4C */
  64. HCIV = 20, /* 0x50 */
  65. VCIV = 21, /* 0x54 */
  66. TCDR = 22, /* 0x58 */
  67. VIL = 23, /* 0x5C */
  68. STGCTL = 24, /* 0x60 */
  69. /* Screen Refresh Generator Registers */
  70. SSR = 25, /* 0x64 */
  71. HRIR = 26, /* 0x68 */
  72. SPR = 27, /* 0x6C */
  73. CMR = 28, /* 0x70 */
  74. SRGCTL = 29, /* 0x74 */
  75. /* RAM Refresh Generator Registers */
  76. RRCIV = 30, /* 0x78 */
  77. RRSC = 31, /* 0x7C */
  78. RRCR = 34, /* 0x88 */
  79. /* System Registers */
  80. GIOE = 32, /* 0x80 */
  81. GIO = 33, /* 0x84 */
  82. SCR = 35, /* 0x8C */
  83. SSTATUS = 36, /* 0x90 */
  84. PRC = 37, /* 0x94 */
  85. #if 0
  86. /* PCI Registers */
  87. DVID = 0x00000000L,
  88. SC = 0x00000004L,
  89. CCR = 0x00000008L,
  90. OG = 0x0000000CL,
  91. BARM = 0x00000010L,
  92. BARER = 0x00000030L,
  93. #endif
  94. };
  95. /* IBM 624 RAMDAC Direct Registers */
  96. enum {
  97. PADDRW = 0x00,
  98. PDATA = 0x04,
  99. PPMASK = 0x08,
  100. PADDRR = 0x0c,
  101. PIDXLO = 0x10,
  102. PIDXHI = 0x14,
  103. PIDXDATA= 0x18,
  104. PIDXCTL = 0x1c
  105. };
  106. /* IBM 624 RAMDAC Indirect Registers */
  107. enum {
  108. CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
  109. SYNCCTL = 0x03, /* (0x00) Sync Control */
  110. HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
  111. PWRMNGMT = 0x05, /* (0x00) Power Management */
  112. DACOP = 0x06, /* (0x02) DAC Operation */
  113. PALETCTL = 0x07, /* (0x00) Palette Control */
  114. SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
  115. PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
  116. BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
  117. BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
  118. BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
  119. BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
  120. PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
  121. PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
  122. SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
  123. SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
  124. SYSCLKP = 0x17, /* () System Clock P */
  125. SYSCLKC = 0x18, /* () System Clock C */
  126. /*
  127. * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
  128. * c is charge pump bias which depends on the VCO frequency
  129. */
  130. PIXM0 = 0x20, /* () Pixel M 0 */
  131. PIXN0 = 0x21, /* () Pixel N 0 */
  132. PIXP0 = 0x22, /* () Pixel P 0 */
  133. PIXC0 = 0x23, /* () Pixel C 0 */
  134. CURSCTL = 0x30, /* (0x00) Cursor Control */
  135. CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
  136. CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
  137. CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
  138. CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
  139. CURSHOTX = 0x35, /* () Cursor Hot Spot X */
  140. CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
  141. CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
  142. CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
  143. CURS1R = 0x40, /* () Cursor 1 Red */
  144. CURS1G = 0x41, /* () Cursor 1 Green */
  145. CURS1B = 0x42, /* () Cursor 1 Blue */
  146. CURS2R = 0x43, /* () Cursor 2 Red */
  147. CURS2G = 0x44, /* () Cursor 2 Green */
  148. CURS2B = 0x45, /* () Cursor 2 Blue */
  149. CURS3R = 0x46, /* () Cursor 3 Red */
  150. CURS3G = 0x47, /* () Cursor 3 Green */
  151. CURS3B = 0x48, /* () Cursor 3 Blue */
  152. BORDR = 0x60, /* () Border Color Red */
  153. BORDG = 0x61, /* () Border Color Green */
  154. BORDB = 0x62, /* () Border Color Blue */
  155. MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
  156. MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
  157. MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
  158. KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
  159. };
  160. /* TI TVP 3030 RAMDAC Direct Registers */
  161. enum {
  162. TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
  163. TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
  164. TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
  165. TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
  166. TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
  167. TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
  168. /* 6 reserved */
  169. TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
  170. /* 8 reserved */
  171. TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
  172. TVPIDATA = 0x28, /* 10 Index Data */
  173. TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
  174. TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
  175. TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
  176. TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
  177. TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
  178. };
  179. /* TI TVP 3030 RAMDAC Indirect Registers */
  180. enum {
  181. TVPIRREV = 0x01, /* Silicon Revision [RO] */
  182. TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
  183. TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
  184. TVPIRLAC = 0x0f, /* Latch Control (0x06) */
  185. TVPIRTCC = 0x18, /* True Color Control (0x80) */
  186. TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
  187. TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
  188. TVPIRPPG = 0x1c, /* Palette Page (0x00) */
  189. TVPIRGEC = 0x1d, /* General Control (0x00) */
  190. TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
  191. TVPIRPLA = 0x2c, /* PLL Address */
  192. TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
  193. TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
  194. TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
  195. TVPIRCKL = 0x30, /* Color-Key Overlay Low */
  196. TVPIRCKH = 0x31, /* Color-Key Overlay High */
  197. TVPIRCRL = 0x32, /* Color-Key Red Low */
  198. TVPIRCRH = 0x33, /* Color-Key Red High */
  199. TVPIRCGL = 0x34, /* Color-Key Green Low */
  200. TVPIRCGH = 0x35, /* Color-Key Green High */
  201. TVPIRCBL = 0x36, /* Color-Key Blue Low */
  202. TVPIRCBH = 0x37, /* Color-Key Blue High */
  203. TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
  204. TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
  205. TVPIRSEN = 0x3a, /* Sense Test (0x00) */
  206. TVPIRTMD = 0x3b, /* Test Mode Data */
  207. TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
  208. TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
  209. TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
  210. TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
  211. TVPIRRES = 0xff /* Software Reset [WO] */
  212. };
  213. struct initvalues {
  214. __u8 addr, value;
  215. };
  216. static struct initvalues ibm_initregs[] __devinitdata = {
  217. { CLKCTL, 0x21 },
  218. { SYNCCTL, 0x00 },
  219. { HSYNCPOS, 0x00 },
  220. { PWRMNGMT, 0x00 },
  221. { DACOP, 0x02 },
  222. { PALETCTL, 0x00 },
  223. { SYSCLKCTL, 0x01 },
  224. /*
  225. * Note that colors in X are correct only if all video data is
  226. * passed through the palette in the DAC. That is, "indirect
  227. * color" must be configured. This is the case for the IBM DAC
  228. * used in the 2MB and 4MB cards, at least.
