audio.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869
  1. /*****************************************************************************/
  2. /*
  3. * audio.c -- USB Audio Class driver
  4. *
  5. * Copyright (C) 1999, 2000, 2001, 2003, 2004
  6. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  7. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * Debugging:
  15. * Use the 'lsusb' utility to dump the descriptors.
  16. *
  17. * 1999-09-07: Alan Cox
  18. * Parsing Audio descriptor patch
  19. * 1999-09-08: Thomas Sailer
  20. * Added OSS compatible data io functions; both parts of the
  21. * driver remain to be glued together
  22. * 1999-09-10: Thomas Sailer
  23. * Beautified the driver. Added sample format conversions.
  24. * Still not properly glued with the parsing code.
  25. * The parsing code seems to have its problems btw,
  26. * Since it parses all available configs but doesn't
  27. * store which iface/altsetting belongs to which config.
  28. * 1999-09-20: Thomas Sailer
  29. * Threw out Alan's parsing code and implemented my own one.
  30. * You cannot reasonnably linearly parse audio descriptors,
  31. * especially the AudioClass descriptors have to be considered
  32. * pointer lists. Mixer parsing untested, due to lack of device.
  33. * First stab at synch pipe implementation, the Dallas USB DAC
  34. * wants to use an Asynch out pipe. usb_audio_state now basically
  35. * only contains lists of mixer and wave devices. We can therefore
  36. * now have multiple mixer/wave devices per USB device.
  37. * 1999-10-28: Thomas Sailer
  38. * Converted to URB API. Fixed a taskstate/wakeup semantics mistake
  39. * that made the driver consume all available CPU cycles.
  40. * Now runs stable on UHCI-Acher/Fliegl/Sailer.
  41. * 1999-10-31: Thomas Sailer
  42. * Audio can now be unloaded if it is not in use by any mixer
  43. * or dsp client (formerly you had to disconnect the audio devices
  44. * from the USB port)
  45. * Finally, about three months after ordering, my "Maxxtro SPK222"
  46. * speakers arrived, isn't disdata a great mail order company 8-)
  47. * Parse class specific endpoint descriptor of the audiostreaming
  48. * interfaces and take the endpoint attributes from there.
  49. * Unbelievably, the Philips USB DAC has a sampling rate range
  50. * of over a decade, yet does not support the sampling rate control!
  51. * No wonder it sounds so bad, has very audible sampling rate
  52. * conversion distortion. Don't try to listen to it using
  53. * decent headphones!
  54. * "Let's make things better" -> but please Philips start with your
  55. * own stuff!!!!
  56. * 1999-11-02: Thomas Sailer
  57. * It takes the Philips boxes several seconds to acquire synchronisation
  58. * that means they won't play short sounds. Should probably maintain
  59. * the ISO datastream even if there's nothing to play.
  60. * Fix counting the total_bytes counter, RealPlayer G2 depends on it.
  61. * 1999-12-20: Thomas Sailer
  62. * Fix bad bug in conversion to per interface probing.
  63. * disconnect was called multiple times for the audio device,
  64. * leading to a premature freeing of the audio structures
  65. * 2000-05-13: Thomas Sailer
  66. * I don't remember who changed the find_format routine,
  67. * but the change was completely broken for the Dallas
  68. * chip. Anyway taking sampling rate into account in find_format
  69. * is bad and should not be done unless there are devices with
  70. * completely broken audio descriptors. Unless someone shows
  71. * me such a descriptor, I will not allow find_format to
  72. * take the sampling rate into account.
  73. * Also, the former find_format made:
  74. * - mpg123 play mono instead of stereo
  75. * - sox completely fail for wav's with sample rates < 44.1kHz
  76. * for the Dallas chip.
  77. * Also fix a rather long standing problem with applications that
  78. * use "small" writes producing no sound at all.
  79. * 2000-05-15: Thomas Sailer
  80. * My fears came true, the Philips camera indeed has pretty stupid
  81. * audio descriptors.
  82. * 2000-05-17: Thomas Sailer
  83. * Nemsoft spotted my stupid last minute change, thanks
  84. * 2000-05-19: Thomas Sailer
  85. * Fixed FEATURE_UNIT thinkos found thanks to the KC Technology
  86. * Xtend device. Basically the driver treated FEATURE_UNIT's sourced
  87. * by mono terminals as stereo.
  88. * 2000-05-20: Thomas Sailer
  89. * SELECTOR support (and thus selecting record channels from the mixer).
  90. * Somewhat peculiar due to OSS interface limitations. Only works
  91. * for channels where a "slider" is already in front of it (i.e.
  92. * a MIXER unit or a FEATURE unit with volume capability).
  93. * 2000-11-26: Thomas Sailer
  94. * Workaround for Dallas DS4201. The DS4201 uses PCM8 as format tag for
  95. * its 8 bit modes, but expects signed data (and should therefore have used PCM).
  96. * 2001-03-10: Thomas Sailer
  97. * provide abs function, prevent picking up a bogus kernel macro
  98. * for abs. Bug report by Andrew Morton <andrewm@uow.edu.au>
  99. * 2001-06-16: Bryce Nesbitt <bryce@obviously.com>
  100. * Fix SNDCTL_DSP_STEREO API violation
  101. * 2003-04-08: Oliver Neukum (oliver@neukum.name):
  102. * Setting a configuration is done by usbcore and must not be overridden
  103. * 2004-02-27: Workaround for broken synch descriptors
  104. * 2004-03-07: Alan Stern <stern@rowland.harvard.edu>
  105. * Add usb_ifnum_to_if() and usb_altnum_to_altsetting() support.
  106. * Use the in-memory descriptors instead of reading them from the device.
  107. *
  108. */
  109. /*
  110. * Strategy:
  111. *
  112. * Alan Cox and Thomas Sailer are starting to dig at opposite ends and
  113. * are hoping to meet in the middle, just like tunnel diggers :)
  114. * Alan tackles the descriptor parsing, Thomas the actual data IO and the
  115. * OSS compatible interface.
  116. *
  117. * Data IO implementation issues
  118. *
  119. * A mmap'able ring buffer per direction is implemented, because
  120. * almost every OSS app expects it. It is however impractical to
  121. * transmit/receive USB data directly into and out of the ring buffer,
  122. * due to alignment and synchronisation issues. Instead, the ring buffer
  123. * feeds a constant time delay line that handles the USB issues.
  124. *
  125. * Now we first try to find an alternate setting that exactly matches
  126. * the sample format requested by the user. If we find one, we do not
  127. * need to perform any sample rate conversions. If there is no matching
  128. * altsetting, we choose the closest one and perform sample format
  129. * conversions. We never do sample rate conversion; these are too
  130. * expensive to be performed in the kernel.
  131. *
  132. * Current status: no known HCD-specific issues.
  133. *
  134. * Generally: Due to the brokenness of the Audio Class spec
  135. * it seems generally impossible to write a generic Audio Class driver,
  136. * so a reasonable driver should implement the features that are actually
  137. * used.
  138. *
  139. * Parsing implementation issues
  140. *
  141. * One cannot reasonably parse the AudioClass descriptors linearly.
  142. * Therefore the current implementation features routines to look
  143. * for a specific descriptor in the descriptor list.
  144. *
  145. * How does the parsing work? First, all interfaces are searched
  146. * for an AudioControl class interface. If found, the config descriptor
  147. * that belongs to the current configuration is searched and
  148. * the HEADER descriptor is found. It contains a list of
  149. * all AudioStreaming and MIDIStreaming devices. This list is then walked,
  150. * and all AudioStreaming interfaces are classified into input and output
  151. * interfaces (according to the endpoint0 direction in altsetting1) (MIDIStreaming
  152. * is currently not supported). The input & output list is then used
  153. * to group inputs and outputs together and issued pairwise to the
  154. * AudioStreaming class parser. Finally, all OUTPUT_TERMINAL descriptors
  155. * are walked and issued to the mixer construction routine.
  156. *
  157. * The AudioStreaming parser simply enumerates all altsettings belonging
  158. * to the specified interface. It looks for AS_GENERAL and FORMAT_TYPE
  159. * class specific descriptors to extract the sample format/sample rate
  160. * data. Only sample format types PCM and PCM8 are supported right now, and
  161. * only FORMAT_TYPE_I is handled. The isochronous data endpoint needs to
  162. * be the first endpoint of the interface, and the optional synchronisation
  163. * isochronous endpoint the second one.
  164. *
  165. * Mixer construction works as follows: The various TERMINAL and UNIT
  166. * descriptors span a tree from the root (OUTPUT_TERMINAL) through the
  167. * intermediate nodes (UNITs) to the leaves (INPUT_TERMINAL). We walk
  168. * that tree in a depth first manner. FEATURE_UNITs may contribute volume,
  169. * bass and treble sliders to the mixer, MIXER_UNITs volume sliders.
  170. * The terminal type encoded in the INPUT_TERMINALs feeds a heuristic
  171. * to determine "meaningful" OSS slider numbers, however we will see
  172. * how well this works in practice. Other features are not used at the
  173. * moment, they seem less often used. Also, it seems difficult at least
  174. * to construct recording source switches from SELECTOR_UNITs, but
  175. * since there are not many USB ADC's available, we leave that for later.
  176. */
  177. /*****************************************************************************/
  178. #include <linux/kernel.h>
  179. #include <linux/slab.h>
  180. #include <linux/string.h>
  181. #include <linux/timer.h>
  182. #include <linux/sched.h>
  183. #include <linux/smp_lock.h>
  184. #include <linux/module.h>
  185. #include <linux/sound.h>
  186. #include <linux/soundcard.h>
  187. #include <linux/list.h>
  188. #include <linux/vmalloc.h>
  189. #include <linux/init.h>
  190. #include <linux/poll.h>
  191. #include <linux/bitops.h>
  192. #include <asm/uaccess.h>
  193. #include <asm/io.h>
  194. #include <linux/usb.h>
  195. #include "audio.h"
  196. /*
  197. * Version Information
  198. */
  199. #define DRIVER_VERSION "v1.0.0"
  200. #define DRIVER_AUTHOR "Alan Cox <alan@lxorguk.ukuu.org.uk>, Thomas Sailer (sailer@ife.ee.ethz.ch)"
  201. #define DRIVER_DESC "USB Audio Class driver"
  202. #define AUDIO_DEBUG 1
  203. #define SND_DEV_DSP16 5
  204. #define dprintk(x)
  205. /* --------------------------------------------------------------------- */
  206. /*
  207. * Linked list of all audio devices...
  208. */
  209. static struct list_head audiodevs = LIST_HEAD_INIT(audiodevs);
  210. static DECLARE_MUTEX(open_sem);
  211. /*
  212. * wait queue for processes wanting to open an USB audio device
  213. */
  214. static DECLARE_WAIT_QUEUE_HEAD(open_wait);
  215. #define MAXFORMATS MAX_ALT
  216. #define DMABUFSHIFT 17 /* 128k worth of DMA buffer */
  217. #define NRSGBUF (1U<<(DMABUFSHIFT-PAGE_SHIFT))
  218. /*
  219. * This influences:
  220. * - Latency
  221. * - Interrupt rate
  222. * - Synchronisation behaviour
  223. * Don't touch this if you don't understand all of the above.
  224. */
  225. #define DESCFRAMES 5
  226. #define SYNCFRAMES DESCFRAMES
  227. #define MIXFLG_STEREOIN 1
  228. #define MIXFLG_STEREOOUT 2
  229. struct mixerchannel {
  230. __u16 value;
  231. __u16 osschannel; /* number of the OSS channel */
  232. __s16 minval, maxval;
  233. __u16 slctunitid;
  234. __u8 unitid;
  235. __u8 selector;
  236. __u8 chnum;
  237. __u8 flags;
  238. };
  239. struct audioformat {
  240. unsigned int format;
  241. unsigned int sratelo;
  242. unsigned int sratehi;
  243. unsigned char altsetting;
  244. unsigned char attributes;
  245. };
  246. struct dmabuf {
  247. /* buffer data format */
  248. unsigned int format;
  249. unsigned int srate;
  250. /* physical buffer */
  251. unsigned char *sgbuf[NRSGBUF];
  252. unsigned bufsize;
  253. unsigned numfrag;
  254. unsigned fragshift;
  255. unsigned wrptr, rdptr;
  256. unsigned total_bytes;
  257. int count;
  258. unsigned error; /* over/underrun */
  259. wait_queue_head_t wait;
  260. /* redundant, but makes calculations easier */
  261. unsigned fragsize;
  262. unsigned dmasize;
  263. /* OSS stuff */
  264. unsigned mapped:1;
  265. unsigned ready:1;
  266. unsigned ossfragshift;
  267. int ossmaxfrags;
  268. unsigned subdivision;
  269. };
  270. struct usb_audio_state;
  271. #define FLG_URB0RUNNING 1
  272. #define FLG_URB1RUNNING 2
  273. #define FLG_SYNC0RUNNING 4
  274. #define FLG_SYNC1RUNNING 8
  275. #define FLG_RUNNING 16
  276. #define FLG_CONNECTED 32
  277. struct my_data_urb {
  278. struct urb *urb;
  279. };
  280. struct my_sync_urb {
  281. struct urb *urb;
  282. };
  283. struct usb_audiodev {
  284. struct list_head list;
  285. struct usb_audio_state *state;
  286. /* soundcore stuff */
  287. int dev_audio;
  288. /* wave stuff */
  289. mode_t open_mode;
  290. spinlock_t lock; /* DMA buffer access spinlock */
  291. struct usbin {
  292. int interface; /* Interface number, -1 means not used */
  293. unsigned int format; /* USB data format */
  294. unsigned int datapipe; /* the data input pipe */
  295. unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but adaptive IN mode */
  296. unsigned int syncinterval; /* P for adaptive IN mode, 0 otherwise */
  297. unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  298. unsigned int freqmax; /* maximum sampling rate, used for buffer management */
  299. unsigned int phase; /* phase accumulator */
  300. unsigned int flags; /* see FLG_ defines */
  301. struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
  302. struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
  303. struct dmabuf dma;
  304. } usbin;
  305. struct usbout {
  306. int interface; /* Interface number, -1 means not used */
  307. unsigned int format; /* USB data format */
  308. unsigned int datapipe; /* the data input pipe */
  309. unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but asynchronous OUT mode */
  310. unsigned int syncinterval; /* P for asynchronous OUT mode, 0 otherwise */
  311. unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  312. unsigned int freqm; /* momentary sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  313. unsigned int freqmax; /* maximum sampling rate, used for buffer management */
  314. unsigned int phase; /* phase accumulator */
  315. unsigned int flags; /* see FLG_ defines */
  316. struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
  317. struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
  318. struct dmabuf dma;
  319. } usbout;
  320. unsigned int numfmtin, numfmtout;
  321. struct audioformat fmtin[MAXFORMATS];
  322. struct audioformat fmtout[MAXFORMATS];
  323. };
  324. struct usb_mixerdev {
  325. struct list_head list;
  326. struct usb_audio_state *state;
  327. /* soundcore stuff */
  328. int dev_mixer;
  329. unsigned char iface; /* interface number of the AudioControl interface */
  330. /* USB format descriptions */
  331. unsigned int numch, modcnt;
  332. /* mixch is last and gets allocated dynamically */
  333. struct mixerchannel ch[0];
  334. };
  335. struct usb_audio_state {
  336. struct list_head audiodev;
  337. /* USB device */
  338. struct usb_device *usbdev;
  339. struct list_head audiolist;
  340. struct list_head mixerlist;
  341. unsigned count; /* usage counter; NOTE: the usb stack is also considered a user */
  342. };
  343. /* private audio format extensions */
  344. #define AFMT_STEREO 0x80000000
  345. #define AFMT_ISSTEREO(x) ((x) & AFMT_STEREO)
  346. #define AFMT_IS16BIT(x) ((x) & (AFMT_S16_LE|AFMT_S16_BE|AFMT_U16_LE|AFMT_U16_BE))
  347. #define AFMT_ISUNSIGNED(x) ((x) & (AFMT_U8|AFMT_U16_LE|AFMT_U16_BE))
  348. #define AFMT_BYTESSHIFT(x) ((AFMT_ISSTEREO(x) ? 1 : 0) + (AFMT_IS16BIT(x) ? 1 : 0))
  349. #define AFMT_BYTES(x) (1<<AFMT_BYTESSHFIT(x))
  350. /* --------------------------------------------------------------------- */
  351. static inline unsigned ld2(unsigned int x)
  352. {
  353. unsigned r = 0;
  354. if (x >= 0x10000) {
  355. x >>= 16;
  356. r += 16;
  357. }
  358. if (x >= 0x100) {
  359. x >>= 8;
  360. r += 8;
  361. }
  362. if (x >= 0x10) {
  363. x >>= 4;
  364. r += 4;
  365. }
  366. if (x >= 4) {
  367. x >>= 2;
  368. r += 2;
  369. }
  370. if (x >= 2)
  371. r++;
  372. return r;
  373. }
  374. /* --------------------------------------------------------------------- */
  375. /*
  376. * OSS compatible ring buffer management. The ring buffer may be mmap'ed into
  377. * an application address space.
  378. *
  379. * I first used the rvmalloc stuff copied from bttv. Alan Cox did not like it, so
  380. * we now use an array of pointers to a single page each. This saves us the
  381. * kernel page table manipulations, but we have to do a page table alike mechanism
  382. * (though only one indirection) in software.
