pdc_adma.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. /*
  2. * pdc_adma.c - Pacific Digital Corporation ADMA
  3. *
  4. * Maintained by: Mark Lord <mlord@pobox.com>
  5. *
  6. * Copyright 2005 Mark Lord
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. * libata documentation is available via 'make {ps|pdf}docs',
  24. * as Documentation/DocBook/libata.*
  25. *
  26. *
  27. * Supports ATA disks in single-packet ADMA mode.
  28. * Uses PIO for everything else.
  29. *
  30. * TODO: Use ADMA transfers for ATAPI devices, when possible.
  31. * This requires careful attention to a number of quirks of the chip.
  32. *
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/pci.h>
  37. #include <linux/init.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/sched.h>
  42. #include <linux/device.h>
  43. #include <scsi/scsi_host.h>
  44. #include <asm/io.h>
  45. #include <linux/libata.h>
  46. #define DRV_NAME "pdc_adma"
  47. #define DRV_VERSION "0.03"
  48. /* macro to calculate base address for ATA regs */
  49. #define ADMA_ATA_REGS(base,port_no) ((base) + ((port_no) * 0x40))
  50. /* macro to calculate base address for ADMA regs */
  51. #define ADMA_REGS(base,port_no) ((base) + 0x80 + ((port_no) * 0x20))
  52. enum {
  53. ADMA_PORTS = 2,
  54. ADMA_CPB_BYTES = 40,
  55. ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
  56. ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
  57. ADMA_DMA_BOUNDARY = 0xffffffff,
  58. /* global register offsets */
  59. ADMA_MODE_LOCK = 0x00c7,
  60. /* per-channel register offsets */
  61. ADMA_CONTROL = 0x0000, /* ADMA control */
  62. ADMA_STATUS = 0x0002, /* ADMA status */
  63. ADMA_CPB_COUNT = 0x0004, /* CPB count */
  64. ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
  65. ADMA_CPB_NEXT = 0x000c, /* next CPB address */
  66. ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
  67. ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
  68. ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
  69. /* ADMA_CONTROL register bits */
  70. aNIEN = (1 << 8), /* irq mask: 1==masked */
  71. aGO = (1 << 7), /* packet trigger ("Go!") */
  72. aRSTADM = (1 << 5), /* ADMA logic reset */
  73. aPIOMD4 = 0x0003, /* PIO mode 4 */
  74. /* ADMA_STATUS register bits */
  75. aPSD = (1 << 6),
  76. aUIRQ = (1 << 4),
  77. aPERR = (1 << 0),
  78. /* CPB bits */
  79. cDONE = (1 << 0),
  80. cVLD = (1 << 0),
  81. cDAT = (1 << 2),
  82. cIEN = (1 << 3),
  83. /* PRD bits */
  84. pORD = (1 << 4),
  85. pDIRO = (1 << 5),
  86. pEND = (1 << 7),
  87. /* ATA register flags */
  88. rIGN = (1 << 5),
  89. rEND = (1 << 7),
  90. /* ATA register addresses */
  91. ADMA_REGS_CONTROL = 0x0e,
  92. ADMA_REGS_SECTOR_COUNT = 0x12,
  93. ADMA_REGS_LBA_LOW = 0x13,
  94. ADMA_REGS_LBA_MID = 0x14,
  95. ADMA_REGS_LBA_HIGH = 0x15,
  96. ADMA_REGS_DEVICE = 0x16,
  97. ADMA_REGS_COMMAND = 0x17,
  98. /* PCI device IDs */
  99. board_1841_idx = 0, /* ADMA 2-port controller */
  100. };
  101. typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
  102. struct adma_port_priv {
  103. u8 *pkt;
  104. dma_addr_t pkt_dma;
  105. adma_state_t state;
  106. };
  107. static int adma_ata_init_one (struct pci_dev *pdev,
  108. const struct pci_device_id *ent);
  109. static irqreturn_t adma_intr (int irq, void *dev_instance,
  110. struct pt_regs *regs);
  111. static int adma_port_start(struct ata_port *ap);
  112. static void adma_host_stop(struct ata_host_set *host_set);
  113. static void adma_port_stop(struct ata_port *ap);