  229. */
  230. { BPP8, 0x00 },
  231. { BPP16, 0x01 },
  232. { BPP24, 0x00 },
  233. { BPP32, 0x00 },
  234. { PIXCTL1, 0x05 },
  235. { PIXCTL2, 0x00 },
  236. { SYSCLKN, 0x08 },
  237. { SYSCLKM, 0x4f },
  238. { SYSCLKP, 0x00 },
  239. { SYSCLKC, 0x00 },
  240. { CURSCTL, 0x00 },
  241. { CURSACCTL, 0x01 },
  242. { CURSACATTR, 0xa8 },
  243. { CURS1R, 0xff },
  244. { CURS1G, 0xff },
  245. { CURS1B, 0xff },
  246. { CURS2R, 0xff },
  247. { CURS2G, 0xff },
  248. { CURS2B, 0xff },
  249. { CURS3R, 0xff },
  250. { CURS3G, 0xff },
  251. { CURS3B, 0xff },
  252. { BORDR, 0xff },
  253. { BORDG, 0xff },
  254. { BORDB, 0xff },
  255. { MISCTL1, 0x01 },
  256. { MISCTL2, 0x45 },
  257. { MISCTL3, 0x00 },
  258. { KEYCTL, 0x00 }
  259. };
  260. static struct initvalues tvp_initregs[] __devinitdata = {
  261. { TVPIRICC, 0x00 },
  262. { TVPIRBRC, 0xe4 },
  263. { TVPIRLAC, 0x06 },
  264. { TVPIRTCC, 0x80 },
  265. { TVPIRMXC, 0x4d },
  266. { TVPIRCLS, 0x05 },
  267. { TVPIRPPG, 0x00 },
  268. { TVPIRGEC, 0x00 },
  269. { TVPIRMIC, 0x08 },
  270. { TVPIRCKL, 0xff },
  271. { TVPIRCKH, 0xff },
  272. { TVPIRCRL, 0xff },
  273. { TVPIRCRH, 0xff },
  274. { TVPIRCGL, 0xff },
  275. { TVPIRCGH, 0xff },
  276. { TVPIRCBL, 0xff },
  277. { TVPIRCBH, 0xff },
  278. { TVPIRCKC, 0x00 },
  279. { TVPIRPLA, 0x00 },
  280. { TVPIRPPD, 0xc0 },
  281. { TVPIRPPD, 0xd5 },
  282. { TVPIRPPD, 0xea },
  283. { TVPIRPLA, 0x00 },
  284. { TVPIRMPD, 0xb9 },
  285. { TVPIRMPD, 0x3a },
  286. { TVPIRMPD, 0xb1 },
  287. { TVPIRPLA, 0x00 },
  288. { TVPIRLPD, 0xc1 },
  289. { TVPIRLPD, 0x3d },
  290. { TVPIRLPD, 0xf3 },
  291. };
  292. struct imstt_regvals {
  293. __u32 pitch;
  294. __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
  295. __u8 pclk_m, pclk_n, pclk_p;
  296. /* Values of the tvp which change depending on colormode x resolution */
  297. __u8 mlc[3]; /* Memory Loop Config 0x39 */
  298. __u8 lckl_p[3]; /* P value of LCKL PLL */
  299. };
  300. struct imstt_par {
  301. struct imstt_regvals init;
  302. __u32 __iomem *dc_regs;
  303. unsigned long cmap_regs_phys;
  304. __u8 *cmap_regs;
  305. __u32 ramdac;
  306. __u32 palette[16];
  307. };
  308. enum {
  309. IBM = 0,
  310. TVP = 1
  311. };
  312. #define USE_NV_MODES 1
  313. #define INIT_BPP 8
  314. #define INIT_XRES 640
  315. #define INIT_YRES 480
  316. static int inverse = 0;
  317. static char fontname[40] __initdata = { 0 };
  318. #if defined(CONFIG_PPC)
  319. static signed char init_vmode __devinitdata = -1, init_cmode __devinitdata = -1;
  320. #endif
  321. static struct imstt_regvals tvp_reg_init_2 = {
  322. 512,
  323. 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
  324. 0xec, 0x2a, 0xf3,
  325. { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
  326. };
  327. static struct imstt_regvals tvp_reg_init_6 = {
  328. 640,
  329. 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
  330. 0xef, 0x2e, 0xb2,
  331. { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
  332. };
  333. static struct imstt_regvals tvp_reg_init_12 = {
  334. 800,
  335. 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
  336. 0xf6, 0x2e, 0xf2,
  337. { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
  338. };
  339. static struct imstt_regvals tvp_reg_init_13 = {
  340. 832,
  341. 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
  342. 0xfe, 0x3e, 0xf1,
  343. { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
  344. };
  345. static struct imstt_regvals tvp_reg_init_17 = {
  346. 1024,
  347. 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
  348. 0xfc, 0x3a, 0xf1,
  349. { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
  350. };
  351. static struct imstt_regvals tvp_reg_init_18 = {
  352. 1152,
  353. 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
  354. 0xfd, 0x3a, 0xf1,
  355. { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
  356. };
  357. static struct imstt_regvals tvp_reg_init_19 = {
  358. 1280,
  359. 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
  360. 0xf7, 0x36, 0xf0,
  361. { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
  362. };
  363. static struct imstt_regvals tvp_reg_init_20 = {
  364. 1280,
  365. 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
  366. 0xf0, 0x2d, 0xf0,
  367. { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
  368. };
  369. /*
  370. * PCI driver prototypes
  371. */
  372. static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  373. static void imsttfb_remove(struct pci_dev *pdev);
  374. /*
  375. * Register access
  376. */
  377. static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
  378. {
  379. #ifdef __powerpc__
  380. return in_le32(base + regindex);
  381. #else
  382. return readl(base + regindex);
  383. #endif
  384. }
  385. static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
  386. {
  387. #ifdef __powerpc__
  388. out_le32(base + regindex, val);
  389. #else
  390. writel(val, base + regindex);
  391. #endif
  392. }
  393. static __u32
  394. getclkMHz(struct imstt_par *par)
  395. {
  396. __u32 clk_m, clk_n, clk_p;
  397. clk_m = par->init.pclk_m;
  398. clk_n = par->init.pclk_n;
  399. clk_p = par->init.pclk_p;
  400. return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
  401. }
  402. static void
  403. setclkMHz(struct imstt_par *par, __u32 MHz)
  404. {
  405. __u32 clk_m, clk_n, clk_p, x, stage, spilled;
  406. clk_m = clk_n = clk_p = 0;
  407. stage = spilled = 0;
  408. for (;;) {
  409. switch (stage) {
  410. case 0:
  411. clk_m++;
  412. break;
  413. case 1:
  414. clk_n++;
  415. break;
  416. }
  417. x = 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
  418. if (x == MHz)
  419. break;
  420. if (x > MHz) {
  421. spilled = 1;
  422. stage = 1;
  423. } else if (spilled && x < MHz) {
  424. stage = 0;
  425. }
  426. }
  427. par->init.pclk_m = clk_m;
  428. par->init.pclk_n = clk_n;
  429. par->init.pclk_p = clk_p;
  430. }
  431. static struct imstt_regvals *
  432. compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
  433. {