  383. */
  384. static void dmabuf_release(struct dmabuf *db)
  385. {
  386. unsigned int nr;
  387. void *p;
  388. for(nr = 0; nr < NRSGBUF; nr++) {
  389. if (!(p = db->sgbuf[nr]))
  390. continue;
  391. ClearPageReserved(virt_to_page(p));
  392. free_page((unsigned long)p);
  393. db->sgbuf[nr] = NULL;
  394. }
  395. db->mapped = db->ready = 0;
  396. }
  397. static int dmabuf_init(struct dmabuf *db)
  398. {
  399. unsigned int nr, bytepersec, bufs;
  400. void *p;
  401. /* initialize some fields */
  402. db->rdptr = db->wrptr = db->total_bytes = db->count = db->error = 0;
  403. /* calculate required buffer size */
  404. bytepersec = db->srate << AFMT_BYTESSHIFT(db->format);
  405. bufs = 1U << DMABUFSHIFT;
  406. if (db->ossfragshift) {
  407. if ((1000 << db->ossfragshift) < bytepersec)
  408. db->fragshift = ld2(bytepersec/1000);
  409. else
  410. db->fragshift = db->ossfragshift;
  411. } else {
  412. db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
  413. if (db->fragshift < 3)
  414. db->fragshift = 3;
  415. }
  416. db->numfrag = bufs >> db->fragshift;
  417. while (db->numfrag < 4 && db->fragshift > 3) {
  418. db->fragshift--;
  419. db->numfrag = bufs >> db->fragshift;
  420. }
  421. db->fragsize = 1 << db->fragshift;
  422. if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
  423. db->numfrag = db->ossmaxfrags;
  424. db->dmasize = db->numfrag << db->fragshift;
  425. for(nr = 0; nr < NRSGBUF; nr++) {
  426. if (!db->sgbuf[nr]) {
  427. p = (void *)get_zeroed_page(GFP_KERNEL);
  428. if (!p)
  429. return -ENOMEM;
  430. db->sgbuf[nr] = p;
  431. SetPageReserved(virt_to_page(p));
  432. }
  433. memset(db->sgbuf[nr], AFMT_ISUNSIGNED(db->format) ? 0x80 : 0, PAGE_SIZE);
  434. if ((nr << PAGE_SHIFT) >= db->dmasize)
  435. break;
  436. }
  437. db->bufsize = nr << PAGE_SHIFT;
  438. db->ready = 1;
  439. dprintk((KERN_DEBUG "usbaudio: dmabuf_init bytepersec %d bufs %d ossfragshift %d ossmaxfrags %d "
  440. "fragshift %d fragsize %d numfrag %d dmasize %d bufsize %d fmt 0x%x srate %d\n",
  441. bytepersec, bufs, db->ossfragshift, db->ossmaxfrags, db->fragshift, db->fragsize,
  442. db->numfrag, db->dmasize, db->bufsize, db->format, db->srate));
  443. return 0;
  444. }
  445. static int dmabuf_mmap(struct vm_area_struct *vma, struct dmabuf *db, unsigned long start, unsigned long size, pgprot_t prot)
  446. {
  447. unsigned int nr;
  448. if (!db->ready || db->mapped || (start | size) & (PAGE_SIZE-1) || size > db->bufsize)
  449. return -EINVAL;
  450. size >>= PAGE_SHIFT;
  451. for(nr = 0; nr < size; nr++)
  452. if (!db->sgbuf[nr])
  453. return -EINVAL;
  454. db->mapped = 1;
  455. for(nr = 0; nr < size; nr++) {
  456. unsigned long pfn;
  457. pfn = virt_to_phys(db->sgbuf[nr]) >> PAGE_SHIFT;
  458. if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, prot))
  459. return -EAGAIN;
  460. start += PAGE_SIZE;
  461. }
  462. return 0;
  463. }
  464. static void dmabuf_copyin(struct dmabuf *db, const void *buffer, unsigned int size)
  465. {
  466. unsigned int pgrem, rem;
  467. db->total_bytes += size;
  468. for (;;) {
  469. if (size <= 0)
  470. return;
  471. pgrem = ((~db->wrptr) & (PAGE_SIZE-1)) + 1;
  472. if (pgrem > size)
  473. pgrem = size;
  474. rem = db->dmasize - db->wrptr;
  475. if (pgrem > rem)
  476. pgrem = rem;
  477. memcpy((db->sgbuf[db->wrptr >> PAGE_SHIFT]) + (db->wrptr & (PAGE_SIZE-1)), buffer, pgrem);
  478. size -= pgrem;
  479. buffer += pgrem;
  480. db->wrptr += pgrem;
  481. if (db->wrptr >= db->dmasize)
  482. db->wrptr = 0;
  483. }
  484. }
  485. static void dmabuf_copyout(struct dmabuf *db, void *buffer, unsigned int size)
  486. {
  487. unsigned int pgrem, rem;
  488. db->total_bytes += size;
  489. for (;;) {
  490. if (size <= 0)
  491. return;
  492. pgrem = ((~db->rdptr) & (PAGE_SIZE-1)) + 1;
  493. if (pgrem > size)
  494. pgrem = size;
  495. rem = db->dmasize - db->rdptr;
  496. if (pgrem > rem)
  497. pgrem = rem;
  498. memcpy(buffer, (db->sgbuf[db->rdptr >> PAGE_SHIFT]) + (db->rdptr & (PAGE_SIZE-1)), pgrem);
  499. size -= pgrem;
  500. buffer += pgrem;
  501. db->rdptr += pgrem;
  502. if (db->rdptr >= db->dmasize)
  503. db->rdptr = 0;
  504. }
  505. }
  506. static int dmabuf_copyin_user(struct dmabuf *db, unsigned int ptr, const void __user *buffer, unsigned int size)
  507. {
  508. unsigned int pgrem, rem;
  509. if (!db->ready || db->mapped)
  510. return -EINVAL;
  511. for (;;) {
  512. if (size <= 0)
  513. return 0;
  514. pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
  515. if (pgrem > size)
  516. pgrem = size;
  517. rem = db->dmasize - ptr;
  518. if (pgrem > rem)
  519. pgrem = rem;
  520. if (copy_from_user((db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), buffer, pgrem))
  521. return -EFAULT;
  522. size -= pgrem;
  523. buffer += pgrem;
  524. ptr += pgrem;
  525. if (ptr >= db->dmasize)
  526. ptr = 0;
  527. }
  528. }
  529. static int dmabuf_copyout_user(struct dmabuf *db, unsigned int ptr, void __user *buffer, unsigned int size)
  530. {
  531. unsigned int pgrem, rem;
  532. if (!db->ready || db->mapped)
  533. return -EINVAL;
  534. for (;;) {
  535. if (size <= 0)
  536. return 0;
  537. pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
  538. if (pgrem > size)
  539. pgrem = size;
  540. rem = db->dmasize - ptr;
  541. if (pgrem > rem)
  542. pgrem = rem;
  543. if (copy_to_user(buffer, (db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), pgrem))
  544. return -EFAULT;
  545. size -= pgrem;
  546. buffer += pgrem;
  547. ptr += pgrem;
  548. if (ptr >= db->dmasize)
  549. ptr = 0;
  550. }
  551. }
  552. /* --------------------------------------------------------------------- */
  553. /*
  554. * USB I/O code. We do sample format conversion if necessary
  555. */
  556. static void usbin_stop(struct usb_audiodev *as)
  557. {
  558. struct usbin *u = &as->usbin;
  559. unsigned long flags;
  560. unsigned int i, notkilled = 1;
  561. spin_lock_irqsave(&as->lock, flags);
  562. u->flags &= ~FLG_RUNNING;
  563. i = u->flags;
  564. spin_unlock_irqrestore(&as->lock, flags);
  565. while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
  566. if (notkilled)
  567. schedule_timeout_interruptible(1);
  568. else
  569. schedule_timeout_uninterruptible(1);
  570. spin_lock_irqsave(&as->lock, flags);
  571. i = u->flags;
  572. spin_unlock_irqrestore(&as->lock, flags);
  573. if (notkilled && signal_pending(current)) {
  574. if (i & FLG_URB0RUNNING)
  575. usb_kill_urb(u->durb[0].urb);
  576. if (i & FLG_URB1RUNNING)
  577. usb_kill_urb(u->durb[1].urb);
  578. if (i & FLG_SYNC0RUNNING)
  579. usb_kill_urb(u->surb[0].urb);
  580. if (i & FLG_SYNC1RUNNING)
  581. usb_kill_urb(u->surb[1].urb);
  582. notkilled = 0;
  583. }
  584. }
  585. set_current_state(TASK_RUNNING);
  586. kfree(u->durb[0].urb->transfer_buffer);
  587. kfree(u->durb[1].urb->transfer_buffer);
  588. kfree(u->surb[0].urb->transfer_buffer);
  589. kfree(u->surb[1].urb->transfer_buffer);
  590. u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
  591. u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
  592. }
  593. static inline void usbin_release(struct usb_audiodev *as)
  594. {
  595. usbin_stop(as);
  596. }
  597. static void usbin_disc(struct usb_audiodev *as)
  598. {
  599. struct usbin *u = &as->usbin;
  600. unsigned long flags;
  601. spin_lock_irqsave(&as->lock, flags);
  602. u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
  603. spin_unlock_irqrestore(&as->lock, flags);
  604. usbin_stop(as);
  605. }
  606. static void conversion(const void *ibuf, unsigned int ifmt, void *obuf, unsigned int ofmt, void *tmp, unsigned int scnt)
  607. {
  608. unsigned int cnt, i;
  609. __s16 *sp, *sp2, s;
  610. unsigned char *bp;
  611. cnt = scnt;
  612. if (AFMT_ISSTEREO(ifmt))
  613. cnt <<= 1;
  614. sp = ((__s16 *)tmp) + cnt;
  615. switch (ifmt & ~AFMT_STEREO) {
  616. case AFMT_U8:
  617. for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
  618. bp--;
  619. sp--;
  620. *sp = (*bp ^ 0x80) << 8;
  621. }
  622. break;
  623. case AFMT_S8:
  624. for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
  625. bp--;
  626. sp--;
  627. *sp = *bp << 8;
  628. }
  629. break;
  630. case AFMT_U16_LE:
  631. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  632. bp -= 2;
  633. sp--;
  634. *sp = (bp[0] | (bp[1] << 8)) ^ 0x8000;
  635. }
  636. break;
  637. case AFMT_U16_BE:
  638. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  639. bp -= 2;
  640. sp--;
  641. *sp = (bp[1] | (bp[0] << 8)) ^ 0x8000;
  642. }
  643. break;
  644. case AFMT_S16_LE:
  645. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  646. bp -= 2;
  647. sp--;
  648. *sp = bp[0] | (bp[1] << 8);
  649. }
  650. break;
  651. case AFMT_S16_BE:
  652. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  653. bp -= 2;
  654. sp--;
  655. *sp = bp[1] | (bp[0] << 8);
  656. }
  657. break;
  658. }
  659. if (!AFMT_ISSTEREO(ifmt) && AFMT_ISSTEREO(ofmt)) {
  660. /* expand from mono to stereo */
  661. for (sp = ((__s16 *)tmp)+scnt, sp2 = ((__s16 *)tmp)+2*scnt, i = 0; i < scnt; i++) {
  662. sp--;
  663. sp2 -= 2;
  664. sp2[0] = sp2[1] = sp[0];
  665. }
  666. }
  667. if (AFMT_ISSTEREO(ifmt) && !AFMT_ISSTEREO(ofmt)) {
  668. /* contract from stereo to mono */
  669. for (sp = sp2 = ((__s16 *)tmp), i = 0; i < scnt; i++, sp++, sp2 += 2)
  670. sp[0] = (sp2[0] + sp2[1]) >> 1;
  671. }
  672. cnt = scnt;
  673. if (AFMT_ISSTEREO(ofmt))
  674. cnt <<= 1;
  675. sp = ((__s16 *)tmp);
  676. bp = ((unsigned char *)obuf);
  677. switch (ofmt & ~AFMT_STEREO) {
  678. case AFMT_U8:
  679. for (i = 0; i < cnt; i++, sp++, bp++)
  680. *bp = (*sp >> 8) ^ 0x80;
  681. break;
  682. case AFMT_S8:
  683. for (i = 0; i < cnt; i++, sp++, bp++)
  684. *bp = *sp >> 8;
  685. break;
  686. case AFMT_U16_LE:
  687. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  688. s = *sp;
  689. bp[0] = s;
  690. bp[1] = (s >> 8) ^ 0x80;
  691. }
  692. break;
  693. case AFMT_U16_BE:
  694. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  695. s = *sp;
  696. bp[1] = s;
  697. bp[0] = (s >> 8) ^ 0x80;
  698. }
  699. break;
  700. case AFMT_S16_LE:
  701. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  702. s = *sp;
  703. bp[0] = s;
  704. bp[1] = s >> 8;
  705. }
  706. break;
  707. case AFMT_S16_BE:
  708. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  709. s = *sp;
  710. bp[1] = s;
  711. bp[0] = s >> 8;
  712. }
  713. break;
  714. }
  715. }
  716. static void usbin_convert(struct usbin *u, unsigned char *buffer, unsigned int samples)
  717. {
  718. union {
  719. __s16 s[64];
  720. unsigned char b[0];
  721. } tmp;
  722. unsigned int scnt, maxs, ufmtsh, dfmtsh;
  723. ufmtsh = AFMT_BYTESSHIFT(u->format);
  724. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  725. maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
  726. while (samples > 0) {
  727. scnt = samples;
  728. if (scnt > maxs)
  729. scnt = maxs;
  730. conversion(buffer, u->format, tmp.b, u->dma.format, tmp.b, scnt);
  731. dmabuf_copyin(&u->dma, tmp.b, scnt << dfmtsh);
  732. buffer += scnt << ufmtsh;
  733. samples -= scnt;
  734. }
  735. }
  736. static int usbin_prepare_desc(struct usbin *u, struct urb *urb)
  737. {
  738. unsigned int i, maxsize, offs;
  739. maxsize = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  740. //printk(KERN_DEBUG "usbin_prepare_desc: maxsize %d freq 0x%x format 0x%x\n", maxsize, u->freqn, u->format);
  741. for (i = offs = 0; i < DESCFRAMES; i++, offs += maxsize) {
  742. urb->iso_frame_desc[i].length = maxsize;
  743. urb->iso_frame_desc[i].offset = offs;
  744. }
  745. urb->interval = 1;
  746. return 0;
  747. }
  748. /*
  749. * return value: 0 if descriptor should be restarted, -1 otherwise
  750. * convert sample format on the fly if necessary
  751. */
  752. static int usbin_retire_desc(struct usbin *u, struct urb *urb)
  753. {
  754. unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, dmafree;
  755. unsigned char *cp;
  756. ufmtsh = AFMT_BYTESSHIFT(u->format);
  757. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  758. for (i = 0; i < DESCFRAMES; i++) {
  759. cp = ((unsigned char *)urb->transfer_buffer) + urb->iso_frame_desc[i].offset;
  760. if (urb->iso_frame_desc[i].status) {
  761. dprintk((KERN_DEBUG "usbin_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  762. continue;
  763. }
  764. scnt = urb->iso_frame_desc[i].actual_length >> ufmtsh;
  765. if (!scnt)
  766. continue;
  767. cnt = scnt << dfmtsh;
  768. if (!u->dma.mapped) {
  769. dmafree = u->dma.dmasize - u->dma.count;
  770. if (cnt > dmafree) {
  771. scnt = dmafree >> dfmtsh;
  772. cnt = scnt << dfmtsh;
  773. err++;
  774. }
  775. }
  776. u->dma.count += cnt;
  777. if (u->format == u->dma.format) {
  778. /* we do not need format conversion */
  779. dprintk((KERN_DEBUG "usbaudio: no sample format conversion\n"));
  780. dmabuf_copyin(&u->dma, cp, cnt);
  781. } else {
  782. /* we need sampling format conversion */
  783. dprintk((KERN_DEBUG "usbaudio: sample format conversion %x != %x\n", u->format, u->dma.format));
  784. usbin_convert(u, cp, scnt);
  785. }
  786. }
  787. if (err)
  788. u->dma.error++;
  789. if (u->dma.count >= (signed)u->dma.fragsize)
  790. wake_up(&u->dma.wait);
  791. return err ? -1 : 0;
  792. }
  793. static void usbin_completed(struct urb *urb, struct pt_regs *regs)
  794. {
  795. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  796. struct usbin *u = &as->usbin;
  797. unsigned long flags;
  798. unsigned int mask;
  799. int suret = 0;
  800. #if 0
  801. printk(KERN_DEBUG "usbin_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  802. #endif
  803. if (urb == u->durb[0].urb)
  804. mask = FLG_URB0RUNNING;
  805. else if (urb == u->durb[1].urb)
  806. mask = FLG_URB1RUNNING;
  807. else {
  808. mask = 0;
  809. printk(KERN_ERR "usbin_completed: panic: unknown URB\n");
  810. }
  811. urb->dev = as->state->usbdev;
  812. spin_lock_irqsave(&as->lock, flags);
  813. if (!usbin_retire_desc(u, urb) &&
  814. u->flags & FLG_RUNNING &&
  815. !usbin_prepare_desc(u, urb) &&
  816. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  817. u->flags |= mask;
  818. } else {
  819. u->flags &= ~(mask | FLG_RUNNING);
  820. wake_up(&u->dma.wait);
  821. printk(KERN_DEBUG "usbin_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret);
  822. }
  823. spin_unlock_irqrestore(&as->lock, flags);
  824. }
  825. /*
  826. * we output sync data
  827. */
  828. static int usbin_sync_prepare_desc(struct usbin *u, struct urb *urb)
  829. {
  830. unsigned char *cp = urb->transfer_buffer;
  831. unsigned int i, offs;
  832. for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3, cp += 3) {
  833. urb->iso_frame_desc[i].length = 3;
  834. urb->iso_frame_desc[i].offset = offs;
  835. cp[0] = u->freqn;
  836. cp[1] = u->freqn >> 8;
  837. cp[2] = u->freqn >> 16;
  838. }
  839. urb->interval = 1;
  840. return 0;
  841. }
  842. /*
  843. * return value: 0 if descriptor should be restarted, -1 otherwise
  844. */
  845. static int usbin_sync_retire_desc(struct usbin *u, struct urb *urb)
  846. {
  847. unsigned int i;
  848. for (i = 0; i < SYNCFRAMES; i++)
  849. if (urb->iso_frame_desc[0].status)
  850. dprintk((KERN_DEBUG "usbin_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  851. return 0;
  852. }
  853. static void usbin_sync_completed(struct urb *urb, struct pt_regs *regs)
  854. {
  855. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  856. struct usbin *u = &as->usbin;
  857. unsigned long flags;
  858. unsigned int mask;
  859. int suret = 0;
  860. #if 0
  861. printk(KERN_DEBUG "usbin_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  862. #endif
  863. if (urb == u->surb[0].urb)
  864. mask = FLG_SYNC0RUNNING;
  865. else if (urb == u->surb[1].urb)
  866. mask = FLG_SYNC1RUNNING;
  867. else {
  868. mask = 0;
  869. printk(KERN_ERR "usbin_sync_completed: panic: unknown URB\n");
  870. }
  871. urb->dev = as->state->usbdev;
  872. spin_lock_irqsave(&as->lock, flags);
  873. if (!usbin_sync_retire_desc(u, urb) &&
  874. u->flags & FLG_RUNNING &&
  875. !usbin_sync_prepare_desc(u, urb) &&
  876. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  877. u->flags |= mask;