  114. static void adma_phy_reset(struct ata_port *ap);
  115. static void adma_qc_prep(struct ata_queued_cmd *qc);
  116. static int adma_qc_issue(struct ata_queued_cmd *qc);
  117. static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
  118. static void adma_bmdma_stop(struct ata_queued_cmd *qc);
  119. static u8 adma_bmdma_status(struct ata_port *ap);
  120. static void adma_irq_clear(struct ata_port *ap);
  121. static void adma_eng_timeout(struct ata_port *ap);
  122. static struct scsi_host_template adma_ata_sht = {
  123. .module = THIS_MODULE,
  124. .name = DRV_NAME,
  125. .ioctl = ata_scsi_ioctl,
  126. .queuecommand = ata_scsi_queuecmd,
  127. .eh_strategy_handler = ata_scsi_error,
  128. .can_queue = ATA_DEF_QUEUE,
  129. .this_id = ATA_SHT_THIS_ID,
  130. .sg_tablesize = LIBATA_MAX_PRD,
  131. .max_sectors = ATA_MAX_SECTORS,
  132. .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
  133. .emulated = ATA_SHT_EMULATED,
  134. .use_clustering = ENABLE_CLUSTERING,
  135. .proc_name = DRV_NAME,
  136. .dma_boundary = ADMA_DMA_BOUNDARY,
  137. .slave_configure = ata_scsi_slave_config,
  138. .bios_param = ata_std_bios_param,
  139. };
  140. static const struct ata_port_operations adma_ata_ops = {
  141. .port_disable = ata_port_disable,
  142. .tf_load = ata_tf_load,
  143. .tf_read = ata_tf_read,
  144. .check_status = ata_check_status,
  145. .check_atapi_dma = adma_check_atapi_dma,
  146. .exec_command = ata_exec_command,
  147. .dev_select = ata_std_dev_select,
  148. .phy_reset = adma_phy_reset,
  149. .qc_prep = adma_qc_prep,
  150. .qc_issue = adma_qc_issue,
  151. .eng_timeout = adma_eng_timeout,
  152. .irq_handler = adma_intr,
  153. .irq_clear = adma_irq_clear,
  154. .port_start = adma_port_start,
  155. .port_stop = adma_port_stop,
  156. .host_stop = adma_host_stop,
  157. .bmdma_stop = adma_bmdma_stop,
  158. .bmdma_status = adma_bmdma_status,
  159. };
  160. static struct ata_port_info adma_port_info[] = {
  161. /* board_1841_idx */
  162. {
  163. .sht = &adma_ata_sht,
  164. .host_flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST |
  165. ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO,
  166. .pio_mask = 0x10, /* pio4 */
  167. .udma_mask = 0x1f, /* udma0-4 */
  168. .port_ops = &adma_ata_ops,
  169. },
  170. };
  171. static const struct pci_device_id adma_ata_pci_tbl[] = {
  172. { PCI_VENDOR_ID_PDC, 0x1841, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  173. board_1841_idx },
  174. { } /* terminate list */
  175. };
  176. static struct pci_driver adma_ata_pci_driver = {
  177. .name = DRV_NAME,
  178. .id_table = adma_ata_pci_tbl,
  179. .probe = adma_ata_init_one,
  180. .remove = ata_pci_remove_one,
  181. };
  182. static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
  183. {
  184. return 1; /* ATAPI DMA not yet supported */
  185. }
  186. static void adma_bmdma_stop(struct ata_queued_cmd *qc)
  187. {
  188. /* nothing */
  189. }
  190. static u8 adma_bmdma_status(struct ata_port *ap)
  191. {
  192. return 0;
  193. }
  194. static void adma_irq_clear(struct ata_port *ap)
  195. {
  196. /* nothing */
  197. }
  198. static void adma_reset_engine(void __iomem *chan)
  199. {
  200. /* reset ADMA to idle state */
  201. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  202. udelay(2);
  203. writew(aPIOMD4, chan + ADMA_CONTROL);
  204. udelay(2);
  205. }
  206. static void adma_reinit_engine(struct ata_port *ap)
  207. {
  208. struct adma_port_priv *pp = ap->private_data;
  209. void __iomem *mmio_base = ap->host_set->mmio_base;
