keyspan_remote.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * keyspan_remote: USB driver for the Keyspan DMR
  3. *
  4. * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. *
  10. * This driver has been put together with the support of Innosys, Inc.
  11. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product.
  12. */
  13. #include <linux/config.h>
  14. #include <linux/kernel.h>
  15. #include <linux/errno.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/input.h>
  21. #include <linux/usb.h>
  22. #include <linux/usb_input.h>
  23. #define DRIVER_VERSION "v0.1"
  24. #define DRIVER_AUTHOR "Michael Downey <downey@zymeta.com>"
  25. #define DRIVER_DESC "Driver for the USB Keyspan remote control."
  26. #define DRIVER_LICENSE "GPL"
  27. /* Parameters that can be passed to the driver. */
  28. static int debug;
  29. module_param(debug, int, 0444);
  30. MODULE_PARM_DESC(debug, "Enable extra debug messages and information");
  31. /* Vendor and product ids */
  32. #define USB_KEYSPAN_VENDOR_ID 0x06CD
  33. #define USB_KEYSPAN_PRODUCT_UIA11 0x0202
  34. /* Defines for converting the data from the remote. */
  35. #define ZERO 0x18
  36. #define ZERO_MASK 0x1F /* 5 bits for a 0 */
  37. #define ONE 0x3C
  38. #define ONE_MASK 0x3F /* 6 bits for a 1 */
  39. #define SYNC 0x3F80
  40. #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */
  41. #define STOP 0x00
  42. #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */
  43. #define GAP 0xFF
  44. #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */
  45. /* table of devices that work with this driver */
  46. static struct usb_device_id keyspan_table[] = {
  47. { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) },
  48. { } /* Terminating entry */
  49. };
  50. /* Structure to store all the real stuff that a remote sends to us. */
  51. struct keyspan_message {
  52. u16 system;
  53. u8 button;
  54. u8 toggle;
  55. };
  56. /* Structure used for all the bit testing magic needed to be done. */
  57. struct bit_tester {
  58. u32 tester;
  59. int len;
  60. int pos;
  61. int bits_left;
  62. u8 buffer[32];
  63. };
  64. /* Structure to hold all of our driver specific stuff */
  65. struct usb_keyspan {
  66. char name[128];
  67. char phys[64];
  68. struct usb_device* udev;
  69. struct input_dev *input;
  70. struct usb_interface* interface;
  71. struct usb_endpoint_descriptor* in_endpoint;
  72. struct urb* irq_urb;
  73. int open;
  74. dma_addr_t in_dma;
  75. unsigned char* in_buffer;
  76. /* variables used to parse messages from remote. */
  77. struct bit_tester data;
  78. int stage;
  79. int toggle;
  80. };
  81. /*
  82. * Table that maps the 31 possible keycodes to input keys.
  83. * Currently there are 15 and 17 button models so RESERVED codes
  84. * are blank areas in the mapping.
  85. */
  86. static const int keyspan_key_table[] = {
  87. KEY_RESERVED, /* 0 is just a place holder. */
  88. KEY_RESERVED,
  89. KEY_STOP,
  90. KEY_PLAYCD,
  91. KEY_RESERVED,
  92. KEY_PREVIOUSSONG,
  93. KEY_REWIND,
  94. KEY_FORWARD,
  95. KEY_NEXTSONG,
  96. KEY_RESERVED,
  97. KEY_RESERVED,
  98. KEY_RESERVED,
  99. KEY_PAUSE,
  100. KEY_VOLUMEUP,
  101. KEY_RESERVED,
  102. KEY_RESERVED,
  103. KEY_RESERVED,
  104. KEY_VOLUMEDOWN,
  105. KEY_RESERVED,
  106. KEY_UP,
  107. KEY_RESERVED,
  108. KEY_MUTE,
  109. KEY_LEFT,
  110. KEY_ENTER,
  111. KEY_RIGHT,
  112. KEY_RESERVED,
  113. KEY_RESERVED,
  114. KEY_DOWN,
  115. KEY_RESERVED,
  116. KEY_KPASTERISK,
  117. KEY_RESERVED,
  118. KEY_MENU
  119. };
  120. static struct usb_driver keyspan_driver;
  121. /*
  122. * Debug routine that prints out what we've received from the remote.
  123. */
  124. static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/
  125. {
  126. char codes[4 * RECV_SIZE];
  127. int i;
  128. for (i = 0; i < RECV_SIZE; i++)
  129. snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]);
  130. dev_info(&dev->udev->dev, "%s\n", codes);
  131. }
  132. /*
  133. * Routine that manages the bit_tester structure. It makes sure that there are
  134. * at least bits_needed bits loaded into the tester.