  434. struct imstt_regvals *init = &par->init;
  435. __u32 MHz, hes, heb, veb, htp, vtp;
  436. switch (xres) {
  437. case 640:
  438. hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
  439. MHz = 30 /* .25 */ ;
  440. break;
  441. case 832:
  442. hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
  443. MHz = 57 /* .27_ */ ;
  444. break;
  445. case 1024:
  446. hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
  447. MHz = 80;
  448. break;
  449. case 1152:
  450. hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
  451. MHz = 101 /* .6_ */ ;
  452. break;
  453. case 1280:
  454. hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
  455. MHz = yres == 960 ? 126 : 135;
  456. break;
  457. case 1600:
  458. hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
  459. MHz = 200;
  460. break;
  461. default:
  462. return NULL;
  463. }
  464. setclkMHz(par, MHz);
  465. init->hes = hes;
  466. init->heb = heb;
  467. init->hsb = init->heb + (xres >> 3);
  468. init->ht = init->hsb + htp;
  469. init->ves = 0x0003;
  470. init->veb = veb;
  471. init->vsb = init->veb + yres;
  472. init->vt = init->vsb + vtp;
  473. init->vil = init->vsb;
  474. init->pitch = xres;
  475. return init;
  476. }
  477. static struct imstt_regvals *
  478. compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
  479. {
  480. struct imstt_regvals *init;
  481. switch (xres) {
  482. case 512:
  483. init = &tvp_reg_init_2;
  484. break;
  485. case 640:
  486. init = &tvp_reg_init_6;
  487. break;
  488. case 800:
  489. init = &tvp_reg_init_12;
  490. break;
  491. case 832:
  492. init = &tvp_reg_init_13;
  493. break;
  494. case 1024:
  495. init = &tvp_reg_init_17;
  496. break;
  497. case 1152:
  498. init = &tvp_reg_init_18;
  499. break;
  500. case 1280:
  501. init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
  502. break;
  503. default:
  504. return NULL;
  505. }
  506. par->init = *init;
  507. return init;
  508. }
  509. static struct imstt_regvals *
  510. compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
  511. {
  512. if (par->ramdac == IBM)
  513. return compute_imstt_regvals_ibm(par, xres, yres);
  514. else
  515. return compute_imstt_regvals_tvp(par, xres, yres);
  516. }
  517. static void
  518. set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
  519. {
  520. struct imstt_regvals *init = &par->init;
  521. __u8 pformat = (bpp >> 3) + 2;
  522. par->cmap_regs[PIDXHI] = 0; eieio();
  523. par->cmap_regs[PIDXLO] = PIXM0; eieio();
  524. par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
  525. par->cmap_regs[PIDXLO] = PIXN0; eieio();
  526. par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
  527. par->cmap_regs[PIDXLO] = PIXP0; eieio();
  528. par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
  529. par->cmap_regs[PIDXLO] = PIXC0; eieio();
  530. par->cmap_regs[PIDXDATA] = 0x02; eieio();
  531. par->cmap_regs[PIDXLO] = PIXFMT; eieio();
  532. par->cmap_regs[PIDXDATA] = pformat; eieio();
  533. }
  534. static void
  535. set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
  536. {
  537. struct imstt_regvals *init = &par->init;
  538. __u8 tcc, mxc, lckl_n, mic;
  539. __u8 mlc, lckl_p;
  540. switch (bpp) {
  541. default:
  542. case 8:
  543. tcc = 0x80;
  544. mxc = 0x4d;
  545. lckl_n = 0xc1;
  546. mlc = init->mlc[0];
  547. lckl_p = init->lckl_p[0];
  548. break;
  549. case 16:
  550. tcc = 0x44;
  551. mxc = 0x55;
  552. lckl_n = 0xe1;
  553. mlc = init->mlc[1];
  554. lckl_p = init->lckl_p[1];
  555. break;
  556. case 24:
  557. tcc = 0x5e;
  558. mxc = 0x5d;
  559. lckl_n = 0xf1;
  560. mlc = init->mlc[2];
  561. lckl_p = init->lckl_p[2];
  562. break;
  563. case 32:
  564. tcc = 0x46;
  565. mxc = 0x5d;
  566. lckl_n = 0xf1;
  567. mlc = init->mlc[2];
  568. lckl_p = init->lckl_p[2];
  569. break;
  570. }
  571. mic = 0x08;
  572. par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
  573. par->cmap_regs[TVPIDATA] = 0x00; eieio();
  574. par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
  575. par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
  576. par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
  577. par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
  578. par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
  579. par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
  580. par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
  581. par->cmap_regs[TVPIDATA] = tcc; eieio();
  582. par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
  583. par->cmap_regs[TVPIDATA] = mxc; eieio();
  584. par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
  585. par->cmap_regs[TVPIDATA] = mic; eieio();
  586. par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
  587. par->cmap_regs[TVPIDATA] = 0x00; eieio();
  588. par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
  589. par->cmap_regs[TVPIDATA] = lckl_n; eieio();
  590. par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
  591. par->cmap_regs[TVPIDATA] = 0x15; eieio();
  592. par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
  593. par->cmap_regs[TVPIDATA] = mlc; eieio();
  594. par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
  595. par->cmap_regs[TVPIDATA] = 0x2a; eieio();
  596. par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
  597. par->cmap_regs[TVPIDATA] = lckl_p; eieio();
  598. }
  599. static void
  600. set_imstt_regvals (struct fb_info *info, u_int bpp)
  601. {
  602. struct imstt_par *par = info->par;
  603. struct imstt_regvals *init = &par->init;
  604. __u32 ctl, pitch, byteswap, scr;
  605. if (par->ramdac == IBM)
  606. set_imstt_regvals_ibm(par, bpp);
  607. else
  608. set_imstt_regvals_tvp(par, bpp);
  609. /*
  610. * From what I (jsk) can gather poking around with MacsBug,
  611. * bits 8 and 9 in the SCR register control endianness
  612. * correction (byte swapping). These bits must be set according
  613. * to the color depth as follows:
  614. * Color depth Bit 9 Bit 8
  615. * ========== ===== =====