  210. void __iomem *chan = ADMA_REGS(mmio_base, ap->port_no);
  211. /* mask/clear ATA interrupts */
  212. writeb(ATA_NIEN, (void __iomem *)ap->ioaddr.ctl_addr);
  213. ata_check_status(ap);
  214. /* reset the ADMA engine */
  215. adma_reset_engine(chan);
  216. /* set in-FIFO threshold to 0x100 */
  217. writew(0x100, chan + ADMA_FIFO_IN);
  218. /* set CPB pointer */
  219. writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
  220. /* set out-FIFO threshold to 0x100 */
  221. writew(0x100, chan + ADMA_FIFO_OUT);
  222. /* set CPB count */
  223. writew(1, chan + ADMA_CPB_COUNT);
  224. /* read/discard ADMA status */
  225. readb(chan + ADMA_STATUS);
  226. }
  227. static inline void adma_enter_reg_mode(struct ata_port *ap)
  228. {
  229. void __iomem *chan = ADMA_REGS(ap->host_set->mmio_base, ap->port_no);
  230. writew(aPIOMD4, chan + ADMA_CONTROL);
  231. readb(chan + ADMA_STATUS); /* flush */
  232. }
  233. static void adma_phy_reset(struct ata_port *ap)
  234. {
  235. struct adma_port_priv *pp = ap->private_data;
  236. pp->state = adma_state_idle;
  237. adma_reinit_engine(ap);
  238. ata_port_probe(ap);
  239. ata_bus_reset(ap);
  240. }
  241. static void adma_eng_timeout(struct ata_port *ap)
  242. {
  243. struct adma_port_priv *pp = ap->private_data;
  244. if (pp->state != adma_state_idle) /* healthy paranoia */
  245. pp->state = adma_state_mmio;
  246. adma_reinit_engine(ap);
  247. ata_eng_timeout(ap);
  248. }
  249. static int adma_fill_sg(struct ata_queued_cmd *qc)
  250. {
  251. struct scatterlist *sg;
  252. struct ata_port *ap = qc->ap;
  253. struct adma_port_priv *pp = ap->private_data;
  254. u8 *buf = pp->pkt;
  255. int i = (2 + buf[3]) * 8;
  256. u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
  257. ata_for_each_sg(sg, qc) {
  258. u32 addr;
  259. u32 len;
  260. addr = (u32)sg_dma_address(sg);
  261. *(__le32 *)(buf + i) = cpu_to_le32(addr);
  262. i += 4;
  263. len = sg_dma_len(sg) >> 3;
  264. *(__le32 *)(buf + i) = cpu_to_le32(len);
  265. i += 4;
  266. if (ata_sg_is_last(sg, qc))
  267. pFLAGS |= pEND;
  268. buf[i++] = pFLAGS;
  269. buf[i++] = qc->dev->dma_mode & 0xf;
  270. buf[i++] = 0; /* pPKLW */
  271. buf[i++] = 0; /* reserved */
  272. *(__le32 *)(buf + i)
  273. = (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
  274. i += 4;
  275. VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", nelem,
  276. (unsigned long)addr, len);
  277. }
  278. return i;
  279. }
  280. static void adma_qc_prep(struct ata_queued_cmd *qc)
  281. {
  282. struct adma_port_priv *pp = qc->ap->private_data;
  283. u8 *buf = pp->pkt;
  284. u32 pkt_dma = (u32)pp->pkt_dma;
  285. int i = 0;
  286. VPRINTK("ENTER\n");
  287. adma_enter_reg_mode(qc->ap);
  288. if (qc->tf.protocol != ATA_PROT_DMA) {
  289. ata_qc_prep(qc);
  290. return;
  291. }
  292. buf[i++] = 0; /* Response flags */
  293. buf[i++] = 0; /* reserved */
  294. buf[i++] = cVLD | cDAT | cIEN;
  295. i++; /* cLEN, gets filled in below */
  296. *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
  297. i += 4; /* cNCPB */
  298. i += 4; /* cPRD, gets filled in below */
  299. buf[i++] = 0; /* reserved */
  300. buf[i++] = 0; /* reserved */
  301. buf[i++] = 0; /* reserved */
  302. buf[i++] = 0; /* reserved */
  303. /* ATA registers; must be a multiple of 4 */
  304. buf[i++] = qc->tf.device;
  305. buf[i++] = ADMA_REGS_DEVICE;
  306. if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
  307. buf[i++] = qc->tf.hob_nsect;
  308. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  309. buf[i++] = qc->tf.hob_lbal;