  878. } else {
  879. u->flags &= ~(mask | FLG_RUNNING);
  880. wake_up(&u->dma.wait);
  881. dprintk((KERN_DEBUG "usbin_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  882. }
  883. spin_unlock_irqrestore(&as->lock, flags);
  884. }
  885. static int usbin_start(struct usb_audiodev *as)
  886. {
  887. struct usb_device *dev = as->state->usbdev;
  888. struct usbin *u = &as->usbin;
  889. struct urb *urb;
  890. unsigned long flags;
  891. unsigned int maxsze, bufsz;
  892. #if 0
  893. printk(KERN_DEBUG "usbin_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
  894. dev->devnum, u->format, u->dma.format, u->dma.srate);
  895. #endif
  896. /* allocate USB storage if not already done */
  897. spin_lock_irqsave(&as->lock, flags);
  898. if (!(u->flags & FLG_CONNECTED)) {
  899. spin_unlock_irqrestore(&as->lock, flags);
  900. return -EIO;
  901. }
  902. if (!(u->flags & FLG_RUNNING)) {
  903. spin_unlock_irqrestore(&as->lock, flags);
  904. u->freqn = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
  905. u->freqmax = u->freqn + (u->freqn >> 2);
  906. u->phase = 0;
  907. maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  908. bufsz = DESCFRAMES * maxsze;
  909. kfree(u->durb[0].urb->transfer_buffer);
  910. u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  911. u->durb[0].urb->transfer_buffer_length = bufsz;
  912. kfree(u->durb[1].urb->transfer_buffer);
  913. u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  914. u->durb[1].urb->transfer_buffer_length = bufsz;
  915. if (u->syncpipe) {
  916. kfree(u->surb[0].urb->transfer_buffer);
  917. u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  918. u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
  919. kfree(u->surb[1].urb->transfer_buffer);
  920. u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  921. u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
  922. }
  923. if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
  924. (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
  925. printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
  926. return 0;
  927. }
  928. spin_lock_irqsave(&as->lock, flags);
  929. }
  930. if (u->dma.count >= u->dma.dmasize && !u->dma.mapped) {
  931. spin_unlock_irqrestore(&as->lock, flags);
  932. return 0;
  933. }
  934. u->flags |= FLG_RUNNING;
  935. if (!(u->flags & FLG_URB0RUNNING)) {
  936. urb = u->durb[0].urb;
  937. urb->dev = dev;
  938. urb->pipe = u->datapipe;
  939. urb->transfer_flags = URB_ISO_ASAP;
  940. urb->number_of_packets = DESCFRAMES;
  941. urb->context = as;
  942. urb->complete = usbin_completed;
  943. if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  944. u->flags |= FLG_URB0RUNNING;
  945. else
  946. u->flags &= ~FLG_RUNNING;
  947. }
  948. if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
  949. urb = u->durb[1].urb;
  950. urb->dev = dev;
  951. urb->pipe = u->datapipe;
  952. urb->transfer_flags = URB_ISO_ASAP;
  953. urb->number_of_packets = DESCFRAMES;
  954. urb->context = as;
  955. urb->complete = usbin_completed;
  956. if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  957. u->flags |= FLG_URB1RUNNING;
  958. else
  959. u->flags &= ~FLG_RUNNING;
  960. }
  961. if (u->syncpipe) {
  962. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
  963. urb = u->surb[0].urb;
  964. urb->dev = dev;
  965. urb->pipe = u->syncpipe;
  966. urb->transfer_flags = URB_ISO_ASAP;
  967. urb->number_of_packets = SYNCFRAMES;
  968. urb->context = as;
  969. urb->complete = usbin_sync_completed;
  970. /* stride: u->syncinterval */
  971. if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  972. u->flags |= FLG_SYNC0RUNNING;
  973. else
  974. u->flags &= ~FLG_RUNNING;
  975. }
  976. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
  977. urb = u->surb[1].urb;
  978. urb->dev = dev;
  979. urb->pipe = u->syncpipe;
  980. urb->transfer_flags = URB_ISO_ASAP;
  981. urb->number_of_packets = SYNCFRAMES;
  982. urb->context = as;
  983. urb->complete = usbin_sync_completed;
  984. /* stride: u->syncinterval */
  985. if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  986. u->flags |= FLG_SYNC1RUNNING;
  987. else
  988. u->flags &= ~FLG_RUNNING;
  989. }
  990. }
  991. spin_unlock_irqrestore(&as->lock, flags);
  992. return 0;
  993. }
  994. static void usbout_stop(struct usb_audiodev *as)
  995. {
  996. struct usbout *u = &as->usbout;
  997. unsigned long flags;
  998. unsigned int i, notkilled = 1;
  999. spin_lock_irqsave(&as->lock, flags);
  1000. u->flags &= ~FLG_RUNNING;
  1001. i = u->flags;
  1002. spin_unlock_irqrestore(&as->lock, flags);
  1003. while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
  1004. if (notkilled)
  1005. schedule_timeout_interruptible(1);
  1006. else
  1007. schedule_timeout_uninterruptible(1);
  1008. spin_lock_irqsave(&as->lock, flags);
  1009. i = u->flags;
  1010. spin_unlock_irqrestore(&as->lock, flags);
  1011. if (notkilled && signal_pending(current)) {
  1012. if (i & FLG_URB0RUNNING)
  1013. usb_kill_urb(u->durb[0].urb);
  1014. if (i & FLG_URB1RUNNING)
  1015. usb_kill_urb(u->durb[1].urb);
  1016. if (i & FLG_SYNC0RUNNING)
  1017. usb_kill_urb(u->surb[0].urb);
  1018. if (i & FLG_SYNC1RUNNING)
  1019. usb_kill_urb(u->surb[1].urb);
  1020. notkilled = 0;
  1021. }
  1022. }
  1023. set_current_state(TASK_RUNNING);
  1024. kfree(u->durb[0].urb->transfer_buffer);
  1025. kfree(u->durb[1].urb->transfer_buffer);
  1026. kfree(u->surb[0].urb->transfer_buffer);
  1027. kfree(u->surb[1].urb->transfer_buffer);
  1028. u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
  1029. u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
  1030. }
  1031. static inline void usbout_release(struct usb_audiodev *as)
  1032. {
  1033. usbout_stop(as);
  1034. }
  1035. static void usbout_disc(struct usb_audiodev *as)
  1036. {
  1037. struct usbout *u = &as->usbout;
  1038. unsigned long flags;
  1039. spin_lock_irqsave(&as->lock, flags);
  1040. u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
  1041. spin_unlock_irqrestore(&as->lock, flags);
  1042. usbout_stop(as);
  1043. }
  1044. static void usbout_convert(struct usbout *u, unsigned char *buffer, unsigned int samples)
  1045. {
  1046. union {
  1047. __s16 s[64];
  1048. unsigned char b[0];
  1049. } tmp;
  1050. unsigned int scnt, maxs, ufmtsh, dfmtsh;
  1051. ufmtsh = AFMT_BYTESSHIFT(u->format);
  1052. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  1053. maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
  1054. while (samples > 0) {
  1055. scnt = samples;
  1056. if (scnt > maxs)
  1057. scnt = maxs;
  1058. dmabuf_copyout(&u->dma, tmp.b, scnt << dfmtsh);
  1059. conversion(tmp.b, u->dma.format, buffer, u->format, tmp.b, scnt);
  1060. buffer += scnt << ufmtsh;
  1061. samples -= scnt;
  1062. }
  1063. }
  1064. static int usbout_prepare_desc(struct usbout *u, struct urb *urb)
  1065. {
  1066. unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, offs;
  1067. unsigned char *cp = urb->transfer_buffer;
  1068. ufmtsh = AFMT_BYTESSHIFT(u->format);
  1069. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  1070. for (i = offs = 0; i < DESCFRAMES; i++) {
  1071. urb->iso_frame_desc[i].offset = offs;
  1072. u->phase = (u->phase & 0x3fff) + u->freqm;
  1073. scnt = u->phase >> 14;
  1074. if (!scnt) {
  1075. urb->iso_frame_desc[i].length = 0;
  1076. continue;
  1077. }
  1078. cnt = scnt << dfmtsh;
  1079. if (!u->dma.mapped) {
  1080. if (cnt > u->dma.count) {
  1081. scnt = u->dma.count >> dfmtsh;
  1082. cnt = scnt << dfmtsh;
  1083. err++;
  1084. }
  1085. u->dma.count -= cnt;
  1086. } else
  1087. u->dma.count += cnt;
  1088. if (u->format == u->dma.format) {
  1089. /* we do not need format conversion */
  1090. dmabuf_copyout(&u->dma, cp, cnt);
  1091. } else {
  1092. /* we need sampling format conversion */
  1093. usbout_convert(u, cp, scnt);
  1094. }
  1095. cnt = scnt << ufmtsh;
  1096. urb->iso_frame_desc[i].length = cnt;
  1097. offs += cnt;
  1098. cp += cnt;
  1099. }
  1100. urb->interval = 1;
  1101. if (err)
  1102. u->dma.error++;
  1103. if (u->dma.mapped) {
  1104. if (u->dma.count >= (signed)u->dma.fragsize)
  1105. wake_up(&u->dma.wait);
  1106. } else {
  1107. if ((signed)u->dma.dmasize >= u->dma.count + (signed)u->dma.fragsize)
  1108. wake_up(&u->dma.wait);
  1109. }
  1110. return err ? -1 : 0;
  1111. }
  1112. /*
  1113. * return value: 0 if descriptor should be restarted, -1 otherwise
  1114. */
  1115. static int usbout_retire_desc(struct usbout *u, struct urb *urb)
  1116. {
  1117. unsigned int i;
  1118. for (i = 0; i < DESCFRAMES; i++) {
  1119. if (urb->iso_frame_desc[i].status) {
  1120. dprintk((KERN_DEBUG "usbout_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  1121. continue;
  1122. }
  1123. }
  1124. return 0;
  1125. }
  1126. static void usbout_completed(struct urb *urb, struct pt_regs *regs)
  1127. {
  1128. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  1129. struct usbout *u = &as->usbout;
  1130. unsigned long flags;
  1131. unsigned int mask;
  1132. int suret = 0;
  1133. #if 0
  1134. printk(KERN_DEBUG "usbout_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  1135. #endif
  1136. if (urb == u->durb[0].urb)
  1137. mask = FLG_URB0RUNNING;
  1138. else if (urb == u->durb[1].urb)
  1139. mask = FLG_URB1RUNNING;
  1140. else {
  1141. mask = 0;
  1142. printk(KERN_ERR "usbout_completed: panic: unknown URB\n");
  1143. }
  1144. urb->dev = as->state->usbdev;
  1145. spin_lock_irqsave(&as->lock, flags);
  1146. if (!usbout_retire_desc(u, urb) &&
  1147. u->flags & FLG_RUNNING &&
  1148. !usbout_prepare_desc(u, urb) &&
  1149. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  1150. u->flags |= mask;
  1151. } else {
  1152. u->flags &= ~(mask | FLG_RUNNING);
  1153. wake_up(&u->dma.wait);
  1154. dprintk((KERN_DEBUG "usbout_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  1155. }
  1156. spin_unlock_irqrestore(&as->lock, flags);
  1157. }
  1158. static int usbout_sync_prepare_desc(struct usbout *u, struct urb *urb)
  1159. {
  1160. unsigned int i, offs;
  1161. for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3) {
  1162. urb->iso_frame_desc[i].length = 3;
  1163. urb->iso_frame_desc[i].offset = offs;
  1164. }
  1165. urb->interval = 1;
  1166. return 0;
  1167. }
  1168. /*
  1169. * return value: 0 if descriptor should be restarted, -1 otherwise
  1170. */
  1171. static int usbout_sync_retire_desc(struct usbout *u, struct urb *urb)
  1172. {
  1173. unsigned char *cp = urb->transfer_buffer;
  1174. unsigned int f, i;
  1175. for (i = 0; i < SYNCFRAMES; i++, cp += 3) {
  1176. if (urb->iso_frame_desc[i].status) {
  1177. dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  1178. continue;
  1179. }
  1180. if (urb->iso_frame_desc[i].actual_length < 3) {
  1181. dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u length %d\n", i, urb->iso_frame_desc[i].actual_length));
  1182. continue;
  1183. }
  1184. f = cp[0] | (cp[1] << 8) | (cp[2] << 16);
  1185. if (abs(f - u->freqn) > (u->freqn >> 3) || f > u->freqmax) {
  1186. printk(KERN_WARNING "usbout_sync_retire_desc: requested frequency %u (nominal %u) out of range!\n", f, u->freqn);
  1187. continue;
  1188. }
  1189. u->freqm = f;
  1190. }
  1191. return 0;
  1192. }
  1193. static void usbout_sync_completed(struct urb *urb, struct pt_regs *regs)
  1194. {
  1195. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  1196. struct usbout *u = &as->usbout;
  1197. unsigned long flags;
  1198. unsigned int mask;
  1199. int suret = 0;
  1200. #if 0
  1201. printk(KERN_DEBUG "usbout_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  1202. #endif
  1203. if (urb == u->surb[0].urb)
  1204. mask = FLG_SYNC0RUNNING;
  1205. else if (urb == u->surb[1].urb)
  1206. mask = FLG_SYNC1RUNNING;
  1207. else {
  1208. mask = 0;
  1209. printk(KERN_ERR "usbout_sync_completed: panic: unknown URB\n");
  1210. }
  1211. urb->dev = as->state->usbdev;
  1212. spin_lock_irqsave(&as->lock, flags);
  1213. if (!usbout_sync_retire_desc(u, urb) &&
  1214. u->flags & FLG_RUNNING &&
  1215. !usbout_sync_prepare_desc(u, urb) &&
  1216. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  1217. u->flags |= mask;
  1218. } else {
  1219. u->flags &= ~(mask | FLG_RUNNING);
  1220. wake_up(&u->dma.wait);
  1221. dprintk((KERN_DEBUG "usbout_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  1222. }
  1223. spin_unlock_irqrestore(&as->lock, flags);
  1224. }
  1225. static int usbout_start(struct usb_audiodev *as)
  1226. {
  1227. struct usb_device *dev = as->state->usbdev;
  1228. struct usbout *u = &as->usbout;
  1229. struct urb *urb;
  1230. unsigned long flags;
  1231. unsigned int maxsze, bufsz;
  1232. #if 0
  1233. printk(KERN_DEBUG "usbout_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
  1234. dev->devnum, u->format, u->dma.format, u->dma.srate);
  1235. #endif
  1236. /* allocate USB storage if not already done */
  1237. spin_lock_irqsave(&as->lock, flags);
  1238. if (!(u->flags & FLG_CONNECTED)) {
  1239. spin_unlock_irqrestore(&as->lock, flags);
  1240. return -EIO;
  1241. }
  1242. if (!(u->flags & FLG_RUNNING)) {
  1243. spin_unlock_irqrestore(&as->lock, flags);
  1244. u->freqn = u->freqm = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
  1245. u->freqmax = u->freqn + (u->freqn >> 2);
  1246. u->phase = 0;
  1247. maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  1248. bufsz = DESCFRAMES * maxsze;
  1249. kfree(u->durb[0].urb->transfer_buffer);
  1250. u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  1251. u->durb[0].urb->transfer_buffer_length = bufsz;
  1252. kfree(u->durb[1].urb->transfer_buffer);
  1253. u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  1254. u->durb[1].urb->transfer_buffer_length = bufsz;
  1255. if (u->syncpipe) {
  1256. kfree(u->surb[0].urb->transfer_buffer);
  1257. u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  1258. u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
  1259. kfree(u->surb[1].urb->transfer_buffer);
  1260. u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  1261. u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
  1262. }
  1263. if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
  1264. (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
  1265. printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
  1266. return 0;
  1267. }
  1268. spin_lock_irqsave(&as->lock, flags);
  1269. }
  1270. if (u->dma.count <= 0 && !u->dma.mapped) {
  1271. spin_unlock_irqrestore(&as->lock, flags);
  1272. return 0;
  1273. }
  1274. u->flags |= FLG_RUNNING;
  1275. if (!(u->flags & FLG_URB0RUNNING)) {
  1276. urb = u->durb[0].urb;
  1277. urb->dev = dev;
  1278. urb->pipe = u->datapipe;
  1279. urb->transfer_flags = URB_ISO_ASAP;
  1280. urb->number_of_packets = DESCFRAMES;
  1281. urb->context = as;
  1282. urb->complete = usbout_completed;
  1283. if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1284. u->flags |= FLG_URB0RUNNING;
  1285. else
  1286. u->flags &= ~FLG_RUNNING;
  1287. }
  1288. if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
  1289. urb = u->durb[1].urb;
  1290. urb->dev = dev;
  1291. urb->pipe = u->datapipe;
  1292. urb->transfer_flags = URB_ISO_ASAP;
  1293. urb->number_of_packets = DESCFRAMES;
  1294. urb->context = as;
  1295. urb->complete = usbout_completed;
  1296. if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1297. u->flags |= FLG_URB1RUNNING;
  1298. else
  1299. u->flags &= ~FLG_RUNNING;
  1300. }
  1301. if (u->syncpipe) {
  1302. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
  1303. urb = u->surb[0].urb;
  1304. urb->dev = dev;
  1305. urb->pipe = u->syncpipe;
  1306. urb->transfer_flags = URB_ISO_ASAP;
  1307. urb->number_of_packets = SYNCFRAMES;
  1308. urb->context = as;
  1309. urb->complete = usbout_sync_completed;
  1310. /* stride: u->syncinterval */
  1311. if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1312. u->flags |= FLG_SYNC0RUNNING;
  1313. else
  1314. u->flags &= ~FLG_RUNNING;
  1315. }
  1316. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
  1317. urb = u->surb[1].urb;
  1318. urb->dev = dev;
  1319. urb->pipe = u->syncpipe;
  1320. urb->transfer_flags = URB_ISO_ASAP;