  616. * 8bpp 0 0
  617. * 16bpp 0 1
  618. * 32bpp 1 1
  619. */
  620. switch (bpp) {
  621. default:
  622. case 8:
  623. ctl = 0x17b1;
  624. pitch = init->pitch >> 2;
  625. byteswap = 0x000;
  626. break;
  627. case 16:
  628. ctl = 0x17b3;
  629. pitch = init->pitch >> 1;
  630. byteswap = 0x100;
  631. break;
  632. case 24:
  633. ctl = 0x17b9;
  634. pitch = init->pitch - (init->pitch >> 2);
  635. byteswap = 0x200;
  636. break;
  637. case 32:
  638. ctl = 0x17b5;
  639. pitch = init->pitch;
  640. byteswap = 0x300;
  641. break;
  642. }
  643. if (par->ramdac == TVP)
  644. ctl -= 0x30;
  645. write_reg_le32(par->dc_regs, HES, init->hes);
  646. write_reg_le32(par->dc_regs, HEB, init->heb);
  647. write_reg_le32(par->dc_regs, HSB, init->hsb);
  648. write_reg_le32(par->dc_regs, HT, init->ht);
  649. write_reg_le32(par->dc_regs, VES, init->ves);
  650. write_reg_le32(par->dc_regs, VEB, init->veb);
  651. write_reg_le32(par->dc_regs, VSB, init->vsb);
  652. write_reg_le32(par->dc_regs, VT, init->vt);
  653. write_reg_le32(par->dc_regs, VIL, init->vil);
  654. write_reg_le32(par->dc_regs, HCIV, 1);
  655. write_reg_le32(par->dc_regs, VCIV, 1);
  656. write_reg_le32(par->dc_regs, TCDR, 4);
  657. write_reg_le32(par->dc_regs, RRCIV, 1);
  658. write_reg_le32(par->dc_regs, RRSC, 0x980);
  659. write_reg_le32(par->dc_regs, RRCR, 0x11);
  660. if (par->ramdac == IBM) {
  661. write_reg_le32(par->dc_regs, HRIR, 0x0100);
  662. write_reg_le32(par->dc_regs, CMR, 0x00ff);
  663. write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
  664. } else {
  665. write_reg_le32(par->dc_regs, HRIR, 0x0200);
  666. write_reg_le32(par->dc_regs, CMR, 0x01ff);
  667. write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
  668. }
  669. switch (info->fix.smem_len) {
  670. case 0x200000:
  671. scr = 0x059d | byteswap;
  672. break;
  673. /* case 0x400000:
  674. case 0x800000: */
  675. default:
  676. pitch >>= 1;
  677. scr = 0x150dd | byteswap;
  678. break;
  679. }
  680. write_reg_le32(par->dc_regs, SCR, scr);
  681. write_reg_le32(par->dc_regs, SPR, pitch);
  682. write_reg_le32(par->dc_regs, STGCTL, ctl);
  683. }
  684. static inline void
  685. set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
  686. {
  687. struct imstt_par *par = info->par;
  688. __u32 off = var->yoffset * (info->fix.line_length >> 3)
  689. + ((var->xoffset * (var->bits_per_pixel >> 3)) >> 3);
  690. write_reg_le32(par->dc_regs, SSR, off);
  691. }
  692. static inline void
  693. set_555 (struct imstt_par *par)
  694. {
  695. if (par->ramdac == IBM) {
  696. par->cmap_regs[PIDXHI] = 0; eieio();
  697. par->cmap_regs[PIDXLO] = BPP16; eieio();
  698. par->cmap_regs[PIDXDATA] = 0x01; eieio();
  699. } else {
  700. par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
  701. par->cmap_regs[TVPIDATA] = 0x44; eieio();
  702. }
  703. }
  704. static inline void
  705. set_565 (struct imstt_par *par)
  706. {
  707. if (par->ramdac == IBM) {
  708. par->cmap_regs[PIDXHI] = 0; eieio();
  709. par->cmap_regs[PIDXLO] = BPP16; eieio();
  710. par->cmap_regs[PIDXDATA] = 0x03; eieio();
  711. } else {
  712. par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
  713. par->cmap_regs[TVPIDATA] = 0x45; eieio();
  714. }
  715. }
  716. static int
  717. imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
  718. {
  719. if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
  720. && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
  721. || var->xres_virtual < var->xres || var->yres_virtual < var->yres
  722. || var->nonstd
  723. || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
  724. return -EINVAL;
  725. if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
  726. || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
  727. return -EINVAL;
  728. switch (var->bits_per_pixel) {
  729. case 8:
  730. var->red.offset = 0;
  731. var->red.length = 8;
  732. var->green.offset = 0;
  733. var->green.length = 8;
  734. var->blue.offset = 0;
  735. var->blue.length = 8;
  736. var->transp.offset = 0;
  737. var->transp.length = 0;
  738. break;
  739. case 16: /* RGB 555 or 565 */
  740. if (var->green.length != 6)
  741. var->red.offset = 10;
  742. var->red.length = 5;
  743. var->green.offset = 5;
  744. if (var->green.length != 6)
  745. var->green.length = 5;
  746. var->blue.offset = 0;
  747. var->blue.length = 5;
  748. var->transp.offset = 0;
  749. var->transp.length = 0;
  750. break;
  751. case 24: /* RGB 888 */
  752. var->red.offset = 16;
  753. var->red.length = 8;
  754. var->green.offset = 8;
  755. var->green.length = 8;
  756. var->blue.offset = 0;
  757. var->blue.length = 8;
  758. var->transp.offset = 0;
  759. var->transp.length = 0;
  760. break;
  761. case 32: /* RGBA 8888 */
  762. var->red.offset = 16;
  763. var->red.length = 8;
  764. var->green.offset = 8;
  765. var->green.length = 8;
  766. var->blue.offset = 0;
  767. var->blue.length = 8;
  768. var->transp.offset = 24;
  769. var->transp.length = 8;
  770. break;
  771. }
  772. if (var->yres == var->yres_virtual) {
  773. __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
  774. var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
  775. if (var->yres_virtual < var->yres)
  776. var->yres_virtual = var->yres;
  777. }
  778. var->red.msb_right = 0;
  779. var->green.msb_right = 0;
  780. var->blue.msb_right = 0;
  781. var->transp.msb_right = 0;
  782. var->height = -1;
  783. var->width = -1;
  784. var->vmode = FB_VMODE_NONINTERLACED;
  785. var->left_margin = var->right_margin = 16;
  786. var->upper_margin = var->lower_margin = 16;
  787. var->hsync_len = var->vsync_len = 8;
  788. return 0;
  789. }
  790. static int
  791. imsttfb_set_par(struct fb_info *info)
  792. {
  793. struct imstt_par *par = info->par;
  794. if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
  795. return -EINVAL;
  796. if (info->var.green.length == 6)
  797. set_565(par);
  798. else
  799. set_555(par);
  800. set_imstt_regvals(info, info->var.bits_per_pixel);
  801. info->var.pixclock = 1000000 / getclkMHz(par);