  135. */
  136. static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed)
  137. {
  138. if (dev->data.bits_left >= bits_needed)
  139. return 0;
  140. /*
  141. * Somehow we've missed the last message. The message will be repeated
  142. * though so it's not too big a deal
  143. */
  144. if (dev->data.pos >= dev->data.len) {
  145. dev_dbg(&dev->udev->dev,
  146. "%s - Error ran out of data. pos: %d, len: %d\n",
  147. __FUNCTION__, dev->data.pos, dev->data.len);
  148. return -1;
  149. }
  150. /* Load as much as we can into the tester. */
  151. while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) &&
  152. (dev->data.pos < dev->data.len)) {
  153. dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left);
  154. dev->data.bits_left += 8;
  155. }
  156. return 0;
  157. }
  158. /*
  159. * Routine that handles all the logic needed to parse out the message from the remote.
  160. */
  161. static void keyspan_check_data(struct usb_keyspan *remote, struct pt_regs *regs)
  162. {
  163. int i;
  164. int found = 0;
  165. struct keyspan_message message;
  166. switch(remote->stage) {
  167. case 0:
  168. /*
  169. * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler.
  170. * So the first byte that isn't a FF should be the start of a new message.
  171. */
  172. for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i);
  173. if (i < RECV_SIZE) {
  174. memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE);
  175. remote->data.len = RECV_SIZE;
  176. remote->data.pos = 0;
  177. remote->data.tester = 0;
  178. remote->data.bits_left = 0;
  179. remote->stage = 1;
  180. }
  181. break;
  182. case 1:
  183. /*
  184. * Stage 1 we should have 16 bytes and should be able to detect a
  185. * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's.
  186. */
  187. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  188. remote->data.len += RECV_SIZE;
  189. found = 0;
  190. while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) {
  191. for (i = 0; i < 8; ++i) {
  192. if (keyspan_load_tester(remote, 14) != 0) {
  193. remote->stage = 0;
  194. return;
  195. }
  196. if ((remote->data.tester & SYNC_MASK) == SYNC) {
  197. remote->data.tester = remote->data.tester >> 14;
  198. remote->data.bits_left -= 14;
  199. found = 1;
  200. break;
  201. } else {
  202. remote->data.tester = remote->data.tester >> 1;
  203. --remote->data.bits_left;
  204. }
  205. }
  206. }
  207. if (!found) {
  208. remote->stage = 0;
  209. remote->data.len = 0;
  210. } else {
  211. remote->stage = 2;
  212. }
  213. break;
  214. case 2:
  215. /*
  216. * Stage 2 we should have 24 bytes which will be enough for a full
  217. * message. We need to parse out the system code, button code,
  218. * toggle code, and stop.
  219. */
  220. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  221. remote->data.len += RECV_SIZE;
  222. message.system = 0;
  223. for (i = 0; i < 9; i++) {
  224. keyspan_load_tester(remote, 6);
  225. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  226. message.system = message.system << 1;
  227. remote->data.tester = remote->data.tester >> 5;
  228. remote->data.bits_left -= 5;
  229. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  230. message.system = (message.system << 1) + 1;
  231. remote->data.tester = remote->data.tester >> 6;
  232. remote->data.bits_left -= 6;
  233. } else {
  234. err("%s - Unknown sequence found in system data.\n", __FUNCTION__);
  235. remote->stage = 0;
  236. return;
  237. }
  238. }
  239. message.button = 0;
  240. for (i = 0; i < 5; i++) {
  241. keyspan_load_tester(remote, 6);
  242. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  243. message.button = message.button << 1;
  244. remote->data.tester = remote->data.tester >> 5;
  245. remote->data.bits_left -= 5;
  246. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  247. message.button = (message.button << 1) + 1;
  248. remote->data.tester = remote->data.tester >> 6;
  249. remote->data.bits_left -= 6;
  250. } else {
  251. err("%s - Unknown sequence found in button data.\n", __FUNCTION__);
  252. remote->stage = 0;
  253. return;
  254. }
  255. }
  256. keyspan_load_tester(remote, 6);
  257. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  258. message.toggle = 0;
  259. remote->data.tester = remote->data.tester >> 5;
  260. remote->data.bits_left -= 5;
  261. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  262. message.toggle = 1;
  263. remote->data.tester = remote->data.tester >> 6;
  264. remote->data.bits_left -= 6;
  265. } else {
  266. err("%s - Error in message, invalid toggle.\n", __FUNCTION__);
  267. }
  268. keyspan_load_tester(remote, 5);
  269. if ((remote->data.tester & STOP_MASK) == STOP) {
  270. remote->data.tester = remote->data.tester >> 5;
  271. remote->data.bits_left -= 5;
  272. } else {
  273. err("Bad message recieved, no stop bit found.\n");
  274. }
  275. dev_dbg(&remote->udev->dev,
  276. "%s found valid message: system: %d, button: %d, toggle: %d\n",
  277. __FUNCTION__, message.system, message.button, message.toggle);
  278. if (message.toggle != remote->toggle) {
  279. input_regs(remote->input, regs);
  280. input_report_key(remote->input, keyspan_key_table[message.button], 1);
  281. input_report_key(remote->input, keyspan_key_table[message.button], 0);
  282. input_sync(remote->input);
  283. remote->toggle = message.toggle;
  284. }
  285. remote->stage = 0;
  286. break;
  287. }
  288. }
  289. /*
  290. * Routine for sending all the initialization messages to the remote.