  1321. urb->number_of_packets = SYNCFRAMES;
  1322. urb->context = as;
  1323. urb->complete = usbout_sync_completed;
  1324. /* stride: u->syncinterval */
  1325. if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1326. u->flags |= FLG_SYNC1RUNNING;
  1327. else
  1328. u->flags &= ~FLG_RUNNING;
  1329. }
  1330. }
  1331. spin_unlock_irqrestore(&as->lock, flags);
  1332. return 0;
  1333. }
  1334. /* --------------------------------------------------------------------- */
  1335. static unsigned int format_goodness(struct audioformat *afp, unsigned int fmt, unsigned int srate)
  1336. {
  1337. unsigned int g = 0;
  1338. if (srate < afp->sratelo)
  1339. g += afp->sratelo - srate;
  1340. if (srate > afp->sratehi)
  1341. g += srate - afp->sratehi;
  1342. if (AFMT_ISSTEREO(afp->format) && !AFMT_ISSTEREO(fmt))
  1343. g += 0x100000;
  1344. if (!AFMT_ISSTEREO(afp->format) && AFMT_ISSTEREO(fmt))
  1345. g += 0x400000;
  1346. if (AFMT_IS16BIT(afp->format) && !AFMT_IS16BIT(fmt))
  1347. g += 0x100000;
  1348. if (!AFMT_IS16BIT(afp->format) && AFMT_IS16BIT(fmt))
  1349. g += 0x400000;
  1350. return g;
  1351. }
  1352. static int find_format(struct audioformat *afp, unsigned int nr, unsigned int fmt, unsigned int srate)
  1353. {
  1354. unsigned int i, g, gb = ~0;
  1355. int j = -1; /* default to failure */
  1356. /* find "best" format (according to format_goodness) */
  1357. for (i = 0; i < nr; i++) {
  1358. g = format_goodness(&afp[i], fmt, srate);
  1359. if (g >= gb)
  1360. continue;
  1361. j = i;
  1362. gb = g;
  1363. }
  1364. return j;
  1365. }
  1366. static int set_format_in(struct usb_audiodev *as)
  1367. {
  1368. struct usb_device *dev = as->state->usbdev;
  1369. struct usb_host_interface *alts;
  1370. struct usb_interface *iface;
  1371. struct usbin *u = &as->usbin;
  1372. struct dmabuf *d = &u->dma;
  1373. struct audioformat *fmt;
  1374. unsigned int ep;
  1375. unsigned char data[3];
  1376. int fmtnr, ret;
  1377. iface = usb_ifnum_to_if(dev, u->interface);
  1378. if (!iface)
  1379. return 0;
  1380. fmtnr = find_format(as->fmtin, as->numfmtin, d->format, d->srate);
  1381. if (fmtnr < 0) {
  1382. printk(KERN_ERR "usbaudio: set_format_in(): failed to find desired format/speed combination.\n");
  1383. return -1;
  1384. }
  1385. fmt = as->fmtin + fmtnr;
  1386. alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
  1387. u->format = fmt->format;
  1388. u->datapipe = usb_rcvisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
  1389. u->syncpipe = u->syncinterval = 0;
  1390. if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x08) {
  1391. if (alts->desc.bNumEndpoints < 2 ||
  1392. alts->endpoint[1].desc.bmAttributes != 0x01 ||
  1393. alts->endpoint[1].desc.bSynchAddress != 0 ||
  1394. alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress & 0x7f)) {
  1395. printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims adaptive in "
  1396. "but has invalid synch pipe; treating as asynchronous in\n",
  1397. dev->devnum, u->interface, fmt->altsetting);
  1398. } else {
  1399. u->syncpipe = usb_sndisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
  1400. u->syncinterval = alts->endpoint[1].desc.bRefresh;
  1401. }
  1402. }
  1403. if (d->srate < fmt->sratelo)
  1404. d->srate = fmt->sratelo;
  1405. if (d->srate > fmt->sratehi)
  1406. d->srate = fmt->sratehi;
  1407. dprintk((KERN_DEBUG "usbaudio: set_format_in: usb_set_interface %u %u\n",
  1408. u->interface, fmt->altsetting));
  1409. if (usb_set_interface(dev, alts->desc.bInterfaceNumber, fmt->altsetting) < 0) {
  1410. printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
  1411. dev->devnum, u->interface, fmt->altsetting);
  1412. return -1;
  1413. }
  1414. if (fmt->sratelo == fmt->sratehi)
  1415. return 0;
  1416. ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
  1417. /* if endpoint has pitch control, enable it */
  1418. if (fmt->attributes & 0x02) {
  1419. data[0] = 1;
  1420. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1421. PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
  1422. printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
  1423. ret, dev->devnum, u->interface, ep, d->srate);
  1424. return -1;
  1425. }
  1426. }
  1427. /* if endpoint has sampling rate control, set it */
  1428. if (fmt->attributes & 0x01) {
  1429. data[0] = d->srate;
  1430. data[1] = d->srate >> 8;
  1431. data[2] = d->srate >> 16;
  1432. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1433. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1434. printk(KERN_ERR "usbaudio: failure (error %d) to set input sampling frequency device %d interface %u endpoint 0x%x to %u\n",
  1435. ret, dev->devnum, u->interface, ep, d->srate);
  1436. return -1;
  1437. }
  1438. if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
  1439. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1440. printk(KERN_ERR "usbaudio: failure (error %d) to get input sampling frequency device %d interface %u endpoint 0x%x\n",
  1441. ret, dev->devnum, u->interface, ep);
  1442. return -1;
  1443. }
  1444. dprintk((KERN_DEBUG "usbaudio: set_format_in: device %d interface %d altsetting %d srate req: %u real %u\n",
  1445. dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
  1446. d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
  1447. }
  1448. dprintk((KERN_DEBUG "usbaudio: set_format_in: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
  1449. return 0;
  1450. }
  1451. static int set_format_out(struct usb_audiodev *as)
  1452. {
  1453. struct usb_device *dev = as->state->usbdev;
  1454. struct usb_host_interface *alts;
  1455. struct usb_interface *iface;
  1456. struct usbout *u = &as->usbout;
  1457. struct dmabuf *d = &u->dma;
  1458. struct audioformat *fmt;
  1459. unsigned int ep;
  1460. unsigned char data[3];
  1461. int fmtnr, ret;
  1462. iface = usb_ifnum_to_if(dev, u->interface);
  1463. if (!iface)
  1464. return 0;
  1465. fmtnr = find_format(as->fmtout, as->numfmtout, d->format, d->srate);
  1466. if (fmtnr < 0) {
  1467. printk(KERN_ERR "usbaudio: set_format_out(): failed to find desired format/speed combination.\n");
  1468. return -1;
  1469. }
  1470. fmt = as->fmtout + fmtnr;
  1471. u->format = fmt->format;
  1472. alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
  1473. u->datapipe = usb_sndisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
  1474. u->syncpipe = u->syncinterval = 0;
  1475. if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x04) {
  1476. #if 0
  1477. printk(KERN_DEBUG "bNumEndpoints 0x%02x endpoint[1].bmAttributes 0x%02x\n"
  1478. KERN_DEBUG "endpoint[1].bSynchAddress 0x%02x endpoint[1].bEndpointAddress 0x%02x\n"
  1479. KERN_DEBUG "endpoint[0].bSynchAddress 0x%02x\n", alts->bNumEndpoints,
  1480. alts->endpoint[1].bmAttributes, alts->endpoint[1].bSynchAddress,
  1481. alts->endpoint[1].bEndpointAddress, alts->endpoint[0].bSynchAddress);
  1482. #endif
  1483. if (alts->desc.bNumEndpoints < 2 ||
  1484. alts->endpoint[1].desc.bmAttributes != 0x01 ||
  1485. alts->endpoint[1].desc.bSynchAddress != 0 ||
  1486. alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress | 0x80)) {
  1487. printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims asynch out "
  1488. "but has invalid synch pipe; treating as adaptive out\n",
  1489. dev->devnum, u->interface, fmt->altsetting);
  1490. } else {
  1491. u->syncpipe = usb_rcvisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
  1492. u->syncinterval = alts->endpoint[1].desc.bRefresh;
  1493. }
  1494. }
  1495. if (d->srate < fmt->sratelo)
  1496. d->srate = fmt->sratelo;
  1497. if (d->srate > fmt->sratehi)
  1498. d->srate = fmt->sratehi;
  1499. dprintk((KERN_DEBUG "usbaudio: set_format_out: usb_set_interface %u %u\n",
  1500. u->interface, fmt->altsetting));
  1501. if (usb_set_interface(dev, u->interface, fmt->altsetting) < 0) {
  1502. printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
  1503. dev->devnum, u->interface, fmt->altsetting);
  1504. return -1;
  1505. }
  1506. if (fmt->sratelo == fmt->sratehi)
  1507. return 0;
  1508. ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
  1509. /* if endpoint has pitch control, enable it */
  1510. if (fmt->attributes & 0x02) {
  1511. data[0] = 1;
  1512. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1513. PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
  1514. printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
  1515. ret, dev->devnum, u->interface, ep, d->srate);
  1516. return -1;
  1517. }
  1518. }
  1519. /* if endpoint has sampling rate control, set it */
  1520. if (fmt->attributes & 0x01) {
  1521. data[0] = d->srate;
  1522. data[1] = d->srate >> 8;
  1523. data[2] = d->srate >> 16;
  1524. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1525. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1526. printk(KERN_ERR "usbaudio: failure (error %d) to set output sampling frequency device %d interface %u endpoint 0x%x to %u\n",
  1527. ret, dev->devnum, u->interface, ep, d->srate);
  1528. return -1;
  1529. }
  1530. if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
  1531. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1532. printk(KERN_ERR "usbaudio: failure (error %d) to get output sampling frequency device %d interface %u endpoint 0x%x\n",
  1533. ret, dev->devnum, u->interface, ep);
  1534. return -1;
  1535. }
  1536. dprintk((KERN_DEBUG "usbaudio: set_format_out: device %d interface %d altsetting %d srate req: %u real %u\n",
  1537. dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
  1538. d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
  1539. }
  1540. dprintk((KERN_DEBUG "usbaudio: set_format_out: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
  1541. return 0;
  1542. }
  1543. static int set_format(struct usb_audiodev *s, unsigned int fmode, unsigned int fmt, unsigned int srate)
  1544. {
  1545. int ret1 = 0, ret2 = 0;
  1546. if (!(fmode & (FMODE_READ|FMODE_WRITE)))
  1547. return -EINVAL;
  1548. if (fmode & FMODE_READ) {
  1549. usbin_stop(s);
  1550. s->usbin.dma.ready = 0;
  1551. if (fmt == AFMT_QUERY)
  1552. fmt = s->usbin.dma.format;
  1553. else
  1554. s->usbin.dma.format = fmt;
  1555. if (!srate)
  1556. srate = s->usbin.dma.srate;
  1557. else
  1558. s->usbin.dma.srate = srate;
  1559. }
  1560. if (fmode & FMODE_WRITE) {
  1561. usbout_stop(s);
  1562. s->usbout.dma.ready = 0;
  1563. if (fmt == AFMT_QUERY)
  1564. fmt = s->usbout.dma.format;
  1565. else
  1566. s->usbout.dma.format = fmt;
  1567. if (!srate)
  1568. srate = s->usbout.dma.srate;
  1569. else
  1570. s->usbout.dma.srate = srate;
  1571. }
  1572. if (fmode & FMODE_READ)
  1573. ret1 = set_format_in(s);
  1574. if (fmode & FMODE_WRITE)
  1575. ret2 = set_format_out(s);
  1576. return ret1 ? ret1 : ret2;
  1577. }
  1578. /* --------------------------------------------------------------------- */
  1579. static int wrmixer(struct usb_mixerdev *ms, unsigned mixch, unsigned value)
  1580. {
  1581. struct usb_device *dev = ms->state->usbdev;
  1582. unsigned char data[2];
  1583. struct mixerchannel *ch;
  1584. int v1, v2, v3;
  1585. if (mixch >= ms->numch)
  1586. return -1;
  1587. ch = &ms->ch[mixch];
  1588. v3 = ch->maxval - ch->minval;
  1589. v1 = value & 0xff;
  1590. v2 = (value >> 8) & 0xff;
  1591. if (v1 > 100)
  1592. v1 = 100;
  1593. if (v2 > 100)
  1594. v2 = 100;
  1595. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1596. v2 = v1;
  1597. ch->value = v1 | (v2 << 8);
  1598. v1 = (v1 * v3) / 100 + ch->minval;
  1599. v2 = (v2 * v3) / 100 + ch->minval;
  1600. switch (ch->selector) {
  1601. case 0: /* mixer unit request */
  1602. data[0] = v1;
  1603. data[1] = v1 >> 8;
  1604. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1605. (ch->chnum << 8) | 1, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1606. goto err;
  1607. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1608. return 0;
  1609. data[0] = v2;
  1610. data[1] = v2 >> 8;
  1611. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1612. ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
  1613. ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1614. goto err;
  1615. return 0;
  1616. /* various feature unit controls */
  1617. case VOLUME_CONTROL:
  1618. data[0] = v1;
  1619. data[1] = v1 >> 8;
  1620. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1621. (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1622. goto err;
  1623. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1624. return 0;
  1625. data[0] = v2;
  1626. data[1] = v2 >> 8;
  1627. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1628. (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1629. goto err;
  1630. return 0;
  1631. case BASS_CONTROL:
  1632. case MID_CONTROL:
  1633. case TREBLE_CONTROL:
  1634. data[0] = v1 >> 8;
  1635. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1636. (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
  1637. goto err;
  1638. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1639. return 0;
  1640. data[0] = v2 >> 8;
  1641. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1642. (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
  1643. goto err;
  1644. return 0;
  1645. default:
  1646. return -1;
  1647. }
  1648. return 0;
  1649. err:
  1650. printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
  1651. dev->devnum, ms->iface, ch->unitid, ch->chnum, ch->selector);
  1652. return -1;
  1653. }
  1654. static int get_rec_src(struct usb_mixerdev *ms)
  1655. {
  1656. struct usb_device *dev = ms->state->usbdev;
  1657. unsigned int mask = 0, retmask = 0;
  1658. unsigned int i, j;
  1659. unsigned char buf;
  1660. int err = 0;
  1661. for (i = 0; i < ms->numch; i++) {
  1662. if (!ms->ch[i].slctunitid || (mask & (1 << i)))
  1663. continue;
  1664. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  1665. 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
  1666. err = -EIO;
  1667. printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
  1668. dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
  1669. continue;
  1670. }
  1671. for (j = i; j < ms->numch; j++) {
  1672. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1673. continue;
  1674. mask |= 1 << j;
  1675. if (buf == (ms->ch[j].slctunitid >> 8))
  1676. retmask |= 1 << ms->ch[j].osschannel;
  1677. }
  1678. }
  1679. if (err)
  1680. return -EIO;
  1681. return retmask;
  1682. }
  1683. static int set_rec_src(struct usb_mixerdev *ms, int srcmask)
  1684. {
  1685. struct usb_device *dev = ms->state->usbdev;
  1686. unsigned int mask = 0, smask, bmask;
  1687. unsigned int i, j;
  1688. unsigned char buf;
  1689. int err = 0;
  1690. for (i = 0; i < ms->numch; i++) {
  1691. if (!ms->ch[i].slctunitid || (mask & (1 << i)))
  1692. continue;
  1693. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  1694. 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
  1695. err = -EIO;
  1696. printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
  1697. dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
  1698. continue;
  1699. }
  1700. /* first generate smask */
  1701. smask = bmask = 0;
  1702. for (j = i; j < ms->numch; j++) {
  1703. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1704. continue;
  1705. smask |= 1 << ms->ch[j].osschannel;
  1706. if (buf == (ms->ch[j].slctunitid >> 8))
  1707. bmask |= 1 << ms->ch[j].osschannel;
  1708. mask |= 1 << j;
  1709. }
  1710. /* check for multiple set sources */
  1711. j = hweight32(srcmask & smask);
  1712. if (j == 0)
  1713. continue;
  1714. if (j > 1)
  1715. srcmask &= ~bmask;
  1716. for (j = i; j < ms->numch; j++) {
  1717. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1718. continue;
  1719. if (!(srcmask & (1 << ms->ch[j].osschannel)))
  1720. continue;
  1721. buf = ms->ch[j].slctunitid >> 8;
  1722. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1723. 0, ms->iface | (ms->ch[j].slctunitid << 8), &buf, 1, 1000) < 0) {
  1724. err = -EIO;
  1725. printk(KERN_ERR "usbaudio: selector write request device %u if %u unit %u failed\n",
  1726. dev->devnum, ms->iface, ms->ch[j].slctunitid & 0xff);
  1727. continue;
  1728. }
  1729. }
  1730. }
  1731. return err ? -EIO : 0;
  1732. }