  802. return 0;
  803. }
  804. static int
  805. imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
  806. u_int transp, struct fb_info *info)
  807. {
  808. struct imstt_par *par = info->par;
  809. u_int bpp = info->var.bits_per_pixel;
  810. if (regno > 255)
  811. return 1;
  812. red >>= 8;
  813. green >>= 8;
  814. blue >>= 8;
  815. /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
  816. if (0 && bpp == 16) /* screws up X */
  817. par->cmap_regs[PADDRW] = regno << 3;
  818. else
  819. par->cmap_regs[PADDRW] = regno;
  820. eieio();
  821. par->cmap_regs[PDATA] = red; eieio();
  822. par->cmap_regs[PDATA] = green; eieio();
  823. par->cmap_regs[PDATA] = blue; eieio();
  824. if (regno < 16)
  825. switch (bpp) {
  826. case 16:
  827. par->palette[regno] =
  828. (regno << (info->var.green.length ==
  829. 5 ? 10 : 11)) | (regno << 5) | regno;
  830. break;
  831. case 24:
  832. par->palette[regno] =
  833. (regno << 16) | (regno << 8) | regno;
  834. break;
  835. case 32: {
  836. int i = (regno << 8) | regno;
  837. par->palette[regno] = (i << 16) |i;
  838. break;
  839. }
  840. }
  841. return 0;
  842. }
  843. static int
  844. imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  845. {
  846. if (var->xoffset + info->var.xres > info->var.xres_virtual
  847. || var->yoffset + info->var.yres > info->var.yres_virtual)
  848. return -EINVAL;
  849. info->var.xoffset = var->xoffset;
  850. info->var.yoffset = var->yoffset;
  851. set_offset(var, info);
  852. return 0;
  853. }
  854. static int
  855. imsttfb_blank(int blank, struct fb_info *info)
  856. {
  857. struct imstt_par *par = info->par;
  858. __u32 ctrl;
  859. ctrl = read_reg_le32(par->dc_regs, STGCTL);
  860. if (blank > 0) {
  861. switch (blank) {
  862. case FB_BLANK_NORMAL:
  863. case FB_BLANK_POWERDOWN:
  864. ctrl &= ~0x00000380;
  865. if (par->ramdac == IBM) {
  866. par->cmap_regs[PIDXHI] = 0; eieio();
  867. par->cmap_regs[PIDXLO] = MISCTL2; eieio();
  868. par->cmap_regs[PIDXDATA] = 0x55; eieio();
  869. par->cmap_regs[PIDXLO] = MISCTL1; eieio();
  870. par->cmap_regs[PIDXDATA] = 0x11; eieio();
  871. par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
  872. par->cmap_regs[PIDXDATA] = 0x0f; eieio();
  873. par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
  874. par->cmap_regs[PIDXDATA] = 0x1f; eieio();
  875. par->cmap_regs[PIDXLO] = CLKCTL; eieio();
  876. par->cmap_regs[PIDXDATA] = 0xc0;
  877. }
  878. break;
  879. case FB_BLANK_VSYNC_SUSPEND:
  880. ctrl &= ~0x00000020;
  881. break;
  882. case FB_BLANK_HSYNC_SUSPEND:
  883. ctrl &= ~0x00000010;
  884. break;
  885. }
  886. } else {
  887. if (par->ramdac == IBM) {
  888. ctrl |= 0x000017b0;
  889. par->cmap_regs[PIDXHI] = 0; eieio();
  890. par->cmap_regs[PIDXLO] = CLKCTL; eieio();
  891. par->cmap_regs[PIDXDATA] = 0x01; eieio();
  892. par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
  893. par->cmap_regs[PIDXDATA] = 0x00; eieio();
  894. par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
  895. par->cmap_regs[PIDXDATA] = 0x00; eieio();
  896. par->cmap_regs[PIDXLO] = MISCTL1; eieio();
  897. par->cmap_regs[PIDXDATA] = 0x01; eieio();
  898. par->cmap_regs[PIDXLO] = MISCTL2; eieio();
  899. par->cmap_regs[PIDXDATA] = 0x45; eieio();
  900. } else
  901. ctrl |= 0x00001780;
  902. }
  903. write_reg_le32(par->dc_regs, STGCTL, ctrl);
  904. return 0;
  905. }
  906. static void
  907. imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
  908. {
  909. struct imstt_par *par = info->par;
  910. __u32 Bpp, line_pitch, bgc, dx, dy, width, height;
  911. bgc = rect->color;
  912. bgc |= (bgc << 8);
  913. bgc |= (bgc << 16);
  914. Bpp = info->var.bits_per_pixel >> 3,
  915. line_pitch = info->fix.line_length;
  916. dy = rect->dy * line_pitch;
  917. dx = rect->dx * Bpp;
  918. height = rect->height;
  919. height--;
  920. width = rect->width * Bpp;
  921. width--;
  922. if (rect->rop == ROP_COPY) {
  923. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
  924. write_reg_le32(par->dc_regs, DSA, dy + dx);
  925. write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
  926. write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
  927. write_reg_le32(par->dc_regs, BI, 0xffffffff);
  928. write_reg_le32(par->dc_regs, MBC, 0xffffffff);
  929. write_reg_le32(par->dc_regs, CLR, bgc);
  930. write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
  931. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
  932. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
  933. } else {
  934. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
  935. write_reg_le32(par->dc_regs, DSA, dy + dx);
  936. write_reg_le32(par->dc_regs, S1SA, dy + dx);
  937. write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
  938. write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
  939. write_reg_le32(par->dc_regs, SP, line_pitch);
  940. write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
  941. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
  942. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
  943. }
  944. }
  945. static void
  946. imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
  947. {
  948. struct imstt_par *par = info->par;
  949. __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
  950. __u32 cnt, bltctl, sx, sy, dx, dy, height, width;
  951. Bpp = info->var.bits_per_pixel >> 3,
  952. sx = area->sx * Bpp;
  953. sy = area->sy;
  954. dx = area->dx * Bpp;
  955. dy = area->dy;
  956. height = area->height;
  957. height--;
  958. width = area->width * Bpp;
  959. width--;
  960. line_pitch = info->fix.line_length;
  961. bltctl = 0x05;
  962. sp = line_pitch << 16;
  963. cnt = height << 16;
  964. if (sy < dy) {
  965. sy += height;
  966. dy += height;
  967. sp |= -(line_pitch) & 0xffff;
  968. dp_octl = -(line_pitch) & 0xffff;
  969. } else {
  970. sp |= line_pitch;
  971. dp_octl = line_pitch;
  972. }
  973. if (sx < dx) {
  974. sx += width;
  975. dx += width;
  976. bltctl |= 0x80;
  977. cnt |= -(width) & 0xffff;