  291. */
  292. static int keyspan_setup(struct usb_device* dev)
  293. {
  294. int retval = 0;
  295. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  296. 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0);
  297. if (retval) {
  298. dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n",
  299. __FUNCTION__, retval);
  300. return(retval);
  301. }
  302. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  303. 0x44, 0x40, 0x0, 0x0, NULL, 0, 0);
  304. if (retval) {
  305. dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n",
  306. __FUNCTION__, retval);
  307. return(retval);
  308. }
  309. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  310. 0x22, 0x40, 0x0, 0x0, NULL, 0, 0);
  311. if (retval) {
  312. dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n",
  313. __FUNCTION__, retval);
  314. return(retval);
  315. }
  316. dev_dbg(&dev->dev, "%s - Setup complete.\n", __FUNCTION__);
  317. return(retval);
  318. }
  319. /*
  320. * Routine used to handle a new message that has come in.
  321. */
  322. static void keyspan_irq_recv(struct urb *urb, struct pt_regs *regs)
  323. {
  324. struct usb_keyspan *dev = urb->context;
  325. int retval;
  326. /* Check our status in case we need to bail out early. */
  327. switch (urb->status) {
  328. case 0:
  329. break;
  330. /* Device went away so don't keep trying to read from it. */
  331. case -ECONNRESET:
  332. case -ENOENT:
  333. case -ESHUTDOWN:
  334. return;
  335. default:
  336. goto resubmit;
  337. break;
  338. }
  339. if (debug)
  340. keyspan_print(dev);
  341. keyspan_check_data(dev, regs);
  342. resubmit:
  343. retval = usb_submit_urb(urb, GFP_ATOMIC);
  344. if (retval)
  345. err ("%s - usb_submit_urb failed with result: %d", __FUNCTION__, retval);
  346. }
  347. static int keyspan_open(struct input_dev *dev)
  348. {
  349. struct usb_keyspan *remote = dev->private;
  350. remote->irq_urb->dev = remote->udev;
  351. if (usb_submit_urb(remote->irq_urb, GFP_KERNEL))
  352. return -EIO;
  353. return 0;
  354. }
  355. static void keyspan_close(struct input_dev *dev)
  356. {
  357. struct usb_keyspan *remote = dev->private;
  358. usb_kill_urb(remote->irq_urb);
  359. }
  360. static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface)
  361. {
  362. struct usb_endpoint_descriptor *endpoint;
  363. int i;
  364. for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
  365. endpoint = &iface->endpoint[i].desc;
  366. if ((endpoint->bEndpointAddress & USB_DIR_IN) &&
  367. ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) {
  368. /* we found our interrupt in endpoint */
  369. return endpoint;
  370. }
  371. }
  372. return NULL;
  373. }
  374. /*
  375. * Routine that sets up the driver to handle a specific USB device detected on the bus.