  310. buf[i++] = ADMA_REGS_LBA_LOW;
  311. buf[i++] = qc->tf.hob_lbam;
  312. buf[i++] = ADMA_REGS_LBA_MID;
  313. buf[i++] = qc->tf.hob_lbah;
  314. buf[i++] = ADMA_REGS_LBA_HIGH;
  315. }
  316. buf[i++] = qc->tf.nsect;
  317. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  318. buf[i++] = qc->tf.lbal;
  319. buf[i++] = ADMA_REGS_LBA_LOW;
  320. buf[i++] = qc->tf.lbam;
  321. buf[i++] = ADMA_REGS_LBA_MID;
  322. buf[i++] = qc->tf.lbah;
  323. buf[i++] = ADMA_REGS_LBA_HIGH;
  324. buf[i++] = 0;
  325. buf[i++] = ADMA_REGS_CONTROL;
  326. buf[i++] = rIGN;
  327. buf[i++] = 0;
  328. buf[i++] = qc->tf.command;
  329. buf[i++] = ADMA_REGS_COMMAND | rEND;
  330. buf[3] = (i >> 3) - 2; /* cLEN */
  331. *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
  332. i = adma_fill_sg(qc);
  333. wmb(); /* flush PRDs and pkt to memory */
  334. #if 0
  335. /* dump out CPB + PRDs for debug */
  336. {
  337. int j, len = 0;
  338. static char obuf[2048];
  339. for (j = 0; j < i; ++j) {
  340. len += sprintf(obuf+len, "%02x ", buf[j]);
  341. if ((j & 7) == 7) {
  342. printk("%s\n", obuf);
  343. len = 0;
  344. }
  345. }
  346. if (len)
  347. printk("%s\n", obuf);
  348. }
  349. #endif
  350. }
  351. static inline void adma_packet_start(struct ata_queued_cmd *qc)
  352. {
  353. struct ata_port *ap = qc->ap;
  354. void __iomem *chan = ADMA_REGS(ap->host_set->mmio_base, ap->port_no);
  355. VPRINTK("ENTER, ap %p\n", ap);
  356. /* fire up the ADMA engine */
  357. writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
  358. }
  359. static int adma_qc_issue(struct ata_queued_cmd *qc)
  360. {
  361. struct adma_port_priv *pp = qc->ap->private_data;
  362. switch (qc->tf.protocol) {
  363. case ATA_PROT_DMA:
  364. pp->state = adma_state_pkt;
  365. adma_packet_start(qc);
  366. return 0;
  367. case ATA_PROT_ATAPI_DMA:
  368. BUG();
  369. break;
  370. default:
  371. break;
  372. }
  373. pp->state = adma_state_mmio;
  374. return ata_qc_issue_prot(qc);
  375. }
  376. static inline unsigned int adma_intr_pkt(struct ata_host_set *host_set)
  377. {
  378. unsigned int handled = 0, port_no;
  379. u8 __iomem *mmio_base = host_set->mmio_base;
  380. for (port_no = 0; port_no < host_set->n_ports; ++port_no) {
  381. struct ata_port *ap = host_set->ports[port_no];
  382. struct adma_port_priv *pp;
  383. struct ata_queued_cmd *qc;
  384. void __iomem *chan = ADMA_REGS(mmio_base, port_no);
  385. u8 status = readb(chan + ADMA_STATUS);
  386. if (status == 0)
  387. continue;
  388. handled = 1;
  389. adma_enter_reg_mode(ap);
  390. if (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))
  391. continue;
  392. pp = ap->private_data;
  393. if (!pp || pp->state != adma_state_pkt)
  394. continue;
  395. qc = ata_qc_from_tag(ap, ap->active_tag);
  396. if (qc && (!(qc->tf.ctl & ATA_NIEN))) {
  397. if ((status & (aPERR | aPSD | aUIRQ)))
  398. qc->err_mask |= AC_ERR_OTHER;
  399. else if (pp->pkt[0] != cDONE)
  400. qc->err_mask |= AC_ERR_OTHER;
  401. ata_qc_complete(qc);
  402. }
  403. }
  404. return handled;
  405. }
  406. static inline unsigned int adma_intr_mmio(struct ata_host_set *host_set)
  407. {
  408. unsigned int handled = 0, port_no;
  409. for (port_no = 0; port_no < host_set->n_ports; ++port_no) {
  410. struct ata_port *ap;
  411. ap = host_set->ports[port_no];
  412. if (ap && (!(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR)))) {
  413. struct ata_queued_cmd *qc;
  414. struct adma_port_priv *pp = ap->private_data;