  1733. /* --------------------------------------------------------------------- */
  1734. /*
  1735. * should be called with open_sem hold, so that no new processes
  1736. * look at the audio device to be destroyed
  1737. */
  1738. static void release(struct usb_audio_state *s)
  1739. {
  1740. struct usb_audiodev *as;
  1741. struct usb_mixerdev *ms;
  1742. s->count--;
  1743. if (s->count) {
  1744. up(&open_sem);
  1745. return;
  1746. }
  1747. up(&open_sem);
  1748. wake_up(&open_wait);
  1749. while (!list_empty(&s->audiolist)) {
  1750. as = list_entry(s->audiolist.next, struct usb_audiodev, list);
  1751. list_del(&as->list);
  1752. usbin_release(as);
  1753. usbout_release(as);
  1754. dmabuf_release(&as->usbin.dma);
  1755. dmabuf_release(&as->usbout.dma);
  1756. usb_free_urb(as->usbin.durb[0].urb);
  1757. usb_free_urb(as->usbin.durb[1].urb);
  1758. usb_free_urb(as->usbin.surb[0].urb);
  1759. usb_free_urb(as->usbin.surb[1].urb);
  1760. usb_free_urb(as->usbout.durb[0].urb);
  1761. usb_free_urb(as->usbout.durb[1].urb);
  1762. usb_free_urb(as->usbout.surb[0].urb);
  1763. usb_free_urb(as->usbout.surb[1].urb);
  1764. kfree(as);
  1765. }
  1766. while (!list_empty(&s->mixerlist)) {
  1767. ms = list_entry(s->mixerlist.next, struct usb_mixerdev, list);
  1768. list_del(&ms->list);
  1769. kfree(ms);
  1770. }
  1771. kfree(s);
  1772. }
  1773. static inline int prog_dmabuf_in(struct usb_audiodev *as)
  1774. {
  1775. usbin_stop(as);
  1776. return dmabuf_init(&as->usbin.dma);
  1777. }
  1778. static inline int prog_dmabuf_out(struct usb_audiodev *as)
  1779. {
  1780. usbout_stop(as);
  1781. return dmabuf_init(&as->usbout.dma);
  1782. }
  1783. /* --------------------------------------------------------------------- */
  1784. static int usb_audio_open_mixdev(struct inode *inode, struct file *file)
  1785. {
  1786. unsigned int minor = iminor(inode);
  1787. struct usb_mixerdev *ms;
  1788. struct usb_audio_state *s;
  1789. down(&open_sem);
  1790. list_for_each_entry(s, &audiodevs, audiodev) {
  1791. list_for_each_entry(ms, &s->mixerlist, list) {
  1792. if (ms->dev_mixer == minor)
  1793. goto mixer_found;
  1794. }
  1795. }
  1796. up(&open_sem);
  1797. return -ENODEV;
  1798. mixer_found:
  1799. if (!s->usbdev) {
  1800. up(&open_sem);
  1801. return -EIO;
  1802. }
  1803. file->private_data = ms;
  1804. s->count++;
  1805. up(&open_sem);
  1806. return nonseekable_open(inode, file);
  1807. }
  1808. static int usb_audio_release_mixdev(struct inode *inode, struct file *file)
  1809. {
  1810. struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
  1811. struct usb_audio_state *s;
  1812. lock_kernel();
  1813. s = ms->state;
  1814. down(&open_sem);
  1815. release(s);
  1816. unlock_kernel();
  1817. return 0;
  1818. }
  1819. static int usb_audio_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1820. {
  1821. struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
  1822. int i, j, val;
  1823. int __user *user_arg = (int __user *)arg;
  1824. if (!ms->state->usbdev)
  1825. return -ENODEV;
  1826. if (cmd == SOUND_MIXER_INFO) {
  1827. mixer_info info;
  1828. memset(&info, 0, sizeof(info));
  1829. strncpy(info.id, "USB_AUDIO", sizeof(info.id));
  1830. strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
  1831. info.modify_counter = ms->modcnt;
  1832. if (copy_to_user((void __user *)arg, &info, sizeof(info)))
  1833. return -EFAULT;
  1834. return 0;
  1835. }
  1836. if (cmd == SOUND_OLD_MIXER_INFO) {
  1837. _old_mixer_info info;
  1838. memset(&info, 0, sizeof(info));
  1839. strncpy(info.id, "USB_AUDIO", sizeof(info.id));
  1840. strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
  1841. if (copy_to_user((void __user *)arg, &info, sizeof(info)))
  1842. return -EFAULT;
  1843. return 0;
  1844. }
  1845. if (cmd == OSS_GETVERSION)
  1846. return put_user(SOUND_VERSION, user_arg);
  1847. if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
  1848. return -EINVAL;
  1849. if (_IOC_DIR(cmd) == _IOC_READ) {
  1850. switch (_IOC_NR(cmd)) {
  1851. case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
  1852. val = get_rec_src(ms);
  1853. if (val < 0)
  1854. return val;
  1855. return put_user(val, user_arg);
  1856. case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
  1857. for (val = i = 0; i < ms->numch; i++)
  1858. val |= 1 << ms->ch[i].osschannel;
  1859. return put_user(val, user_arg);
  1860. case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
  1861. for (val = i = 0; i < ms->numch; i++)
  1862. if (ms->ch[i].slctunitid)
  1863. val |= 1 << ms->ch[i].osschannel;
  1864. return put_user(val, user_arg);
  1865. case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
  1866. for (val = i = 0; i < ms->numch; i++)
  1867. if (ms->ch[i].flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))
  1868. val |= 1 << ms->ch[i].osschannel;
  1869. return put_user(val, user_arg);
  1870. case SOUND_MIXER_CAPS:
  1871. return put_user(SOUND_CAP_EXCL_INPUT, user_arg);
  1872. default:
  1873. i = _IOC_NR(cmd);
  1874. if (i >= SOUND_MIXER_NRDEVICES)
  1875. return -EINVAL;
  1876. for (j = 0; j < ms->numch; j++) {
  1877. if (ms->ch[j].osschannel == i) {
  1878. return put_user(ms->ch[j].value, user_arg);
  1879. }
  1880. }
  1881. return -EINVAL;
  1882. }
  1883. }
  1884. if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE))
  1885. return -EINVAL;
  1886. ms->modcnt++;
  1887. switch (_IOC_NR(cmd)) {
  1888. case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
  1889. if (get_user(val, user_arg))
  1890. return -EFAULT;
  1891. return set_rec_src(ms, val);
  1892. default:
  1893. i = _IOC_NR(cmd);
  1894. if (i >= SOUND_MIXER_NRDEVICES)
  1895. return -EINVAL;
  1896. for (j = 0; j < ms->numch && ms->ch[j].osschannel != i; j++);
  1897. if (j >= ms->numch)
  1898. return -EINVAL;
  1899. if (get_user(val, user_arg))
  1900. return -EFAULT;
  1901. if (wrmixer(ms, j, val))
  1902. return -EIO;
  1903. return put_user(ms->ch[j].value, user_arg);
  1904. }
  1905. }
  1906. static /*const*/ struct file_operations usb_mixer_fops = {
  1907. .owner = THIS_MODULE,
  1908. .llseek = no_llseek,
  1909. .ioctl = usb_audio_ioctl_mixdev,
  1910. .open = usb_audio_open_mixdev,
  1911. .release = usb_audio_release_mixdev,
  1912. };
  1913. /* --------------------------------------------------------------------- */
  1914. static int drain_out(struct usb_audiodev *as, int nonblock)
  1915. {
  1916. DECLARE_WAITQUEUE(wait, current);
  1917. unsigned long flags;
  1918. int count, tmo;
  1919. if (as->usbout.dma.mapped || !as->usbout.dma.ready)
  1920. return 0;
  1921. usbout_start(as);
  1922. add_wait_queue(&as->usbout.dma.wait, &wait);
  1923. for (;;) {
  1924. __set_current_state(TASK_INTERRUPTIBLE);
  1925. spin_lock_irqsave(&as->lock, flags);
  1926. count = as->usbout.dma.count;
  1927. spin_unlock_irqrestore(&as->lock, flags);
  1928. if (count <= 0)
  1929. break;
  1930. if (signal_pending(current))
  1931. break;
  1932. if (nonblock) {
  1933. remove_wait_queue(&as->usbout.dma.wait, &wait);
  1934. set_current_state(TASK_RUNNING);
  1935. return -EBUSY;
  1936. }
  1937. tmo = 3 * HZ * count / as->usbout.dma.srate;
  1938. tmo >>= AFMT_BYTESSHIFT(as->usbout.dma.format);
  1939. if (!schedule_timeout(tmo + 1)) {
  1940. printk(KERN_DEBUG "usbaudio: dma timed out??\n");
  1941. break;
  1942. }
  1943. }
  1944. remove_wait_queue(&as->usbout.dma.wait, &wait);
  1945. set_current_state(TASK_RUNNING);
  1946. if (signal_pending(current))
  1947. return -ERESTARTSYS;
  1948. return 0;
  1949. }
  1950. /* --------------------------------------------------------------------- */
  1951. static ssize_t usb_audio_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
  1952. {
  1953. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  1954. DECLARE_WAITQUEUE(wait, current);
  1955. ssize_t ret = 0;
  1956. unsigned long flags;
  1957. unsigned int ptr;
  1958. int cnt, err;
  1959. if (as->usbin.dma.mapped)
  1960. return -ENXIO;
  1961. if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
  1962. return ret;
  1963. if (!access_ok(VERIFY_WRITE, buffer, count))
  1964. return -EFAULT;
  1965. add_wait_queue(&as->usbin.dma.wait, &wait);
  1966. while (count > 0) {
  1967. spin_lock_irqsave(&as->lock, flags);
  1968. ptr = as->usbin.dma.rdptr;
  1969. cnt = as->usbin.dma.count;
  1970. /* set task state early to avoid wakeup races */
  1971. if (cnt <= 0)
  1972. __set_current_state(TASK_INTERRUPTIBLE);
  1973. spin_unlock_irqrestore(&as->lock, flags);
  1974. if (cnt > count)
  1975. cnt = count;
  1976. if (cnt <= 0) {
  1977. if (usbin_start(as)) {
  1978. if (!ret)
  1979. ret = -ENODEV;
  1980. break;
  1981. }
  1982. if (file->f_flags & O_NONBLOCK) {
  1983. if (!ret)
  1984. ret = -EAGAIN;
  1985. break;
  1986. }
  1987. schedule();
  1988. if (signal_pending(current)) {
  1989. if (!ret)
  1990. ret = -ERESTARTSYS;
  1991. break;
  1992. }
  1993. continue;
  1994. }
  1995. if ((err = dmabuf_copyout_user(&as->usbin.dma, ptr, buffer, cnt))) {
  1996. if (!ret)
  1997. ret = err;
  1998. break;
  1999. }
  2000. ptr += cnt;
  2001. if (ptr >= as->usbin.dma.dmasize)
  2002. ptr -= as->usbin.dma.dmasize;
  2003. spin_lock_irqsave(&as->lock, flags);
  2004. as->usbin.dma.rdptr = ptr;
  2005. as->usbin.dma.count -= cnt;
  2006. spin_unlock_irqrestore(&as->lock, flags);
  2007. count -= cnt;
  2008. buffer += cnt;
  2009. ret += cnt;
  2010. }
  2011. __set_current_state(TASK_RUNNING);
  2012. remove_wait_queue(&as->usbin.dma.wait, &wait);
  2013. return ret;
  2014. }
  2015. static ssize_t usb_audio_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
  2016. {
  2017. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2018. DECLARE_WAITQUEUE(wait, current);
  2019. ssize_t ret = 0;
  2020. unsigned long flags;
  2021. unsigned int ptr;
  2022. unsigned int start_thr;
  2023. int cnt, err;
  2024. if (as->usbout.dma.mapped)
  2025. return -ENXIO;
  2026. if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
  2027. return ret;
  2028. if (!access_ok(VERIFY_READ, buffer, count))
  2029. return -EFAULT;
  2030. start_thr = (as->usbout.dma.srate << AFMT_BYTESSHIFT(as->usbout.dma.format)) / (1000 / (3 * DESCFRAMES));
  2031. add_wait_queue(&as->usbout.dma.wait, &wait);
  2032. while (count > 0) {
  2033. #if 0
  2034. printk(KERN_DEBUG "usb_audio_write: count %u dma: count %u rdptr %u wrptr %u dmasize %u fragsize %u flags 0x%02x taskst 0x%lx\n",
  2035. count, as->usbout.dma.count, as->usbout.dma.rdptr, as->usbout.dma.wrptr, as->usbout.dma.dmasize, as->usbout.dma.fragsize,
  2036. as->usbout.flags, current->state);
  2037. #endif
  2038. spin_lock_irqsave(&as->lock, flags);
  2039. if (as->usbout.dma.count < 0) {
  2040. as->usbout.dma.count = 0;
  2041. as->usbout.dma.rdptr = as->usbout.dma.wrptr;
  2042. }
  2043. ptr = as->usbout.dma.wrptr;
  2044. cnt = as->usbout.dma.dmasize - as->usbout.dma.count;
  2045. /* set task state early to avoid wakeup races */
  2046. if (cnt <= 0)
  2047. __set_current_state(TASK_INTERRUPTIBLE);
  2048. spin_unlock_irqrestore(&as->lock, flags);
  2049. if (cnt > count)
  2050. cnt = count;
  2051. if (cnt <= 0) {
  2052. if (usbout_start(as)) {
  2053. if (!ret)
  2054. ret = -ENODEV;
  2055. break;
  2056. }
  2057. if (file->f_flags & O_NONBLOCK) {
  2058. if (!ret)
  2059. ret = -EAGAIN;
  2060. break;
  2061. }
  2062. schedule();
  2063. if (signal_pending(current)) {
  2064. if (!ret)
  2065. ret = -ERESTARTSYS;
  2066. break;
  2067. }
  2068. continue;
  2069. }
  2070. if ((err = dmabuf_copyin_user(&as->usbout.dma, ptr, buffer, cnt))) {
  2071. if (!ret)
  2072. ret = err;
  2073. break;
  2074. }
  2075. ptr += cnt;
  2076. if (ptr >= as->usbout.dma.dmasize)
  2077. ptr -= as->usbout.dma.dmasize;
  2078. spin_lock_irqsave(&as->lock, flags);
  2079. as->usbout.dma.wrptr = ptr;
  2080. as->usbout.dma.count += cnt;
  2081. spin_unlock_irqrestore(&as->lock, flags);
  2082. count -= cnt;
  2083. buffer += cnt;
  2084. ret += cnt;
  2085. if (as->usbout.dma.count >= start_thr && usbout_start(as)) {
  2086. if (!ret)
  2087. ret = -ENODEV;
  2088. break;
  2089. }
  2090. }
  2091. __set_current_state(TASK_RUNNING);
  2092. remove_wait_queue(&as->usbout.dma.wait, &wait);
  2093. return ret;
  2094. }
  2095. /* Called without the kernel lock - fine */
  2096. static unsigned int usb_audio_poll(struct file *file, struct poll_table_struct *wait)
  2097. {
  2098. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2099. unsigned long flags;
  2100. unsigned int mask = 0;
  2101. if (file->f_mode & FMODE_WRITE) {
  2102. if (!as->usbout.dma.ready)
  2103. prog_dmabuf_out(as);
  2104. poll_wait(file, &as->usbout.dma.wait, wait);
  2105. }
  2106. if (file->f_mode & FMODE_READ) {
  2107. if (!as->usbin.dma.ready)
  2108. prog_dmabuf_in(as);
  2109. poll_wait(file, &as->usbin.dma.wait, wait);
  2110. }
  2111. spin_lock_irqsave(&as->lock, flags);
  2112. if (file->f_mode & FMODE_READ) {
  2113. if (as->usbin.dma.count >= (signed)as->usbin.dma.fragsize)
  2114. mask |= POLLIN | POLLRDNORM;
  2115. }
  2116. if (file->f_mode & FMODE_WRITE) {
  2117. if (as->usbout.dma.mapped) {
  2118. if (as->usbout.dma.count >= (signed)as->usbout.dma.fragsize)
  2119. mask |= POLLOUT | POLLWRNORM;
  2120. } else {
  2121. if ((signed)as->usbout.dma.dmasize >= as->usbout.dma.count + (signed)as->usbout.dma.fragsize)
  2122. mask |= POLLOUT | POLLWRNORM;
  2123. }
  2124. }
  2125. spin_unlock_irqrestore(&as->lock, flags);
  2126. return mask;
  2127. }
  2128. static int usb_audio_mmap(struct file *file, struct vm_area_struct *vma)
  2129. {
  2130. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2131. struct dmabuf *db;
  2132. int ret = -EINVAL;
  2133. lock_kernel();
  2134. if (vma->vm_flags & VM_WRITE) {
  2135. if ((ret = prog_dmabuf_out(as)) != 0)
  2136. goto out;
  2137. db = &as->usbout.dma;
  2138. } else if (vma->vm_flags & VM_READ) {
  2139. if ((ret = prog_dmabuf_in(as)) != 0)
  2140. goto out;
  2141. db = &as->usbin.dma;
  2142. } else
  2143. goto out;
  2144. ret = -EINVAL;
  2145. if (vma->vm_pgoff != 0)
  2146. goto out;
  2147. ret = dmabuf_mmap(vma, db, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot);
  2148. out:
  2149. unlock_kernel();
  2150. return ret;
  2151. }
  2152. static int usb_audio_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2153. {
  2154. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2155. struct usb_audio_state *s = as->state;
  2156. int __user *user_arg = (int __user *)arg;
  2157. unsigned long flags;
  2158. audio_buf_info abinfo;
  2159. count_info cinfo;
  2160. int val = 0;
  2161. int val2, mapped, ret;
  2162. if (!s->usbdev)
  2163. return -EIO;
  2164. mapped = ((file->f_mode & FMODE_WRITE) && as->usbout.dma.mapped) ||
  2165. ((file->f_mode & FMODE_READ) && as->usbin.dma.mapped);
  2166. #if 0
  2167. if (arg)
  2168. get_user(val, (int *)arg);
  2169. printk(KERN_DEBUG "usbaudio: usb_audio_ioctl cmd=%x arg=%lx *arg=%d\n", cmd, arg, val)
  2170. #endif
  2171. switch (cmd) {
  2172. case OSS_GETVERSION:
  2173. return put_user(SOUND_VERSION, user_arg);
  2174. case SNDCTL_DSP_SYNC:
  2175. if (file->f_mode & FMODE_WRITE)
  2176. return drain_out(as, 0/*file->f_flags & O_NONBLOCK*/);
  2177. return 0;
  2178. case SNDCTL_DSP_SETDUPLEX:
  2179. return 0;
  2180. case SNDCTL_DSP_GETCAPS:
  2181. return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER |
  2182. DSP_CAP_MMAP | DSP_CAP_BATCH, user_arg);
  2183. case SNDCTL_DSP_RESET:
  2184. if (file->f_mode & FMODE_WRITE) {
  2185. usbout_stop(as);
  2186. as->usbout.dma.rdptr = as->usbout.dma.wrptr = as->usbout.dma.count = as->usbout.dma.total_bytes = 0;
  2187. }
  2188. if (file->f_mode & FMODE_READ) {
  2189. usbin_stop(as);
  2190. as->usbin.dma.rdptr = as->usbin.dma.wrptr = as->usbin.dma.count = as->usbin.dma.total_bytes = 0;
  2191. }
  2192. return 0;
  2193. case SNDCTL_DSP_SPEED:
  2194. if (get_user(val, user_arg))
  2195. return -EFAULT;
  2196. if (val >= 0) {
  2197. if (val < 4000)
  2198. val = 4000;
  2199. if (val > 100000)
  2200. val = 100000;
  2201. if (set_format(as, file->f_mode, AFMT_QUERY, val))
  2202. return -EIO;
  2203. }
  2204. return put_user((file->f_mode & FMODE_READ) ?