  376. */
  377. static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id)
  378. {
  379. struct usb_device *udev = interface_to_usbdev(interface);
  380. struct usb_endpoint_descriptor *endpoint;
  381. struct usb_keyspan *remote;
  382. struct input_dev *input_dev;
  383. int i, retval;
  384. endpoint = keyspan_get_in_endpoint(interface->cur_altsetting);
  385. if (!endpoint)
  386. return -ENODEV;
  387. remote = kzalloc(sizeof(*remote), GFP_KERNEL);
  388. input_dev = input_allocate_device();
  389. if (!remote || !input_dev) {
  390. retval = -ENOMEM;
  391. goto fail1;
  392. }
  393. remote->udev = udev;
  394. remote->input = input_dev;
  395. remote->interface = interface;
  396. remote->in_endpoint = endpoint;
  397. remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */
  398. remote->in_buffer = usb_buffer_alloc(udev, RECV_SIZE, SLAB_ATOMIC, &remote->in_dma);
  399. if (!remote->in_buffer) {
  400. retval = -ENOMEM;
  401. goto fail1;
  402. }
  403. remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL);
  404. if (!remote->irq_urb) {
  405. retval = -ENOMEM;
  406. goto fail2;
  407. }
  408. retval = keyspan_setup(udev);
  409. if (retval) {
  410. retval = -ENODEV;
  411. goto fail3;
  412. }
  413. if (udev->manufacturer)
  414. strlcpy(remote->name, udev->manufacturer, sizeof(remote->name));
  415. if (udev->product) {
  416. if (udev->manufacturer)
  417. strlcat(remote->name, " ", sizeof(remote->name));
  418. strlcat(remote->name, udev->product, sizeof(remote->name));
  419. }
  420. if (!strlen(remote->name))
  421. snprintf(remote->name, sizeof(remote->name),
  422. "USB Keyspan Remote %04x:%04x",
  423. le16_to_cpu(udev->descriptor.idVendor),
  424. le16_to_cpu(udev->descriptor.idProduct));
  425. usb_make_path(udev, remote->phys, sizeof(remote->phys));
  426. strlcat(remote->phys, "/input0", sizeof(remote->phys));
  427. input_dev->name = remote->name;
  428. input_dev->phys = remote->phys;
  429. usb_to_input_id(udev, &input_dev->id);
  430. input_dev->cdev.dev = &interface->dev;
  431. input_dev->evbit[0] = BIT(EV_KEY); /* We will only report KEY events. */
  432. for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++)
  433. if (keyspan_key_table[i] != KEY_RESERVED)
  434. set_bit(keyspan_key_table[i], input_dev->keybit);
  435. input_dev->private = remote;
  436. input_dev->open = keyspan_open;
  437. input_dev->close = keyspan_close;
  438. /*
  439. * Initialize the URB to access the device. The urb gets sent to the device in keyspan_open()
  440. */
  441. usb_fill_int_urb(remote->irq_urb,
  442. remote->udev, usb_rcvintpipe(remote->udev, remote->in_endpoint->bEndpointAddress),
  443. remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote,
  444. remote->in_endpoint->bInterval);
  445. remote->irq_urb->transfer_dma = remote->in_dma;
  446. remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  447. /* we can register the device now, as it is ready */
  448. input_register_device(remote->input);
  449. /* save our data pointer in this interface device */
  450. usb_set_intfdata(interface, remote);
  451. return 0;
  452. fail3: usb_free_urb(remote->irq_urb);
  453. fail2: usb_buffer_free(udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  454. fail1: kfree(remote);
  455. input_free_device(input_dev);
  456. return retval;
  457. }
  458. /*
  459. * Routine called when a device is disconnected from the USB.
  460. */
  461. static void keyspan_disconnect(struct usb_interface *interface)
  462. {
  463. struct usb_keyspan *remote;
  464. remote = usb_get_intfdata(interface);
  465. usb_set_intfdata(interface, NULL);
  466. if (remote) { /* We have a valid driver structure so clean up everything we allocated. */
  467. input_unregister_device(remote->input);
  468. usb_kill_urb(remote->irq_urb);
  469. usb_free_urb(remote->irq_urb);
  470. usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  471. kfree(remote);
  472. }
  473. }
  474. /*
  475. * Standard driver set up sections
  476. */
  477. static struct usb_driver keyspan_driver =
  478. {
  479. .name = "keyspan_remote",
  480. .probe = keyspan_probe,
  481. .disconnect = keyspan_disconnect,
  482. .id_table = keyspan_table
  483. };
  484. static int __init usb_keyspan_init(void)
  485. {
  486. int result;
  487. /* register this driver with the USB subsystem */
  488. result = usb_register(&keyspan_driver);
  489. if (result)
  490. err("usb_register failed. Error number %d\n", result);
  491. return result;
  492. }
  493. static void __exit usb_keyspan_exit(void)
  494. {
  495. /* deregister this driver with the USB subsystem */
  496. usb_deregister(&keyspan_driver);
  497. }
  498. module_init(usb_keyspan_init);
  499. module_exit(usb_keyspan_exit);
  500. MODULE_DEVICE_TABLE(usb, keyspan_table);
  501. MODULE_AUTHOR(DRIVER_AUTHOR);
  502. MODULE_DESCRIPTION(DRIVER_DESC);
  503. MODULE_LICENSE(DRIVER_LICENSE);