  415. if (!pp || pp->state != adma_state_mmio)
  416. continue;
  417. qc = ata_qc_from_tag(ap, ap->active_tag);
  418. if (qc && (!(qc->tf.ctl & ATA_NIEN))) {
  419. /* check main status, clearing INTRQ */
  420. u8 status = ata_check_status(ap);
  421. if ((status & ATA_BUSY))
  422. continue;
  423. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  424. ap->id, qc->tf.protocol, status);
  425. /* complete taskfile transaction */
  426. pp->state = adma_state_idle;
  427. qc->err_mask |= ac_err_mask(status);
  428. ata_qc_complete(qc);
  429. handled = 1;
  430. }
  431. }
  432. }
  433. return handled;
  434. }
  435. static irqreturn_t adma_intr(int irq, void *dev_instance, struct pt_regs *regs)
  436. {
  437. struct ata_host_set *host_set = dev_instance;
  438. unsigned int handled = 0;
  439. VPRINTK("ENTER\n");
  440. spin_lock(&host_set->lock);
  441. handled = adma_intr_pkt(host_set) | adma_intr_mmio(host_set);
  442. spin_unlock(&host_set->lock);
  443. VPRINTK("EXIT\n");
  444. return IRQ_RETVAL(handled);
  445. }
  446. static void adma_ata_setup_port(struct ata_ioports *port, unsigned long base)
  447. {
  448. port->cmd_addr =
  449. port->data_addr = base + 0x000;
  450. port->error_addr =
  451. port->feature_addr = base + 0x004;
  452. port->nsect_addr = base + 0x008;
  453. port->lbal_addr = base + 0x00c;
  454. port->lbam_addr = base + 0x010;
  455. port->lbah_addr = base + 0x014;
  456. port->device_addr = base + 0x018;
  457. port->status_addr =
  458. port->command_addr = base + 0x01c;
  459. port->altstatus_addr =
  460. port->ctl_addr = base + 0x038;
  461. }
  462. static int adma_port_start(struct ata_port *ap)
  463. {
  464. struct device *dev = ap->host_set->dev;
  465. struct adma_port_priv *pp;
  466. int rc;
  467. rc = ata_port_start(ap);
  468. if (rc)
  469. return rc;
  470. adma_enter_reg_mode(ap);
  471. rc = -ENOMEM;
  472. pp = kcalloc(1, sizeof(*pp), GFP_KERNEL);
  473. if (!pp)
  474. goto err_out;
  475. pp->pkt = dma_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
  476. GFP_KERNEL);
  477. if (!pp->pkt)
  478. goto err_out_kfree;
  479. /* paranoia? */
  480. if ((pp->pkt_dma & 7) != 0) {
  481. printk("bad alignment for pp->pkt_dma: %08x\n",
  482. (u32)pp->pkt_dma);
  483. dma_free_coherent(dev, ADMA_PKT_BYTES,
  484. pp->pkt, pp->pkt_dma);
  485. goto err_out_kfree;
  486. }
  487. memset(pp->pkt, 0, ADMA_PKT_BYTES);
  488. ap->private_data = pp;
  489. adma_reinit_engine(ap);
  490. return 0;
  491. err_out_kfree:
  492. kfree(pp);
  493. err_out:
  494. ata_port_stop(ap);
  495. return rc;
  496. }
  497. static void adma_port_stop(struct ata_port *ap)
  498. {
  499. struct device *dev = ap->host_set->dev;
  500. struct adma_port_priv *pp = ap->private_data;
  501. adma_reset_engine(ADMA_REGS(ap->host_set->mmio_base, ap->port_no));
  502. if (pp != NULL) {
  503. ap->private_data = NULL;
  504. if (pp->pkt != NULL)
  505. dma_free_coherent(dev, ADMA_PKT_BYTES,
  506. pp->pkt, pp->pkt_dma);
  507. kfree(pp);
  508. }
  509. ata_port_stop(ap);
  510. }
  511. static void adma_host_stop(struct ata_host_set *host_set)
  512. {
  513. unsigned int port_no;
  514. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  515. adma_reset_engine(ADMA_REGS(host_set->mmio_base, port_no));
  516. ata_pci_host_stop(host_set);
  517. }
  518. static void adma_host_init(unsigned int chip_id,
  519. struct ata_probe_ent *probe_ent)
  520. {
  521. unsigned int port_no;
  522. void __iomem *mmio_base = probe_ent->mmio_base;
  523. /* enable/lock aGO operation */