  2205. as->usbin.dma.srate : as->usbout.dma.srate,
  2206. user_arg);
  2207. case SNDCTL_DSP_STEREO:
  2208. if (get_user(val, user_arg))
  2209. return -EFAULT;
  2210. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2211. if (val)
  2212. val2 |= AFMT_STEREO;
  2213. else
  2214. val2 &= ~AFMT_STEREO;
  2215. if (set_format(as, file->f_mode, val2, 0))
  2216. return -EIO;
  2217. return 0;
  2218. case SNDCTL_DSP_CHANNELS:
  2219. if (get_user(val, user_arg))
  2220. return -EFAULT;
  2221. if (val != 0) {
  2222. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2223. if (val == 1)
  2224. val2 &= ~AFMT_STEREO;
  2225. else
  2226. val2 |= AFMT_STEREO;
  2227. if (set_format(as, file->f_mode, val2, 0))
  2228. return -EIO;
  2229. }
  2230. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2231. return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
  2232. case SNDCTL_DSP_GETFMTS: /* Returns a mask */
  2233. return put_user(AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
  2234. AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE, user_arg);
  2235. case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
  2236. if (get_user(val, user_arg))
  2237. return -EFAULT;
  2238. if (val != AFMT_QUERY) {
  2239. if (hweight32(val) != 1)
  2240. return -EINVAL;
  2241. if (!(val & (AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
  2242. AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE)))
  2243. return -EINVAL;
  2244. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2245. val |= val2 & AFMT_STEREO;
  2246. if (set_format(as, file->f_mode, val, 0))
  2247. return -EIO;
  2248. }
  2249. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2250. return put_user(val2 & ~AFMT_STEREO, user_arg);
  2251. case SNDCTL_DSP_POST:
  2252. return 0;
  2253. case SNDCTL_DSP_GETTRIGGER:
  2254. val = 0;
  2255. if (file->f_mode & FMODE_READ && as->usbin.flags & FLG_RUNNING)
  2256. val |= PCM_ENABLE_INPUT;
  2257. if (file->f_mode & FMODE_WRITE && as->usbout.flags & FLG_RUNNING)
  2258. val |= PCM_ENABLE_OUTPUT;
  2259. return put_user(val, user_arg);
  2260. case SNDCTL_DSP_SETTRIGGER:
  2261. if (get_user(val, user_arg))
  2262. return -EFAULT;
  2263. if (file->f_mode & FMODE_READ) {
  2264. if (val & PCM_ENABLE_INPUT) {
  2265. if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
  2266. return ret;
  2267. if (usbin_start(as))
  2268. return -ENODEV;
  2269. } else
  2270. usbin_stop(as);
  2271. }
  2272. if (file->f_mode & FMODE_WRITE) {
  2273. if (val & PCM_ENABLE_OUTPUT) {
  2274. if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
  2275. return ret;
  2276. if (usbout_start(as))
  2277. return -ENODEV;
  2278. } else
  2279. usbout_stop(as);
  2280. }
  2281. return 0;
  2282. case SNDCTL_DSP_GETOSPACE:
  2283. if (!(file->f_mode & FMODE_WRITE))
  2284. return -EINVAL;
  2285. if (!(as->usbout.flags & FLG_RUNNING) && (val = prog_dmabuf_out(as)) != 0)
  2286. return val;
  2287. spin_lock_irqsave(&as->lock, flags);
  2288. abinfo.fragsize = as->usbout.dma.fragsize;
  2289. abinfo.bytes = as->usbout.dma.dmasize - as->usbout.dma.count;
  2290. abinfo.fragstotal = as->usbout.dma.numfrag;
  2291. abinfo.fragments = abinfo.bytes >> as->usbout.dma.fragshift;
  2292. spin_unlock_irqrestore(&as->lock, flags);
  2293. return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
  2294. case SNDCTL_DSP_GETISPACE:
  2295. if (!(file->f_mode & FMODE_READ))
  2296. return -EINVAL;
  2297. if (!(as->usbin.flags & FLG_RUNNING) && (val = prog_dmabuf_in(as)) != 0)
  2298. return val;
  2299. spin_lock_irqsave(&as->lock, flags);
  2300. abinfo.fragsize = as->usbin.dma.fragsize;
  2301. abinfo.bytes = as->usbin.dma.count;
  2302. abinfo.fragstotal = as->usbin.dma.numfrag;
  2303. abinfo.fragments = abinfo.bytes >> as->usbin.dma.fragshift;
  2304. spin_unlock_irqrestore(&as->lock, flags);
  2305. return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
  2306. case SNDCTL_DSP_NONBLOCK:
  2307. file->f_flags |= O_NONBLOCK;
  2308. return 0;
  2309. case SNDCTL_DSP_GETODELAY:
  2310. if (!(file->f_mode & FMODE_WRITE))
  2311. return -EINVAL;
  2312. spin_lock_irqsave(&as->lock, flags);
  2313. val = as->usbout.dma.count;
  2314. spin_unlock_irqrestore(&as->lock, flags);
  2315. return put_user(val, user_arg);
  2316. case SNDCTL_DSP_GETIPTR:
  2317. if (!(file->f_mode & FMODE_READ))
  2318. return -EINVAL;
  2319. spin_lock_irqsave(&as->lock, flags);
  2320. cinfo.bytes = as->usbin.dma.total_bytes;
  2321. cinfo.blocks = as->usbin.dma.count >> as->usbin.dma.fragshift;
  2322. cinfo.ptr = as->usbin.dma.wrptr;
  2323. if (as->usbin.dma.mapped)
  2324. as->usbin.dma.count &= as->usbin.dma.fragsize-1;
  2325. spin_unlock_irqrestore(&as->lock, flags);
  2326. if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
  2327. return -EFAULT;
  2328. return 0;
  2329. case SNDCTL_DSP_GETOPTR:
  2330. if (!(file->f_mode & FMODE_WRITE))
  2331. return -EINVAL;
  2332. spin_lock_irqsave(&as->lock, flags);
  2333. cinfo.bytes = as->usbout.dma.total_bytes;
  2334. cinfo.blocks = as->usbout.dma.count >> as->usbout.dma.fragshift;
  2335. cinfo.ptr = as->usbout.dma.rdptr;
  2336. if (as->usbout.dma.mapped)
  2337. as->usbout.dma.count &= as->usbout.dma.fragsize-1;
  2338. spin_unlock_irqrestore(&as->lock, flags);
  2339. if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
  2340. return -EFAULT;
  2341. return 0;
  2342. case SNDCTL_DSP_GETBLKSIZE:
  2343. if (file->f_mode & FMODE_WRITE) {
  2344. if ((val = prog_dmabuf_out(as)))
  2345. return val;
  2346. return put_user(as->usbout.dma.fragsize, user_arg);
  2347. }
  2348. if ((val = prog_dmabuf_in(as)))
  2349. return val;
  2350. return put_user(as->usbin.dma.fragsize, user_arg);
  2351. case SNDCTL_DSP_SETFRAGMENT:
  2352. if (get_user(val, user_arg))
  2353. return -EFAULT;
  2354. if (file->f_mode & FMODE_READ) {
  2355. as->usbin.dma.ossfragshift = val & 0xffff;
  2356. as->usbin.dma.ossmaxfrags = (val >> 16) & 0xffff;
  2357. if (as->usbin.dma.ossfragshift < 4)
  2358. as->usbin.dma.ossfragshift = 4;
  2359. if (as->usbin.dma.ossfragshift > 15)
  2360. as->usbin.dma.ossfragshift = 15;
  2361. if (as->usbin.dma.ossmaxfrags < 4)
  2362. as->usbin.dma.ossmaxfrags = 4;
  2363. }
  2364. if (file->f_mode & FMODE_WRITE) {
  2365. as->usbout.dma.ossfragshift = val & 0xffff;
  2366. as->usbout.dma.ossmaxfrags = (val >> 16) & 0xffff;
  2367. if (as->usbout.dma.ossfragshift < 4)
  2368. as->usbout.dma.ossfragshift = 4;
  2369. if (as->usbout.dma.ossfragshift > 15)
  2370. as->usbout.dma.ossfragshift = 15;
  2371. if (as->usbout.dma.ossmaxfrags < 4)
  2372. as->usbout.dma.ossmaxfrags = 4;
  2373. }
  2374. return 0;
  2375. case SNDCTL_DSP_SUBDIVIDE:
  2376. if ((file->f_mode & FMODE_READ && as->usbin.dma.subdivision) ||
  2377. (file->f_mode & FMODE_WRITE && as->usbout.dma.subdivision))
  2378. return -EINVAL;
  2379. if (get_user(val, user_arg))
  2380. return -EFAULT;
  2381. if (val != 1 && val != 2 && val != 4)
  2382. return -EINVAL;
  2383. if (file->f_mode & FMODE_READ)
  2384. as->usbin.dma.subdivision = val;
  2385. if (file->f_mode & FMODE_WRITE)
  2386. as->usbout.dma.subdivision = val;
  2387. return 0;
  2388. case SOUND_PCM_READ_RATE:
  2389. return put_user((file->f_mode & FMODE_READ) ?
  2390. as->usbin.dma.srate : as->usbout.dma.srate,
  2391. user_arg);
  2392. case SOUND_PCM_READ_CHANNELS:
  2393. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2394. return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
  2395. case SOUND_PCM_READ_BITS:
  2396. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2397. return put_user(AFMT_IS16BIT(val2) ? 16 : 8, user_arg);
  2398. case SOUND_PCM_WRITE_FILTER:
  2399. case SNDCTL_DSP_SETSYNCRO:
  2400. case SOUND_PCM_READ_FILTER:
  2401. return -EINVAL;
  2402. }
  2403. dprintk((KERN_DEBUG "usbaudio: usb_audio_ioctl - no command found\n"));
  2404. return -ENOIOCTLCMD;
  2405. }
  2406. static int usb_audio_open(struct inode *inode, struct file *file)
  2407. {
  2408. unsigned int minor = iminor(inode);
  2409. DECLARE_WAITQUEUE(wait, current);
  2410. struct usb_audiodev *as;
  2411. struct usb_audio_state *s;
  2412. for (;;) {
  2413. down(&open_sem);
  2414. list_for_each_entry(s, &audiodevs, audiodev) {
  2415. list_for_each_entry(as, &s->audiolist, list) {
  2416. if (!((as->dev_audio ^ minor) & ~0xf))
  2417. goto device_found;
  2418. }
  2419. }
  2420. up(&open_sem);
  2421. return -ENODEV;
  2422. device_found:
  2423. if (!s->usbdev) {
  2424. up(&open_sem);
  2425. return -EIO;
  2426. }
  2427. /* wait for device to become free */
  2428. if (!(as->open_mode & file->f_mode))
  2429. break;
  2430. if (file->f_flags & O_NONBLOCK) {
  2431. up(&open_sem);
  2432. return -EBUSY;
  2433. }
  2434. __set_current_state(TASK_INTERRUPTIBLE);
  2435. add_wait_queue(&open_wait, &wait);
  2436. up(&open_sem);
  2437. schedule();
  2438. __set_current_state(TASK_RUNNING);
  2439. remove_wait_queue(&open_wait, &wait);
  2440. if (signal_pending(current))
  2441. return -ERESTARTSYS;
  2442. }
  2443. if (file->f_mode & FMODE_READ)
  2444. as->usbin.dma.ossfragshift = as->usbin.dma.ossmaxfrags = as->usbin.dma.subdivision = 0;
  2445. if (file->f_mode & FMODE_WRITE)
  2446. as->usbout.dma.ossfragshift = as->usbout.dma.ossmaxfrags = as->usbout.dma.subdivision = 0;
  2447. if (set_format(as, file->f_mode, ((minor & 0xf) == SND_DEV_DSP16) ? AFMT_S16_LE : AFMT_U8 /* AFMT_ULAW */, 8000)) {
  2448. up(&open_sem);
  2449. return -EIO;
  2450. }
  2451. file->private_data = as;
  2452. as->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
  2453. s->count++;
  2454. up(&open_sem);
  2455. return nonseekable_open(inode, file);
  2456. }
  2457. static int usb_audio_release(struct inode *inode, struct file *file)
  2458. {
  2459. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2460. struct usb_audio_state *s;
  2461. struct usb_device *dev;
  2462. lock_kernel();
  2463. s = as->state;
  2464. dev = s->usbdev;
  2465. if (file->f_mode & FMODE_WRITE)
  2466. drain_out(as, file->f_flags & O_NONBLOCK);
  2467. down(&open_sem);
  2468. if (file->f_mode & FMODE_WRITE) {
  2469. usbout_stop(as);
  2470. if (dev && as->usbout.interface >= 0)
  2471. usb_set_interface(dev, as->usbout.interface, 0);
  2472. dmabuf_release(&as->usbout.dma);
  2473. usbout_release(as);
  2474. }
  2475. if (file->f_mode & FMODE_READ) {
  2476. usbin_stop(as);
  2477. if (dev && as->usbin.interface >= 0)
  2478. usb_set_interface(dev, as->usbin.interface, 0);
  2479. dmabuf_release(&as->usbin.dma);
  2480. usbin_release(as);
  2481. }
  2482. as->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
  2483. release(s);
  2484. wake_up(&open_wait);
  2485. unlock_kernel();
  2486. return 0;
  2487. }
  2488. static /*const*/ struct file_operations usb_audio_fops = {
  2489. .owner = THIS_MODULE,
  2490. .llseek = no_llseek,
  2491. .read = usb_audio_read,
  2492. .write = usb_audio_write,
  2493. .poll = usb_audio_poll,
  2494. .ioctl = usb_audio_ioctl,
  2495. .mmap = usb_audio_mmap,
  2496. .open = usb_audio_open,
  2497. .release = usb_audio_release,
  2498. };
  2499. /* --------------------------------------------------------------------- */
  2500. static int usb_audio_probe(struct usb_interface *iface,
  2501. const struct usb_device_id *id);
  2502. static void usb_audio_disconnect(struct usb_interface *iface);
  2503. static struct usb_device_id usb_audio_ids [] = {
  2504. { .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS),
  2505. .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = 1},
  2506. { } /* Terminating entry */
  2507. };
  2508. MODULE_DEVICE_TABLE (usb, usb_audio_ids);
  2509. static struct usb_driver usb_audio_driver = {
  2510. .name = "audio",
  2511. .probe = usb_audio_probe,
  2512. .disconnect = usb_audio_disconnect,
  2513. .id_table = usb_audio_ids,
  2514. };
  2515. static void *find_descriptor(void *descstart, unsigned int desclen, void *after,
  2516. u8 dtype, int iface, int altsetting)
  2517. {
  2518. u8 *p, *end, *next;
  2519. int ifc = -1, as = -1;
  2520. p = descstart;
  2521. end = p + desclen;
  2522. for (; p < end;) {
  2523. if (p[0] < 2)
  2524. return NULL;
  2525. next = p + p[0];
  2526. if (next > end)
  2527. return NULL;
  2528. if (p[1] == USB_DT_INTERFACE) {
  2529. /* minimum length of interface descriptor */
  2530. if (p[0] < 9)
  2531. return NULL;
  2532. ifc = p[2];
  2533. as = p[3];
  2534. }
  2535. if (p[1] == dtype && (!after || (void *)p > after) &&
  2536. (iface == -1 || iface == ifc) && (altsetting == -1 || altsetting == as)) {
  2537. return p;
  2538. }
  2539. p = next;
  2540. }
  2541. return NULL;
  2542. }
  2543. static void *find_csinterface_descriptor(void *descstart, unsigned int desclen, void *after, u8 dsubtype, int iface, int altsetting)
  2544. {
  2545. unsigned char *p;
  2546. p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, altsetting);
  2547. while (p) {
  2548. if (p[0] >= 3 && p[2] == dsubtype)
  2549. return p;
  2550. p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, altsetting);
  2551. }
  2552. return NULL;
  2553. }
  2554. static void *find_audiocontrol_unit(void *descstart, unsigned int desclen, void *after, u8 unit, int iface)
  2555. {
  2556. unsigned char *p;
  2557. p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, -1);
  2558. while (p) {
  2559. if (p[0] >= 4 && p[2] >= INPUT_TERMINAL && p[2] <= EXTENSION_UNIT && p[3] == unit)
  2560. return p;
  2561. p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, -1);
  2562. }
  2563. return NULL;
  2564. }
  2565. static void usb_audio_parsestreaming(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, int asifin, int asifout)
  2566. {
  2567. struct usb_device *dev = s->usbdev;
  2568. struct usb_audiodev *as;
  2569. struct usb_host_interface *alts;
  2570. struct usb_interface *iface;
  2571. struct audioformat *fp;
  2572. unsigned char *fmt, *csep;
  2573. unsigned int i, j, k, format, idx;
  2574. if (!(as = kmalloc(sizeof(struct usb_audiodev), GFP_KERNEL)))
  2575. return;
  2576. memset(as, 0, sizeof(struct usb_audiodev));
  2577. init_waitqueue_head(&as->usbin.dma.wait);
  2578. init_waitqueue_head(&as->usbout.dma.wait);
  2579. spin_lock_init(&as->lock);
  2580. as->usbin.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2581. as->usbin.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2582. as->usbin.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2583. as->usbin.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2584. as->usbout.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2585. as->usbout.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2586. as->usbout.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2587. as->usbout.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2588. if ((!as->usbin.durb[0].urb) ||
  2589. (!as->usbin.durb[1].urb) ||
  2590. (!as->usbin.surb[0].urb) ||
  2591. (!as->usbin.surb[1].urb) ||
  2592. (!as->usbout.durb[0].urb) ||
  2593. (!as->usbout.durb[1].urb) ||
  2594. (!as->usbout.surb[0].urb) ||
  2595. (!as->usbout.surb[1].urb)) {
  2596. usb_free_urb(as->usbin.durb[0].urb);
  2597. usb_free_urb(as->usbin.durb[1].urb);
  2598. usb_free_urb(as->usbin.surb[0].urb);
  2599. usb_free_urb(as->usbin.surb[1].urb);
  2600. usb_free_urb(as->usbout.durb[0].urb);
  2601. usb_free_urb(as->usbout.durb[1].urb);
  2602. usb_free_urb(as->usbout.surb[0].urb);
  2603. usb_free_urb(as->usbout.surb[1].urb);
  2604. kfree(as);
  2605. return;
  2606. }
  2607. as->state = s;
  2608. as->usbin.interface = asifin;
  2609. as->usbout.interface = asifout;
  2610. /* search for input formats */
  2611. if (asifin >= 0) {
  2612. as->usbin.flags = FLG_CONNECTED;
  2613. iface = usb_ifnum_to_if(dev, asifin);
  2614. for (idx = 0; idx < iface->num_altsetting; idx++) {
  2615. alts = &iface->altsetting[idx];
  2616. i = alts->desc.bAlternateSetting;
  2617. if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
  2618. continue;
  2619. if (alts->desc.bNumEndpoints < 1) {
  2620. if (i != 0) { /* altsetting 0 has no endpoints (Section B.3.4.1) */
  2621. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
  2622. dev->devnum, asifin, i);
  2623. }
  2624. continue;
  2625. }
  2626. if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
  2627. !(alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
  2628. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous in\n",
  2629. dev->devnum, asifin, i);
  2630. continue;
  2631. }
  2632. fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifin, i);
  2633. if (!fmt) {
  2634. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2635. dev->devnum, asifin, i);
  2636. continue;
  2637. }
  2638. if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
  2639. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
  2640. dev->devnum, asifin, i);
  2641. continue;
  2642. }
  2643. format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
  2644. fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifin, i);
  2645. if (!fmt) {
  2646. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2647. dev->devnum, asifin, i);
  2648. continue;
  2649. }
  2650. if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
  2651. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
  2652. dev->devnum, asifin, i);
  2653. continue;
  2654. }
  2655. if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
  2656. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
  2657. dev->devnum, asifin, i, fmt[4], fmt[5]);