  978. } else {
  979. cnt |= width;
  980. }
  981. fb_offset_old = sy * line_pitch + sx;
  982. fb_offset_new = dy * line_pitch + dx;
  983. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
  984. write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
  985. write_reg_le32(par->dc_regs, SP, sp);
  986. write_reg_le32(par->dc_regs, DSA, fb_offset_new);
  987. write_reg_le32(par->dc_regs, CNT, cnt);
  988. write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
  989. write_reg_le32(par->dc_regs, BLTCTL, bltctl);
  990. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
  991. while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
  992. }
  993. #if 0
  994. static int
  995. imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
  996. {
  997. u_int x, y;
  998. if (width > 32 || height > 32)
  999. return -EINVAL;
  1000. if (par->ramdac == IBM) {
  1001. par->cmap_regs[PIDXHI] = 1; eieio();
  1002. for (x = 0; x < 0x100; x++) {
  1003. par->cmap_regs[PIDXLO] = x; eieio();
  1004. par->cmap_regs[PIDXDATA] = 0x00; eieio();
  1005. }
  1006. par->cmap_regs[PIDXHI] = 1; eieio();
  1007. for (y = 0; y < height; y++)
  1008. for (x = 0; x < width >> 2; x++) {
  1009. par->cmap_regs[PIDXLO] = x + y * 8; eieio();
  1010. par->cmap_regs[PIDXDATA] = 0xff; eieio();
  1011. }
  1012. par->cmap_regs[PIDXHI] = 0; eieio();
  1013. par->cmap_regs[PIDXLO] = CURS1R; eieio();
  1014. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1015. par->cmap_regs[PIDXLO] = CURS1G; eieio();
  1016. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1017. par->cmap_regs[PIDXLO] = CURS1B; eieio();
  1018. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1019. par->cmap_regs[PIDXLO] = CURS2R; eieio();
  1020. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1021. par->cmap_regs[PIDXLO] = CURS2G; eieio();
  1022. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1023. par->cmap_regs[PIDXLO] = CURS2B; eieio();
  1024. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1025. par->cmap_regs[PIDXLO] = CURS3R; eieio();
  1026. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1027. par->cmap_regs[PIDXLO] = CURS3G; eieio();
  1028. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1029. par->cmap_regs[PIDXLO] = CURS3B; eieio();
  1030. par->cmap_regs[PIDXDATA] = fgc; eieio();
  1031. } else {
  1032. par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
  1033. par->cmap_regs[TVPIDATA] &= 0x03; eieio();
  1034. par->cmap_regs[TVPADDRW] = 0; eieio();
  1035. for (x = 0; x < 0x200; x++) {
  1036. par->cmap_regs[TVPCRDAT] = 0x00; eieio();
  1037. }
  1038. for (x = 0; x < 0x200; x++) {
  1039. par->cmap_regs[TVPCRDAT] = 0xff; eieio();
  1040. }
  1041. par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
  1042. par->cmap_regs[TVPIDATA] &= 0x03; eieio();
  1043. for (y = 0; y < height; y++)
  1044. for (x = 0; x < width >> 3; x++) {
  1045. par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
  1046. par->cmap_regs[TVPCRDAT] = 0xff; eieio();
  1047. }
  1048. par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
  1049. par->cmap_regs[TVPIDATA] |= 0x08; eieio();
  1050. for (y = 0; y < height; y++)
  1051. for (x = 0; x < width >> 3; x++) {
  1052. par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
  1053. par->cmap_regs[TVPCRDAT] = 0xff; eieio();
  1054. }
  1055. par->cmap_regs[TVPCADRW] = 0x00; eieio();
  1056. for (x = 0; x < 12; x++)
  1057. par->cmap_regs[TVPCDATA] = fgc; eieio();
  1058. }
  1059. return 1;
  1060. }
  1061. static void
  1062. imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
  1063. {
  1064. if (par->ramdac == IBM) {
  1065. par->cmap_regs[PIDXHI] = 0; eieio();
  1066. if (!on) {
  1067. par->cmap_regs[PIDXLO] = CURSCTL; eieio();
  1068. par->cmap_regs[PIDXDATA] = 0x00; eieio();
  1069. } else {
  1070. par->cmap_regs[PIDXLO] = CURSXHI; eieio();
  1071. par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
  1072. par->cmap_regs[PIDXLO] = CURSXLO; eieio();
  1073. par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
  1074. par->cmap_regs[PIDXLO] = CURSYHI; eieio();
  1075. par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
  1076. par->cmap_regs[PIDXLO] = CURSYLO; eieio();
  1077. par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
  1078. par->cmap_regs[PIDXLO] = CURSCTL; eieio();
  1079. par->cmap_regs[PIDXDATA] = 0x02; eieio();
  1080. }
  1081. } else {
  1082. if (!on) {
  1083. par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
  1084. par->cmap_regs[TVPIDATA] = 0x00; eieio();
  1085. } else {
  1086. __u16 x = d->dx + 0x40, y = d->dy + 0x40;
  1087. par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
  1088. par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
  1089. par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
  1090. par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
  1091. par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
  1092. par->cmap_regs[TVPIDATA] = 0x02; eieio();
  1093. }
  1094. }
  1095. }
  1096. static int
  1097. imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
  1098. {
  1099. struct imstt_par *par = info->par;
  1100. u32 flags = cursor->set, fg, bg, xx, yy;
  1101. if (cursor->dest == NULL && cursor->rop == ROP_XOR)
  1102. return 1;
  1103. imstt_set_cursor(info, cursor, 0);
  1104. if (flags & FB_CUR_SETPOS) {
  1105. xx = cursor->image.dx - info->var.xoffset;
  1106. yy = cursor->image.dy - info->var.yoffset;
  1107. }
  1108. if (flags & FB_CUR_SETSIZE) {
  1109. }
  1110. if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
  1111. int fg_idx = cursor->image.fg_color;
  1112. int width = (cursor->image.width+7)/8;
  1113. u8 *dat = (u8 *) cursor->image.data;
  1114. u8 *dst = (u8 *) cursor->dest;
  1115. u8 *msk = (u8 *) cursor->mask;
  1116. switch (cursor->rop) {
  1117. case ROP_XOR:
  1118. for (i = 0; i < cursor->image.height; i++) {
  1119. for (j = 0; j < width; j++) {
  1120. d_idx = i * MAX_CURS/8 + j;
  1121. data[d_idx] = byte_rev[dat[s_idx] ^
  1122. dst[s_idx]];
  1123. mask[d_idx] = byte_rev[msk[s_idx]];