  524. writeb(7, mmio_base + ADMA_MODE_LOCK);
  525. /* reset the ADMA logic */
  526. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  527. adma_reset_engine(ADMA_REGS(mmio_base, port_no));
  528. }
  529. static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  530. {
  531. int rc;
  532. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  533. if (rc) {
  534. dev_printk(KERN_ERR, &pdev->dev,
  535. "32-bit DMA enable failed\n");
  536. return rc;
  537. }
  538. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  539. if (rc) {
  540. dev_printk(KERN_ERR, &pdev->dev,
  541. "32-bit consistent DMA enable failed\n");
  542. return rc;
  543. }
  544. return 0;
  545. }
  546. static int adma_ata_init_one(struct pci_dev *pdev,
  547. const struct pci_device_id *ent)
  548. {
  549. static int printed_version;
  550. struct ata_probe_ent *probe_ent = NULL;
  551. void __iomem *mmio_base;
  552. unsigned int board_idx = (unsigned int) ent->driver_data;
  553. int rc, port_no;
  554. if (!printed_version++)
  555. dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
  556. rc = pci_enable_device(pdev);
  557. if (rc)
  558. return rc;
  559. rc = pci_request_regions(pdev, DRV_NAME);
  560. if (rc)
  561. goto err_out;
  562. if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0) {
  563. rc = -ENODEV;
  564. goto err_out_regions;
  565. }
  566. mmio_base = pci_iomap(pdev, 4, 0);
  567. if (mmio_base == NULL) {
  568. rc = -ENOMEM;
  569. goto err_out_regions;
  570. }
  571. rc = adma_set_dma_masks(pdev, mmio_base);
  572. if (rc)
  573. goto err_out_iounmap;
  574. probe_ent = kcalloc(1, sizeof(*probe_ent), GFP_KERNEL);
  575. if (probe_ent == NULL) {
  576. rc = -ENOMEM;
  577. goto err_out_iounmap;
  578. }
  579. probe_ent->dev = pci_dev_to_dev(pdev);
  580. INIT_LIST_HEAD(&probe_ent->node);
  581. probe_ent->sht = adma_port_info[board_idx].sht;
  582. probe_ent->host_flags = adma_port_info[board_idx].host_flags;
  583. probe_ent->pio_mask = adma_port_info[board_idx].pio_mask;
  584. probe_ent->mwdma_mask = adma_port_info[board_idx].mwdma_mask;
  585. probe_ent->udma_mask = adma_port_info[board_idx].udma_mask;
  586. probe_ent->port_ops = adma_port_info[board_idx].port_ops;
  587. probe_ent->irq = pdev->irq;
  588. probe_ent->irq_flags = SA_SHIRQ;
  589. probe_ent->mmio_base = mmio_base;
  590. probe_ent->n_ports = ADMA_PORTS;
  591. for (port_no = 0; port_no < probe_ent->n_ports; ++port_no) {
  592. adma_ata_setup_port(&probe_ent->port[port_no],
  593. ADMA_ATA_REGS((unsigned long)mmio_base, port_no));
  594. }
  595. pci_set_master(pdev);
  596. /* initialize adapter */
  597. adma_host_init(board_idx, probe_ent);
  598. rc = ata_device_add(probe_ent);
  599. kfree(probe_ent);
  600. if (rc != ADMA_PORTS)
  601. goto err_out_iounmap;
  602. return 0;
  603. err_out_iounmap:
  604. pci_iounmap(pdev, mmio_base);
  605. err_out_regions:
  606. pci_release_regions(pdev);
  607. err_out:
  608. pci_disable_device(pdev);
  609. return rc;
  610. }
  611. static int __init adma_ata_init(void)
  612. {
  613. return pci_module_init(&adma_ata_pci_driver);
  614. }
  615. static void __exit adma_ata_exit(void)
  616. {
  617. pci_unregister_driver(&adma_ata_pci_driver);
  618. }
  619. MODULE_AUTHOR("Mark Lord");
  620. MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
  621. MODULE_LICENSE("GPL");
  622. MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
  623. MODULE_VERSION(DRV_VERSION);
  624. module_init(adma_ata_init);
  625. module_exit(adma_ata_exit);