  2658. continue;
  2659. }
  2660. csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifin, i);
  2661. if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
  2662. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
  2663. dev->devnum, asifin, i);
  2664. continue;
  2665. }
  2666. if (as->numfmtin >= MAXFORMATS)
  2667. continue;
  2668. fp = &as->fmtin[as->numfmtin++];
  2669. if (fmt[5] == 2)
  2670. format &= (AFMT_U16_LE | AFMT_S16_LE);
  2671. else
  2672. format &= (AFMT_U8 | AFMT_S8);
  2673. if (fmt[4] == 2)
  2674. format |= AFMT_STEREO;
  2675. fp->format = format;
  2676. fp->altsetting = i;
  2677. fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
  2678. printk(KERN_INFO "usbaudio: valid input sample rate %u\n", fp->sratelo);
  2679. for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
  2680. k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
  2681. printk(KERN_INFO "usbaudio: valid input sample rate %u\n", k);
  2682. if (k > fp->sratehi)
  2683. fp->sratehi = k;
  2684. if (k < fp->sratelo)
  2685. fp->sratelo = k;
  2686. }
  2687. fp->attributes = csep[3];
  2688. printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
  2689. dev->devnum, asifin, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
  2690. }
  2691. }
  2692. /* search for output formats */
  2693. if (asifout >= 0) {
  2694. as->usbout.flags = FLG_CONNECTED;
  2695. iface = usb_ifnum_to_if(dev, asifout);
  2696. for (idx = 0; idx < iface->num_altsetting; idx++) {
  2697. alts = &iface->altsetting[idx];
  2698. i = alts->desc.bAlternateSetting;
  2699. if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
  2700. continue;
  2701. if (alts->desc.bNumEndpoints < 1) {
  2702. /* altsetting 0 should never have iso EPs */
  2703. if (i != 0)
  2704. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
  2705. dev->devnum, asifout, i);
  2706. continue;
  2707. }
  2708. if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
  2709. (alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
  2710. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous out\n",
  2711. dev->devnum, asifout, i);
  2712. continue;
  2713. }
  2714. /* See USB audio formats manual, section 2 */
  2715. fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifout, i);
  2716. if (!fmt) {
  2717. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2718. dev->devnum, asifout, i);
  2719. continue;
  2720. }
  2721. if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
  2722. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
  2723. dev->devnum, asifout, i);
  2724. continue;
  2725. }
  2726. format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
  2727. /* Dallas DS4201 workaround */
  2728. if (le16_to_cpu(dev->descriptor.idVendor) == 0x04fa &&
  2729. le16_to_cpu(dev->descriptor.idProduct) == 0x4201)
  2730. format = (AFMT_S16_LE | AFMT_S8);
  2731. fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifout, i);
  2732. if (!fmt) {
  2733. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2734. dev->devnum, asifout, i);
  2735. continue;
  2736. }
  2737. if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
  2738. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
  2739. dev->devnum, asifout, i);
  2740. continue;
  2741. }
  2742. if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
  2743. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
  2744. dev->devnum, asifout, i, fmt[4], fmt[5]);
  2745. continue;
  2746. }
  2747. csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifout, i);
  2748. if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
  2749. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
  2750. dev->devnum, asifout, i);
  2751. continue;
  2752. }
  2753. if (as->numfmtout >= MAXFORMATS)
  2754. continue;
  2755. fp = &as->fmtout[as->numfmtout++];
  2756. if (fmt[5] == 2)
  2757. format &= (AFMT_U16_LE | AFMT_S16_LE);
  2758. else
  2759. format &= (AFMT_U8 | AFMT_S8);
  2760. if (fmt[4] == 2)
  2761. format |= AFMT_STEREO;
  2762. fp->format = format;
  2763. fp->altsetting = i;
  2764. fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
  2765. printk(KERN_INFO "usbaudio: valid output sample rate %u\n", fp->sratelo);
  2766. for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
  2767. k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
  2768. printk(KERN_INFO "usbaudio: valid output sample rate %u\n", k);
  2769. if (k > fp->sratehi)
  2770. fp->sratehi = k;
  2771. if (k < fp->sratelo)
  2772. fp->sratelo = k;
  2773. }
  2774. fp->attributes = csep[3];
  2775. printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
  2776. dev->devnum, asifout, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
  2777. }
  2778. }
  2779. if (as->numfmtin == 0 && as->numfmtout == 0) {
  2780. usb_free_urb(as->usbin.durb[0].urb);
  2781. usb_free_urb(as->usbin.durb[1].urb);
  2782. usb_free_urb(as->usbin.surb[0].urb);
  2783. usb_free_urb(as->usbin.surb[1].urb);
  2784. usb_free_urb(as->usbout.durb[0].urb);
  2785. usb_free_urb(as->usbout.durb[1].urb);
  2786. usb_free_urb(as->usbout.surb[0].urb);
  2787. usb_free_urb(as->usbout.surb[1].urb);
  2788. kfree(as);
  2789. return;
  2790. }
  2791. if ((as->dev_audio = register_sound_dsp(&usb_audio_fops, -1)) < 0) {
  2792. printk(KERN_ERR "usbaudio: cannot register dsp\n");
  2793. usb_free_urb(as->usbin.durb[0].urb);
  2794. usb_free_urb(as->usbin.durb[1].urb);
  2795. usb_free_urb(as->usbin.surb[0].urb);
  2796. usb_free_urb(as->usbin.surb[1].urb);
  2797. usb_free_urb(as->usbout.durb[0].urb);
  2798. usb_free_urb(as->usbout.durb[1].urb);
  2799. usb_free_urb(as->usbout.surb[0].urb);
  2800. usb_free_urb(as->usbout.surb[1].urb);
  2801. kfree(as);
  2802. return;
  2803. }
  2804. printk(KERN_INFO "usbaudio: registered dsp 14,%d\n", as->dev_audio);
  2805. /* everything successful */
  2806. list_add_tail(&as->list, &s->audiolist);
  2807. }
  2808. struct consmixstate {
  2809. struct usb_audio_state *s;
  2810. unsigned char *buffer;
  2811. unsigned int buflen;
  2812. unsigned int ctrlif;
  2813. struct mixerchannel mixch[SOUND_MIXER_NRDEVICES];
  2814. unsigned int nrmixch;
  2815. unsigned int mixchmask;
  2816. unsigned long unitbitmap[32/sizeof(unsigned long)];
  2817. /* return values */
  2818. unsigned int nrchannels;
  2819. unsigned int termtype;
  2820. unsigned int chconfig;
  2821. };
  2822. static struct mixerchannel *getmixchannel(struct consmixstate *state, unsigned int nr)
  2823. {
  2824. struct mixerchannel *c;
  2825. if (nr >= SOUND_MIXER_NRDEVICES) {
  2826. printk(KERN_ERR "usbaudio: invalid OSS mixer channel %u\n", nr);
  2827. return NULL;
  2828. }
  2829. if (!(state->mixchmask & (1 << nr))) {
  2830. printk(KERN_WARNING "usbaudio: OSS mixer channel %u already in use\n", nr);
  2831. return NULL;
  2832. }
  2833. c = &state->mixch[state->nrmixch++];
  2834. c->osschannel = nr;
  2835. state->mixchmask &= ~(1 << nr);
  2836. return c;
  2837. }
  2838. static unsigned int getvolchannel(struct consmixstate *state)
  2839. {
  2840. unsigned int u;
  2841. if ((state->termtype & 0xff00) == 0x0000 && (state->mixchmask & SOUND_MASK_VOLUME))
  2842. return SOUND_MIXER_VOLUME;
  2843. if ((state->termtype & 0xff00) == 0x0100) {
  2844. if (state->mixchmask & SOUND_MASK_PCM)
  2845. return SOUND_MIXER_PCM;
  2846. if (state->mixchmask & SOUND_MASK_ALTPCM)
  2847. return SOUND_MIXER_ALTPCM;
  2848. }
  2849. if ((state->termtype & 0xff00) == 0x0200 && (state->mixchmask & SOUND_MASK_MIC))
  2850. return SOUND_MIXER_MIC;
  2851. if ((state->termtype & 0xff00) == 0x0300 && (state->mixchmask & SOUND_MASK_SPEAKER))
  2852. return SOUND_MIXER_SPEAKER;
  2853. if ((state->termtype & 0xff00) == 0x0500) {
  2854. if (state->mixchmask & SOUND_MASK_PHONEIN)
  2855. return SOUND_MIXER_PHONEIN;
  2856. if (state->mixchmask & SOUND_MASK_PHONEOUT)
  2857. return SOUND_MIXER_PHONEOUT;
  2858. }
  2859. if (state->termtype >= 0x710 && state->termtype <= 0x711 && (state->mixchmask & SOUND_MASK_RADIO))
  2860. return SOUND_MIXER_RADIO;
  2861. if (state->termtype >= 0x709 && state->termtype <= 0x70f && (state->mixchmask & SOUND_MASK_VIDEO))
  2862. return SOUND_MIXER_VIDEO;
  2863. u = ffs(state->mixchmask & (SOUND_MASK_LINE | SOUND_MASK_CD | SOUND_MASK_LINE1 | SOUND_MASK_LINE2 | SOUND_MASK_LINE3 |
  2864. SOUND_MASK_DIGITAL1 | SOUND_MASK_DIGITAL2 | SOUND_MASK_DIGITAL3));
  2865. return u-1;
  2866. }
  2867. static void prepmixch(struct consmixstate *state)
  2868. {
  2869. struct usb_device *dev = state->s->usbdev;
  2870. struct mixerchannel *ch;
  2871. unsigned char *buf;
  2872. __s16 v1;
  2873. unsigned int v2, v3;
  2874. if (!state->nrmixch || state->nrmixch > SOUND_MIXER_NRDEVICES)
  2875. return;
  2876. buf = kmalloc(sizeof(*buf) * 2, GFP_KERNEL);
  2877. if (!buf) {
  2878. printk(KERN_ERR "prepmixch: out of memory\n") ;
  2879. return;
  2880. }
  2881. ch = &state->mixch[state->nrmixch-1];
  2882. switch (ch->selector) {
  2883. case 0: /* mixer unit request */
  2884. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2885. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2886. goto err;
  2887. ch->minval = buf[0] | (buf[1] << 8);
  2888. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2889. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2890. goto err;
  2891. ch->maxval = buf[0] | (buf[1] << 8);
  2892. v2 = ch->maxval - ch->minval;
  2893. if (!v2)
  2894. v2 = 1;
  2895. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2896. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2897. goto err;
  2898. v1 = buf[0] | (buf[1] << 8);
  2899. v3 = v1 - ch->minval;
  2900. v3 = 100 * v3 / v2;
  2901. if (v3 > 100)
  2902. v3 = 100;
  2903. ch->value = v3;
  2904. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2905. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2906. ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
  2907. state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2908. goto err;
  2909. v1 = buf[0] | (buf[1] << 8);
  2910. v3 = v1 - ch->minval;
  2911. v3 = 100 * v3 / v2;
  2912. if (v3 > 100)
  2913. v3 = 100;
  2914. }
  2915. ch->value |= v3 << 8;
  2916. break;
  2917. /* various feature unit controls */
  2918. case VOLUME_CONTROL:
  2919. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2920. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2921. goto err;
  2922. ch->minval = buf[0] | (buf[1] << 8);
  2923. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2924. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2925. goto err;
  2926. ch->maxval = buf[0] | (buf[1] << 8);
  2927. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2928. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2929. goto err;
  2930. v1 = buf[0] | (buf[1] << 8);
  2931. v2 = ch->maxval - ch->minval;
  2932. v3 = v1 - ch->minval;
  2933. if (!v2)
  2934. v2 = 1;
  2935. v3 = 100 * v3 / v2;
  2936. if (v3 > 100)
  2937. v3 = 100;
  2938. ch->value = v3;
  2939. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2940. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2941. (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2942. goto err;
  2943. v1 = buf[0] | (buf[1] << 8);
  2944. v3 = v1 - ch->minval;
  2945. v3 = 100 * v3 / v2;
  2946. if (v3 > 100)
  2947. v3 = 100;
  2948. }
  2949. ch->value |= v3 << 8;
  2950. break;
  2951. case BASS_CONTROL:
  2952. case MID_CONTROL:
  2953. case TREBLE_CONTROL:
  2954. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2955. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2956. goto err;
  2957. ch->minval = buf[0] << 8;
  2958. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2959. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2960. goto err;
  2961. ch->maxval = buf[0] << 8;
  2962. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2963. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2964. goto err;
  2965. v1 = buf[0] << 8;
  2966. v2 = ch->maxval - ch->minval;
  2967. v3 = v1 - ch->minval;
  2968. if (!v2)
  2969. v2 = 1;
  2970. v3 = 100 * v3 / v2;
  2971. if (v3 > 100)
  2972. v3 = 100;
  2973. ch->value = v3;
  2974. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2975. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2976. (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2977. goto err;
  2978. v1 = buf[0] << 8;
  2979. v3 = v1 - ch->minval;
  2980. v3 = 100 * v3 / v2;
  2981. if (v3 > 100)
  2982. v3 = 100;
  2983. }
  2984. ch->value |= v3 << 8;
  2985. break;
  2986. default:
  2987. goto err;
  2988. }
  2989. freebuf:
  2990. kfree(buf);
  2991. return;
  2992. err:
  2993. printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
  2994. dev->devnum, state->ctrlif, ch->unitid, ch->chnum, ch->selector);
  2995. if (state->nrmixch)
  2996. state->nrmixch--;
  2997. goto freebuf;
  2998. }
  2999. static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid);
  3000. static inline int checkmixbmap(unsigned char *bmap, unsigned char flg, unsigned int inidx, unsigned int numoch)
  3001. {
  3002. unsigned int idx;
  3003. idx = inidx*numoch;
  3004. if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
  3005. return 0;
  3006. if (!(flg & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  3007. return 1;
  3008. idx = (inidx+!!(flg & MIXFLG_STEREOIN))*numoch+!!(flg & MIXFLG_STEREOOUT);
  3009. if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
  3010. return 0;
  3011. return 1;
  3012. }
  3013. static void usb_audio_mixerunit(struct consmixstate *state, unsigned char *mixer)
  3014. {
  3015. unsigned int nroutch = mixer[5+mixer[4]];
  3016. unsigned int chidx[SOUND_MIXER_NRDEVICES+1];
  3017. unsigned int termt[SOUND_MIXER_NRDEVICES];
  3018. unsigned char flg = (nroutch >= 2) ? MIXFLG_STEREOOUT : 0;
  3019. unsigned char *bmap = &mixer[9+mixer[4]];
  3020. unsigned int bmapsize;
  3021. struct mixerchannel *ch;
  3022. unsigned int i;
  3023. if (!mixer[4]) {
  3024. printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor\n", mixer[3]);
  3025. return;
  3026. }
  3027. if (mixer[4] > SOUND_MIXER_NRDEVICES) {
  3028. printk(KERN_ERR "usbaudio: mixer unit %u: too many input pins\n", mixer[3]);
  3029. return;
  3030. }
  3031. chidx[0] = 0;
  3032. for (i = 0; i < mixer[4]; i++) {
  3033. usb_audio_recurseunit(state, mixer[5+i]);
  3034. chidx[i+1] = chidx[i] + state->nrchannels;
  3035. termt[i] = state->termtype;
  3036. }
  3037. state->termtype = 0;
  3038. state->chconfig = mixer[6+mixer[4]] | (mixer[7+mixer[4]] << 8);
  3039. bmapsize = (nroutch * chidx[mixer[4]] + 7) >> 3;
  3040. bmap += bmapsize - 1;
  3041. if (mixer[0] < 10+mixer[4]+bmapsize) {
  3042. printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor (bitmap too small)\n", mixer[3]);
  3043. return;
  3044. }
  3045. for (i = 0; i < mixer[4]; i++) {
  3046. state->termtype = termt[i];
  3047. if (chidx[i+1]-chidx[i] >= 2) {
  3048. flg |= MIXFLG_STEREOIN;
  3049. if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
  3050. ch = getmixchannel(state, getvolchannel(state));
  3051. if (ch) {
  3052. ch->unitid = mixer[3];
  3053. ch->selector = 0;
  3054. ch->chnum = chidx[i]+1;
  3055. ch->flags = flg;
  3056. prepmixch(state);
  3057. }
  3058. continue;
  3059. }
  3060. }
  3061. flg &= ~MIXFLG_STEREOIN;
  3062. if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
  3063. ch = getmixchannel(state, getvolchannel(state));
  3064. if (ch) {
  3065. ch->unitid = mixer[3];
  3066. ch->selector = 0;
  3067. ch->chnum = chidx[i]+1;
  3068. ch->flags = flg;
  3069. prepmixch(state);
  3070. }
  3071. }
  3072. }
  3073. state->termtype = 0;
  3074. }
  3075. static struct mixerchannel *slctsrc_findunit(struct consmixstate *state, __u8 unitid)
  3076. {
  3077. unsigned int i;
  3078. for (i = 0; i < state->nrmixch; i++)
  3079. if (state->mixch[i].unitid == unitid)
  3080. return &state->mixch[i];
  3081. return NULL;
  3082. }
  3083. static void usb_audio_selectorunit(struct consmixstate *state, unsigned char *selector)
  3084. {
  3085. unsigned int chnum, i, mixch;
  3086. struct mixerchannel *mch;
  3087. if (!selector[4]) {
  3088. printk(KERN_ERR "usbaudio: unit %u invalid SELECTOR_UNIT descriptor\n", selector[3]);
  3089. return;
  3090. }
  3091. mixch = state->nrmixch;
  3092. usb_audio_recurseunit(state, selector[5]);
  3093. if (state->nrmixch != mixch) {
  3094. mch = &state->mixch[state->nrmixch-1];
  3095. mch->slctunitid = selector[3] | (1 << 8);
  3096. } else if ((mch = slctsrc_findunit(state, selector[5]))) {
  3097. mch->slctunitid = selector[3] | (1 << 8);
  3098. } else {
  3099. printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel 1\n", selector[3]);
  3100. }
  3101. chnum = state->nrchannels;
  3102. for (i = 1; i < selector[4]; i++) {
  3103. mixch = state->nrmixch;
  3104. usb_audio_recurseunit(state, selector[5+i]);
  3105. if (chnum != state->nrchannels) {
  3106. printk(KERN_ERR "usbaudio: selector unit %u: input pins with varying channel numbers\n", selector[3]);
  3107. state->termtype = 0;
  3108. state->chconfig = 0;
  3109. state->nrchannels = 0;
  3110. return;
  3111. }
  3112. if (state->nrmixch != mixch) {
  3113. mch = &state->mixch[state->nrmixch-1];
  3114. mch->slctunitid = selector[3] | ((i + 1) << 8);
  3115. } else if ((mch = slctsrc_findunit(state, selector[5+i]))) {
  3116. mch->slctunitid = selector[3] | ((i + 1) << 8);
  3117. } else {
  3118. printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel %u\n", selector[3], i+1);
  3119. }
  3120. }
  3121. state->termtype = 0;