  1124. s_idx++;
  1125. }
  1126. }
  1127. break;
  1128. case ROP_COPY:
  1129. default:
  1130. for (i = 0; i < cursor->image.height; i++) {
  1131. for (j = 0; j < width; j++) {
  1132. d_idx = i * MAX_CURS/8 + j;
  1133. data[d_idx] = byte_rev[dat[s_idx]];
  1134. mask[d_idx] = byte_rev[msk[s_idx]];
  1135. s_idx++;
  1136. }
  1137. }
  1138. break;
  1139. }
  1140. fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
  1141. ((info->cmap.green[fg_idx] & 0xf8) << 2) |
  1142. ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
  1143. imsttfb_load_cursor_image(par, xx, yy, fgc);
  1144. }
  1145. if (cursor->enable)
  1146. imstt_set_cursor(info, cursor, 1);
  1147. return 0;
  1148. }
  1149. #endif
  1150. #define FBIMSTT_SETREG 0x545401
  1151. #define FBIMSTT_GETREG 0x545402
  1152. #define FBIMSTT_SETCMAPREG 0x545403
  1153. #define FBIMSTT_GETCMAPREG 0x545404
  1154. #define FBIMSTT_SETIDXREG 0x545405
  1155. #define FBIMSTT_GETIDXREG 0x545406
  1156. static int
  1157. imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
  1158. {
  1159. struct imstt_par *par = info->par;
  1160. void __user *argp = (void __user *)arg;
  1161. __u32 reg[2];
  1162. __u8 idx[2];
  1163. switch (cmd) {
  1164. case FBIMSTT_SETREG:
  1165. if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
  1166. return -EFAULT;
  1167. write_reg_le32(par->dc_regs, reg[0], reg[1]);
  1168. return 0;
  1169. case FBIMSTT_GETREG:
  1170. if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
  1171. return -EFAULT;
  1172. reg[1] = read_reg_le32(par->dc_regs, reg[0]);
  1173. if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
  1174. return -EFAULT;
  1175. return 0;
  1176. case FBIMSTT_SETCMAPREG:
  1177. if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
  1178. return -EFAULT;
  1179. write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
  1180. return 0;
  1181. case FBIMSTT_GETCMAPREG:
  1182. if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
  1183. return -EFAULT;
  1184. reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
  1185. if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
  1186. return -EFAULT;
  1187. return 0;
  1188. case FBIMSTT_SETIDXREG:
  1189. if (copy_from_user(idx, argp, 2))
  1190. return -EFAULT;
  1191. par->cmap_regs[PIDXHI] = 0; eieio();
  1192. par->cmap_regs[PIDXLO] = idx[0]; eieio();
  1193. par->cmap_regs[PIDXDATA] = idx[1]; eieio();
  1194. return 0;
  1195. case FBIMSTT_GETIDXREG:
  1196. if (copy_from_user(idx, argp, 1))
  1197. return -EFAULT;
  1198. par->cmap_regs[PIDXHI] = 0; eieio();
  1199. par->cmap_regs[PIDXLO] = idx[0]; eieio();
  1200. idx[1] = par->cmap_regs[PIDXDATA];
  1201. if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
  1202. return -EFAULT;
  1203. return 0;
  1204. default:
  1205. return -ENOIOCTLCMD;
  1206. }
  1207. }
  1208. static struct pci_device_id imsttfb_pci_tbl[] = {
  1209. { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
  1210. PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
  1211. { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
  1212. PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
  1213. { 0, }
  1214. };
  1215. MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
  1216. static struct pci_driver imsttfb_pci_driver = {
  1217. .name = "imsttfb",
  1218. .id_table = imsttfb_pci_tbl,
  1219. .probe = imsttfb_probe,
  1220. .remove = __devexit_p(imsttfb_remove),
  1221. };
  1222. static struct fb_ops imsttfb_ops = {
  1223. .owner = THIS_MODULE,
  1224. .fb_check_var = imsttfb_check_var,
  1225. .fb_set_par = imsttfb_set_par,
  1226. .fb_setcolreg = imsttfb_setcolreg,
  1227. .fb_pan_display = imsttfb_pan_display,
  1228. .fb_blank = imsttfb_blank,
  1229. .fb_fillrect = imsttfb_fillrect,
  1230. .fb_copyarea = imsttfb_copyarea,
  1231. .fb_imageblit = cfb_imageblit,
  1232. .fb_ioctl = imsttfb_ioctl,
  1233. };
  1234. static void __devinit
  1235. init_imstt(struct fb_info *info)
  1236. {
  1237. struct imstt_par *par = info->par;
  1238. __u32 i, tmp, *ip, *end;
  1239. tmp = read_reg_le32(par->dc_regs, PRC);
  1240. if (par->ramdac == IBM)
  1241. info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
  1242. else
  1243. info->fix.smem_len = 0x800000;
  1244. ip = (__u32 *)info->screen_base;
  1245. end = (__u32 *)(info->screen_base + info->fix.smem_len);
  1246. while (ip < end)
  1247. *ip++ = 0;
  1248. /* initialize the card */
  1249. tmp = read_reg_le32(par->dc_regs, STGCTL);
  1250. write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
  1251. write_reg_le32(par->dc_regs, SSR, 0);
  1252. /* set default values for DAC registers */
  1253. if (par->ramdac == IBM) {
  1254. par->cmap_regs[PPMASK] = 0xff; eieio();
  1255. par->cmap_regs[PIDXHI] = 0; eieio();
  1256. for (i = 0; i < sizeof(ibm_initregs) / sizeof(*ibm_initregs); i++) {
  1257. par->cmap_regs[PIDXLO] = ibm_initregs[i].addr; eieio();
  1258. par->cmap_regs[PIDXDATA] = ibm_initregs[i].value; eieio();
  1259. }
  1260. } else {
  1261. for (i = 0; i < sizeof(tvp_initregs) / sizeof(*tvp_initregs); i++) {
  1262. par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr; eieio();
  1263. par->cmap_regs[TVPIDATA] = tvp_initregs[i].value; eieio();
  1264. }
  1265. }
  1266. #if USE_NV_MODES && defined(CONFIG_PPC)
  1267. {
  1268. int vmode = init_vmode, cmode = init_cmode;
  1269. if (vmode == -1) {
  1270. vmode = nvram_read_byte(NV_VMODE);
  1271. if (vmode <= 0 || vmode > VMODE_MAX)
  1272. vmode = VMODE_640_480_67;
  1273. }
  1274. if (cmode == -1) {
  1275. cmode = nvram_read_byte(NV_CMODE);
  1276. if (cmode < CMODE_8 || cmode > CMODE_32)
  1277. cmode = CMODE_8;
  1278. }
  1279. if (mac_vmode_to_var(vmode, cmode, &info->var)) {
  1280. info->var.xres = info->var.xres_virtual = INIT_XRES;
  1281. info->var.yres = info->var.yres_virtual = INIT_YRES;
  1282. info->var.bits_per_pixel = INIT_BPP;
  1283. }
  1284. }
  1285. #else
  1286. info->var.xres = info->var.xres_virtual = INIT_XRES;
  1287. info->var.yres = info->var.yres_virtual = INIT_YRES;