  3122. state->chconfig = 0;
  3123. }
  3124. /* in the future we might try to handle 3D etc. effect units */
  3125. static void usb_audio_processingunit(struct consmixstate *state, unsigned char *proc)
  3126. {
  3127. unsigned int i;
  3128. for (i = 0; i < proc[6]; i++)
  3129. usb_audio_recurseunit(state, proc[7+i]);
  3130. state->nrchannels = proc[7+proc[6]];
  3131. state->termtype = 0;
  3132. state->chconfig = proc[8+proc[6]] | (proc[9+proc[6]] << 8);
  3133. }
  3134. /* See Audio Class Spec, section 4.3.2.5 */
  3135. static void usb_audio_featureunit(struct consmixstate *state, unsigned char *ftr)
  3136. {
  3137. struct mixerchannel *ch;
  3138. unsigned short chftr, mchftr;
  3139. #if 0
  3140. struct usb_device *dev = state->s->usbdev;
  3141. unsigned char data[1];
  3142. #endif
  3143. unsigned char nr_logical_channels, i;
  3144. usb_audio_recurseunit(state, ftr[4]);
  3145. if (ftr[5] == 0 ) {
  3146. printk(KERN_ERR "usbaudio: wrong controls size in feature unit %u\n",ftr[3]);
  3147. return;
  3148. }
  3149. if (state->nrchannels == 0) {
  3150. printk(KERN_ERR "usbaudio: feature unit %u source has no channels\n", ftr[3]);
  3151. return;
  3152. }
  3153. if (state->nrchannels > 2)
  3154. printk(KERN_WARNING "usbaudio: feature unit %u: OSS mixer interface does not support more than 2 channels\n", ftr[3]);
  3155. nr_logical_channels=(ftr[0]-7)/ftr[5]-1;
  3156. if (nr_logical_channels != state->nrchannels) {
  3157. printk(KERN_WARNING "usbaudio: warning: found %d of %d logical channels.\n", state->nrchannels,nr_logical_channels);
  3158. if (state->nrchannels == 1 && nr_logical_channels==0) {
  3159. printk(KERN_INFO "usbaudio: assuming the channel found is the master channel (got a Philips camera?). Should be fine.\n");
  3160. } else if (state->nrchannels == 1 && nr_logical_channels==2) {
  3161. printk(KERN_INFO "usbaudio: assuming that a stereo channel connected directly to a mixer is missing in search (got Labtec headset?). Should be fine.\n");
  3162. state->nrchannels=nr_logical_channels;
  3163. } else {
  3164. printk(KERN_WARNING "usbaudio: no idea what's going on..., contact linux-usb-devel@lists.sourceforge.net\n");
  3165. }
  3166. }
  3167. /* There is always a master channel */
  3168. mchftr = ftr[6];
  3169. /* Binary AND over logical channels if they exist */
  3170. if (nr_logical_channels) {
  3171. chftr = ftr[6+ftr[5]];
  3172. for (i = 2; i <= nr_logical_channels; i++)
  3173. chftr &= ftr[6+i*ftr[5]];
  3174. } else {
  3175. chftr = 0;
  3176. }
  3177. /* volume control */
  3178. if (chftr & 2) {
  3179. ch = getmixchannel(state, getvolchannel(state));
  3180. if (ch) {
  3181. ch->unitid = ftr[3];
  3182. ch->selector = VOLUME_CONTROL;
  3183. ch->chnum = 1;
  3184. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3185. prepmixch(state);
  3186. }
  3187. } else if (mchftr & 2) {
  3188. ch = getmixchannel(state, getvolchannel(state));
  3189. if (ch) {
  3190. ch->unitid = ftr[3];
  3191. ch->selector = VOLUME_CONTROL;
  3192. ch->chnum = 0;
  3193. ch->flags = 0;
  3194. prepmixch(state);
  3195. }
  3196. }
  3197. /* bass control */
  3198. if (chftr & 4) {
  3199. ch = getmixchannel(state, SOUND_MIXER_BASS);
  3200. if (ch) {
  3201. ch->unitid = ftr[3];
  3202. ch->selector = BASS_CONTROL;
  3203. ch->chnum = 1;
  3204. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3205. prepmixch(state);
  3206. }
  3207. } else if (mchftr & 4) {
  3208. ch = getmixchannel(state, SOUND_MIXER_BASS);
  3209. if (ch) {
  3210. ch->unitid = ftr[3];
  3211. ch->selector = BASS_CONTROL;
  3212. ch->chnum = 0;
  3213. ch->flags = 0;
  3214. prepmixch(state);
  3215. }
  3216. }
  3217. /* treble control */
  3218. if (chftr & 16) {
  3219. ch = getmixchannel(state, SOUND_MIXER_TREBLE);
  3220. if (ch) {
  3221. ch->unitid = ftr[3];
  3222. ch->selector = TREBLE_CONTROL;
  3223. ch->chnum = 1;
  3224. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3225. prepmixch(state);
  3226. }
  3227. } else if (mchftr & 16) {
  3228. ch = getmixchannel(state, SOUND_MIXER_TREBLE);
  3229. if (ch) {
  3230. ch->unitid = ftr[3];
  3231. ch->selector = TREBLE_CONTROL;
  3232. ch->chnum = 0;
  3233. ch->flags = 0;
  3234. prepmixch(state);
  3235. }
  3236. }
  3237. #if 0
  3238. /* if there are mute controls, unmute them */
  3239. /* does not seem to be necessary, and the Dallas chip does not seem to support the "all" channel (255) */
  3240. if ((chftr & 1) || (mchftr & 1)) {
  3241. printk(KERN_DEBUG "usbaudio: unmuting feature unit %u interface %u\n", ftr[3], state->ctrlif);
  3242. data[0] = 0;
  3243. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  3244. (MUTE_CONTROL << 8) | 0xff, state->ctrlif | (ftr[3] << 8), data, 1, 1000) < 0)
  3245. printk(KERN_WARNING "usbaudio: failure to unmute feature unit %u interface %u\n", ftr[3], state->ctrlif);
  3246. }
  3247. #endif
  3248. }
  3249. static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid)
  3250. {
  3251. unsigned char *p1;
  3252. unsigned int i, j;
  3253. if (test_and_set_bit(unitid, state->unitbitmap)) {
  3254. printk(KERN_INFO "usbaudio: mixer path revisits unit %d\n", unitid);
  3255. return;
  3256. }
  3257. p1 = find_audiocontrol_unit(state->buffer, state->buflen, NULL, unitid, state->ctrlif);
  3258. if (!p1) {
  3259. printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
  3260. return;
  3261. }
  3262. state->nrchannels = 0;
  3263. state->termtype = 0;
  3264. state->chconfig = 0;
  3265. switch (p1[2]) {
  3266. case INPUT_TERMINAL:
  3267. if (p1[0] < 12) {
  3268. printk(KERN_ERR "usbaudio: unit %u: invalid INPUT_TERMINAL descriptor\n", unitid);
  3269. return;
  3270. }
  3271. state->nrchannels = p1[7];
  3272. state->termtype = p1[4] | (p1[5] << 8);
  3273. state->chconfig = p1[8] | (p1[9] << 8);
  3274. return;
  3275. case MIXER_UNIT:
  3276. if (p1[0] < 10 || p1[0] < 10+p1[4]) {
  3277. printk(KERN_ERR "usbaudio: unit %u: invalid MIXER_UNIT descriptor\n", unitid);
  3278. return;
  3279. }
  3280. usb_audio_mixerunit(state, p1);
  3281. return;
  3282. case SELECTOR_UNIT:
  3283. if (p1[0] < 6 || p1[0] < 6+p1[4]) {
  3284. printk(KERN_ERR "usbaudio: unit %u: invalid SELECTOR_UNIT descriptor\n", unitid);
  3285. return;
  3286. }
  3287. usb_audio_selectorunit(state, p1);
  3288. return;
  3289. case FEATURE_UNIT: /* See USB Audio Class Spec 4.3.2.5 */
  3290. if (p1[0] < 7 || p1[0] < 7+p1[5]) {
  3291. printk(KERN_ERR "usbaudio: unit %u: invalid FEATURE_UNIT descriptor\n", unitid);
  3292. return;
  3293. }
  3294. usb_audio_featureunit(state, p1);
  3295. return;
  3296. case PROCESSING_UNIT:
  3297. if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
  3298. printk(KERN_ERR "usbaudio: unit %u: invalid PROCESSING_UNIT descriptor\n", unitid);
  3299. return;
  3300. }
  3301. usb_audio_processingunit(state, p1);
  3302. return;
  3303. case EXTENSION_UNIT:
  3304. if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
  3305. printk(KERN_ERR "usbaudio: unit %u: invalid EXTENSION_UNIT descriptor\n", unitid);
  3306. return;
  3307. }
  3308. for (j = i = 0; i < p1[6]; i++) {
  3309. usb_audio_recurseunit(state, p1[7+i]);
  3310. if (!i)
  3311. j = state->termtype;
  3312. else if (j != state->termtype)
  3313. j = 0;
  3314. }
  3315. state->nrchannels = p1[7+p1[6]];
  3316. state->chconfig = p1[8+p1[6]] | (p1[9+p1[6]] << 8);
  3317. state->termtype = j;
  3318. return;
  3319. default:
  3320. printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
  3321. return;
  3322. }
  3323. }
  3324. static void usb_audio_constructmixer(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif, unsigned char *oterm)
  3325. {
  3326. struct usb_mixerdev *ms;
  3327. struct consmixstate state;
  3328. memset(&state, 0, sizeof(state));
  3329. state.s = s;
  3330. state.nrmixch = 0;
  3331. state.mixchmask = ~0;
  3332. state.buffer = buffer;
  3333. state.buflen = buflen;
  3334. state.ctrlif = ctrlif;
  3335. set_bit(oterm[3], state.unitbitmap); /* mark terminal ID as visited */
  3336. printk(KERN_DEBUG "usbaudio: constructing mixer for Terminal %u type 0x%04x\n",
  3337. oterm[3], oterm[4] | (oterm[5] << 8));
  3338. usb_audio_recurseunit(&state, oterm[7]);
  3339. if (!state.nrmixch) {
  3340. printk(KERN_INFO "usbaudio: no mixer controls found for Terminal %u\n", oterm[3]);
  3341. return;
  3342. }
  3343. if (!(ms = kmalloc(sizeof(struct usb_mixerdev)+state.nrmixch*sizeof(struct mixerchannel), GFP_KERNEL)))
  3344. return;
  3345. memset(ms, 0, sizeof(struct usb_mixerdev));
  3346. memcpy(&ms->ch, &state.mixch, state.nrmixch*sizeof(struct mixerchannel));
  3347. ms->state = s;
  3348. ms->iface = ctrlif;
  3349. ms->numch = state.nrmixch;
  3350. if ((ms->dev_mixer = register_sound_mixer(&usb_mixer_fops, -1)) < 0) {
  3351. printk(KERN_ERR "usbaudio: cannot register mixer\n");
  3352. kfree(ms);
  3353. return;
  3354. }
  3355. printk(KERN_INFO "usbaudio: registered mixer 14,%d\n", ms->dev_mixer);
  3356. list_add_tail(&ms->list, &s->mixerlist);
  3357. }
  3358. /* arbitrary limit, we won't check more interfaces than this */
  3359. #define USB_MAXINTERFACES 32
  3360. static struct usb_audio_state *usb_audio_parsecontrol(struct usb_device *dev, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif)
  3361. {
  3362. struct usb_audio_state *s;
  3363. struct usb_interface *iface;
  3364. struct usb_host_interface *alt;
  3365. unsigned char ifin[USB_MAXINTERFACES], ifout[USB_MAXINTERFACES];
  3366. unsigned char *p1;
  3367. unsigned int i, j, k, numifin = 0, numifout = 0;
  3368. if (!(s = kmalloc(sizeof(struct usb_audio_state), GFP_KERNEL)))
  3369. return NULL;
  3370. memset(s, 0, sizeof(struct usb_audio_state));
  3371. INIT_LIST_HEAD(&s->audiolist);
  3372. INIT_LIST_HEAD(&s->mixerlist);
  3373. s->usbdev = dev;
  3374. s->count = 1;
  3375. /* find audiocontrol interface */
  3376. if (!(p1 = find_csinterface_descriptor(buffer, buflen, NULL, HEADER, ctrlif, -1))) {
  3377. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u no HEADER found\n",
  3378. dev->devnum, ctrlif);
  3379. goto ret;
  3380. }
  3381. if (p1[0] < 8 + p1[7]) {
  3382. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u HEADER error\n",
  3383. dev->devnum, ctrlif);
  3384. goto ret;
  3385. }
  3386. if (!p1[7])
  3387. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has no AudioStreaming and MidiStreaming interfaces\n",
  3388. dev->devnum, ctrlif);
  3389. for (i = 0; i < p1[7]; i++) {
  3390. j = p1[8+i];
  3391. iface = usb_ifnum_to_if(dev, j);
  3392. if (!iface) {
  3393. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u does not exist\n",
  3394. dev->devnum, ctrlif, j);
  3395. continue;
  3396. }
  3397. if (iface->num_altsetting == 1) {
  3398. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u has only 1 altsetting.\n", dev->devnum, ctrlif);
  3399. continue;
  3400. }
  3401. alt = usb_altnum_to_altsetting(iface, 0);
  3402. if (!alt) {
  3403. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 0\n",
  3404. dev->devnum, ctrlif, j);
  3405. continue;
  3406. }
  3407. if (alt->desc.bInterfaceClass != USB_CLASS_AUDIO) {
  3408. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u is not an AudioClass interface\n",
  3409. dev->devnum, ctrlif, j);
  3410. continue;
  3411. }
  3412. if (alt->desc.bInterfaceSubClass == 3) {
  3413. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u interface %u MIDIStreaming not supported\n",
  3414. dev->devnum, ctrlif, j);
  3415. continue;
  3416. }
  3417. if (alt->desc.bInterfaceSubClass != 2) {
  3418. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u invalid AudioClass subtype\n",
  3419. dev->devnum, ctrlif, j);
  3420. continue;
  3421. }
  3422. if (alt->desc.bNumEndpoints > 0) {
  3423. /* Check all endpoints; should they all have a bandwidth of 0 ? */
  3424. for (k = 0; k < alt->desc.bNumEndpoints; k++) {
  3425. if (le16_to_cpu(alt->endpoint[k].desc.wMaxPacketSize) > 0) {
  3426. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u endpoint %d does not have 0 bandwidth at alt[0]\n", dev->devnum, ctrlif, k);
  3427. break;
  3428. }
  3429. }
  3430. if (k < alt->desc.bNumEndpoints)
  3431. continue;
  3432. }
  3433. alt = usb_altnum_to_altsetting(iface, 1);
  3434. if (!alt) {
  3435. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 1\n",
  3436. dev->devnum, ctrlif, j);
  3437. continue;
  3438. }
  3439. if (alt->desc.bNumEndpoints < 1) {
  3440. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no endpoint\n",
  3441. dev->devnum, ctrlif, j);
  3442. continue;
  3443. }
  3444. /* note: this requires the data endpoint to be ep0 and the optional sync
  3445. ep to be ep1, which seems to be the case */
  3446. if (alt->endpoint[0].desc.bEndpointAddress & USB_DIR_IN) {
  3447. if (numifin < USB_MAXINTERFACES) {
  3448. ifin[numifin++] = j;
  3449. usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
  3450. }
  3451. } else {
  3452. if (numifout < USB_MAXINTERFACES) {
  3453. ifout[numifout++] = j;
  3454. usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
  3455. }
  3456. }
  3457. }
  3458. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has %u input and %u output AudioStreaming interfaces\n",
  3459. dev->devnum, ctrlif, numifin, numifout);
  3460. for (i = 0; i < numifin && i < numifout; i++)
  3461. usb_audio_parsestreaming(s, buffer, buflen, ifin[i], ifout[i]);
  3462. for (j = i; j < numifin; j++)
  3463. usb_audio_parsestreaming(s, buffer, buflen, ifin[i], -1);
  3464. for (j = i; j < numifout; j++)
  3465. usb_audio_parsestreaming(s, buffer, buflen, -1, ifout[i]);
  3466. /* now walk through all OUTPUT_TERMINAL descriptors to search for mixers */
  3467. p1 = find_csinterface_descriptor(buffer, buflen, NULL, OUTPUT_TERMINAL, ctrlif, -1);
  3468. while (p1) {
  3469. if (p1[0] >= 9)
  3470. usb_audio_constructmixer(s, buffer, buflen, ctrlif, p1);
  3471. p1 = find_csinterface_descriptor(buffer, buflen, p1, OUTPUT_TERMINAL, ctrlif, -1);
  3472. }
  3473. ret:
  3474. if (list_empty(&s->audiolist) && list_empty(&s->mixerlist)) {
  3475. kfree(s);
  3476. return NULL;
  3477. }
  3478. /* everything successful */
  3479. down(&open_sem);
  3480. list_add_tail(&s->audiodev, &audiodevs);
  3481. up(&open_sem);
  3482. printk(KERN_DEBUG "usb_audio_parsecontrol: usb_audio_state at %p\n", s);
  3483. return s;
  3484. }
  3485. /* we only care for the currently active configuration */
  3486. static int usb_audio_probe(struct usb_interface *intf,
  3487. const struct usb_device_id *id)
  3488. {
  3489. struct usb_device *dev = interface_to_usbdev (intf);
  3490. struct usb_audio_state *s;
  3491. unsigned char *buffer;
  3492. unsigned int buflen;
  3493. #if 0
  3494. printk(KERN_DEBUG "usbaudio: Probing if %i: IC %x, ISC %x\n", ifnum,
  3495. config->interface[ifnum].altsetting[0].desc.bInterfaceClass,
  3496. config->interface[ifnum].altsetting[0].desc.bInterfaceSubClass);
  3497. #endif
  3498. /*
  3499. * audiocontrol interface found
  3500. * find which configuration number is active
  3501. */
  3502. buffer = dev->rawdescriptors[dev->actconfig - dev->config];
  3503. buflen = le16_to_cpu(dev->actconfig->desc.wTotalLength);
  3504. s = usb_audio_parsecontrol(dev, buffer, buflen, intf->altsetting->desc.bInterfaceNumber);
  3505. if (s) {
  3506. usb_set_intfdata (intf, s);
  3507. return 0;
  3508. }
  3509. return -ENODEV;
  3510. }
  3511. /* a revoke facility would make things simpler */
  3512. static void usb_audio_disconnect(struct usb_interface *intf)
  3513. {
  3514. struct usb_audio_state *s = usb_get_intfdata (intf);
  3515. struct usb_audiodev *as;
  3516. struct usb_mixerdev *ms;
  3517. if (!s)
  3518. return;
  3519. /* we get called with -1 for every audiostreaming interface registered */
  3520. if (s == (struct usb_audio_state *)-1) {
  3521. dprintk((KERN_DEBUG "usbaudio: note, usb_audio_disconnect called with -1\n"));
  3522. return;
  3523. }
  3524. if (!s->usbdev) {
  3525. dprintk((KERN_DEBUG "usbaudio: error, usb_audio_disconnect already called for %p!\n", s));
  3526. return;
  3527. }
  3528. down(&open_sem);
  3529. list_del_init(&s->audiodev);
  3530. s->usbdev = NULL;
  3531. usb_set_intfdata (intf, NULL);
  3532. /* deregister all audio and mixer devices, so no new processes can open this device */
  3533. list_for_each_entry(as, &s->audiolist, list) {
  3534. usbin_disc(as);
  3535. usbout_disc(as);
  3536. wake_up(&as->usbin.dma.wait);
  3537. wake_up(&as->usbout.dma.wait);
  3538. if (as->dev_audio >= 0) {
  3539. unregister_sound_dsp(as->dev_audio);
  3540. printk(KERN_INFO "usbaudio: unregister dsp 14,%d\n", as->dev_audio);
  3541. }
  3542. as->dev_audio = -1;
  3543. }
  3544. list_for_each_entry(ms, &s->mixerlist, list) {
  3545. if (ms->dev_mixer >= 0) {
  3546. unregister_sound_mixer(ms->dev_mixer);
  3547. printk(KERN_INFO "usbaudio: unregister mixer 14,%d\n", ms->dev_mixer);
  3548. }
  3549. ms->dev_mixer = -1;
  3550. }
  3551. release(s);
  3552. wake_up(&open_wait);
  3553. }
  3554. static int __init usb_audio_init(void)
  3555. {
  3556. int result = usb_register(&usb_audio_driver);
  3557. if (result == 0)
  3558. info(DRIVER_VERSION ":" DRIVER_DESC);
  3559. return result;
  3560. }
  3561. static void __exit usb_audio_cleanup(void)
  3562. {
  3563. usb_deregister(&usb_audio_driver);
  3564. }
  3565. module_init(usb_audio_init);
  3566. module_exit(usb_audio_cleanup);
  3567. MODULE_AUTHOR( DRIVER_AUTHOR );
  3568. MODULE_DESCRIPTION( DRIVER_DESC );
  3569. MODULE_LICENSE("GPL");