  1288. info->var.bits_per_pixel = INIT_BPP;
  1289. #endif
  1290. if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
  1291. || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
  1292. printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
  1293. framebuffer_release(info);
  1294. return;
  1295. }
  1296. sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
  1297. info->fix.mmio_len = 0x1000;
  1298. info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
  1299. info->fix.type = FB_TYPE_PACKED_PIXELS;
  1300. info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
  1301. : FB_VISUAL_DIRECTCOLOR;
  1302. info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
  1303. info->fix.xpanstep = 8;
  1304. info->fix.ypanstep = 1;
  1305. info->fix.ywrapstep = 0;
  1306. info->var.accel_flags = FB_ACCELF_TEXT;
  1307. // if (par->ramdac == IBM)
  1308. // imstt_cursor_init(info);
  1309. if (info->var.green.length == 6)
  1310. set_565(par);
  1311. else
  1312. set_555(par);
  1313. set_imstt_regvals(info, info->var.bits_per_pixel);
  1314. info->var.pixclock = 1000000 / getclkMHz(par);
  1315. info->fbops = &imsttfb_ops;
  1316. info->flags = FBINFO_DEFAULT |
  1317. FBINFO_HWACCEL_COPYAREA |
  1318. FBINFO_HWACCEL_FILLRECT |
  1319. FBINFO_HWACCEL_YPAN;
  1320. fb_alloc_cmap(&info->cmap, 0, 0);
  1321. if (register_framebuffer(info) < 0) {
  1322. framebuffer_release(info);
  1323. return;
  1324. }
  1325. tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
  1326. printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n",
  1327. info->node, info->fix.id, info->fix.smem_len >> 20, tmp);
  1328. }
  1329. static int __devinit
  1330. imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1331. {
  1332. unsigned long addr, size;
  1333. struct imstt_par *par;
  1334. struct fb_info *info;
  1335. #ifdef CONFIG_PPC_OF
  1336. struct device_node *dp;
  1337. dp = pci_device_to_OF_node(pdev);
  1338. if(dp)
  1339. printk(KERN_INFO "%s: OF name %s\n",__FUNCTION__, dp->name);
  1340. else
  1341. printk(KERN_ERR "imsttfb: no OF node for pci device\n");
  1342. #endif /* CONFIG_PPC_OF */
  1343. info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
  1344. if (!info) {
  1345. printk(KERN_ERR "imsttfb: Can't allocate memory\n");
  1346. return -ENOMEM;
  1347. }
  1348. par = info->par;
  1349. addr = pci_resource_start (pdev, 0);
  1350. size = pci_resource_len (pdev, 0);
  1351. if (!request_mem_region(addr, size, "imsttfb")) {
  1352. printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
  1353. framebuffer_release(info);
  1354. return -ENODEV;
  1355. }
  1356. switch (pdev->device) {
  1357. case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
  1358. par->ramdac = IBM;
  1359. #ifdef CONFIG_PPC_OF
  1360. if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
  1361. (strcmp(dp->name, "IMS,tt128mb8A") == 0)))
  1362. par->ramdac = TVP;
  1363. #endif /* CONFIG_PPC_OF */
  1364. break;
  1365. case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
  1366. par->ramdac = TVP;
  1367. break;
  1368. default:
  1369. printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
  1370. "contact maintainer.\n", pdev->device);
  1371. return -ENODEV;
  1372. }
  1373. info->fix.smem_start = addr;
  1374. info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
  1375. 0x400000 : 0x800000);
  1376. info->fix.mmio_start = addr + 0x800000;
  1377. par->dc_regs = ioremap(addr + 0x800000, 0x1000);
  1378. par->cmap_regs_phys = addr + 0x840000;
  1379. par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
  1380. info->pseudo_palette = par->palette;
  1381. init_imstt(info);
  1382. pci_set_drvdata(pdev, info);
  1383. return 0;
  1384. }
  1385. static void __devexit
  1386. imsttfb_remove(struct pci_dev *pdev)
  1387. {
  1388. struct fb_info *info = pci_get_drvdata(pdev);
  1389. struct imstt_par *par = info->par;
  1390. int size = pci_resource_len(pdev, 0);
  1391. unregister_framebuffer(info);
  1392. iounmap(par->cmap_regs);
  1393. iounmap(par->dc_regs);
  1394. iounmap(info->screen_base);
  1395. release_mem_region(info->fix.smem_start, size);
  1396. framebuffer_release(info);
  1397. }
  1398. #ifndef MODULE
  1399. static int __init
  1400. imsttfb_setup(char *options)
  1401. {
  1402. char *this_opt;
  1403. if (!options || !*options)
  1404. return 0;
  1405. while ((this_opt = strsep(&options, ",")) != NULL) {
  1406. if (!strncmp(this_opt, "font:", 5)) {
  1407. char *p;
  1408. int i;
  1409. p = this_opt + 5;
  1410. for (i = 0; i < sizeof(fontname) - 1; i++)
  1411. if (!*p || *p == ' ' || *p == ',')
  1412. break;
  1413. memcpy(fontname, this_opt + 5, i);
  1414. fontname[i] = 0;
  1415. } else if (!strncmp(this_opt, "inverse", 7)) {
  1416. inverse = 1;
  1417. fb_invert_cmaps();
  1418. }
  1419. #if defined(CONFIG_PPC)
  1420. else if (!strncmp(this_opt, "vmode:", 6)) {
  1421. int vmode = simple_strtoul(this_opt+6, NULL, 0);
  1422. if (vmode > 0 && vmode <= VMODE_MAX)
  1423. init_vmode = vmode;
  1424. } else if (!strncmp(this_opt, "cmode:", 6)) {
  1425. int cmode = simple_strtoul(this_opt+6, NULL, 0);
  1426. switch (cmode) {
  1427. case CMODE_8:
  1428. case 8:
  1429. init_cmode = CMODE_8;
  1430. break;
  1431. case CMODE_16:
  1432. case 15:
  1433. case 16:
  1434. init_cmode = CMODE_16;
  1435. break;
  1436. case CMODE_32:
  1437. case 24:
  1438. case 32:
  1439. init_cmode = CMODE_32;
  1440. break;
  1441. }
  1442. }
  1443. #endif
  1444. }
  1445. return 0;
  1446. }
  1447. #endif /* MODULE */
  1448. static int __init imsttfb_init(void)
  1449. {
  1450. #ifndef MODULE
  1451. char *option = NULL;
  1452. if (fb_get_options("imsttfb", &option))
  1453. return -ENODEV;
  1454. imsttfb_setup(option);
  1455. #endif
  1456. return pci_register_driver(&imsttfb_pci_driver);
  1457. }
  1458. static void __exit imsttfb_exit(void)
  1459. {
  1460. pci_unregister_driver(&imsttfb_pci_driver);
  1461. }
  1462. MODULE_LICENSE("GPL");
  1463. module_init(imsttfb_init);
  1464. module_exit(imsttfb_exit);