cpu_buffer.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. /**
  2. * @file cpu_buffer.c
  3. *
  4. * @remark Copyright 2002 OProfile authors
  5. * @remark Read the file COPYING
  6. *
  7. * @author John Levon <levon@movementarian.org>
  8. *
  9. * Each CPU has a local buffer that stores PC value/event
  10. * pairs. We also log context switches when we notice them.
  11. * Eventually each CPU's buffer is processed into the global
  12. * event buffer by sync_buffer().
  13. *
  14. * We use a local buffer for two reasons: an NMI or similar
  15. * interrupt cannot synchronise, and high sampling rates
  16. * would lead to catastrophic global synchronisation if
  17. * a global buffer was used.
  18. */
  19. #include <linux/sched.h>
  20. #include <linux/oprofile.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/errno.h>
  23. #include "event_buffer.h"
  24. #include "cpu_buffer.h"
  25. #include "buffer_sync.h"
  26. #include "oprof.h"
  27. struct oprofile_cpu_buffer cpu_buffer[NR_CPUS] __cacheline_aligned;
  28. static void wq_sync_buffer(void *);
  29. #define DEFAULT_TIMER_EXPIRE (HZ / 10)
  30. static int work_enabled;
  31. void free_cpu_buffers(void)
  32. {
  33. int i;
  34. for_each_online_cpu(i) {
  35. vfree(cpu_buffer[i].buffer);
  36. }
  37. }
  38. int alloc_cpu_buffers(void)
  39. {
  40. int i;
  41. unsigned long buffer_size = fs_cpu_buffer_size;
  42. for_each_online_cpu(i) {
  43. struct oprofile_cpu_buffer * b = &cpu_buffer[i];
  44. b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
  45. cpu_to_node(i));
  46. if (!b->buffer)
  47. goto fail;
  48. b->last_task = NULL;
  49. b->last_is_kernel = -1;
  50. b->tracing = 0;
  51. b->buffer_size = buffer_size;
  52. b->tail_pos = 0;
  53. b->head_pos = 0;
  54. b->sample_received = 0;
  55. b->sample_lost_overflow = 0;
  56. b->cpu = i;
  57. INIT_WORK(&b->work, wq_sync_buffer, b);
  58. }
  59. return 0;
  60. fail:
  61. free_cpu_buffers();
  62. return -ENOMEM;
  63. }
  64. void start_cpu_work(void)
  65. {
  66. int i;
  67. work_enabled = 1;
  68. for_each_online_cpu(i) {
  69. struct oprofile_cpu_buffer * b = &cpu_buffer[i];
  70. /*
  71. * Spread the work by 1 jiffy per cpu so they dont all
  72. * fire at once.
  73. */
  74. schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
  75. }
  76. }
  77. void end_cpu_work(void)
  78. {
  79. int i;
  80. work_enabled = 0;
  81. for_each_online_cpu(i) {
  82. struct oprofile_cpu_buffer * b = &cpu_buffer[i];
  83. cancel_delayed_work(&b->work);
  84. }
  85. flush_scheduled_work();
  86. }
  87. /* Resets the cpu buffer to a sane state. */
  88. void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf)
  89. {
  90. /* reset these to invalid values; the next sample
  91. * collected will populate the buffer with proper
  92. * values to initialize the buffer
  93. */
  94. cpu_buf->last_is_kernel = -1;
  95. cpu_buf->last_task = NULL;
  96. }
  97. /* compute number of available slots in cpu_buffer queue */
  98. static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b)
  99. {
  100. unsigned long head = b->head_pos;
  101. unsigned long tail = b->tail_pos;
  102. if (tail > head)
  103. return (tail - head) - 1;
  104. return tail + (b->buffer_size - head) - 1;
  105. }
  106. static void increment_head(struct oprofile_cpu_buffer * b)
  107. {
  108. unsigned long new_head = b->head_pos + 1;
  109. /* Ensure anything written to the slot before we
  110. * increment is visible */
  111. wmb();
  112. if (new_head < b->buffer_size)
  113. b->head_pos = new_head;
  114. else
  115. b->head_pos = 0;
  116. }
  117. static inline void
  118. add_sample(struct oprofile_cpu_buffer * cpu_buf,
  119. unsigned long pc, unsigned long event)
  120. {
  121. struct op_sample * entry = &cpu_buf->buffer[cpu_buf->head_pos];
  122. entry->eip = pc;
  123. entry->event = event;
  124. increment_head(cpu_buf);
  125. }
  126. static inline void
  127. add_code(struct oprofile_cpu_buffer * buffer, unsigned long value)
  128. {
  129. add_sample(buffer, ESCAPE_CODE, value);
  130. }
  131. /* This must be safe from any context. It's safe writing here
  132. * because of the head/tail separation of the writer and reader
  133. * of the CPU buffer.
  134. *
  135. * is_kernel is needed because on some architectures you cannot
  136. * tell if you are in kernel or user space simply by looking at
  137. * pc. We tag this in the buffer by generating kernel enter/exit
  138. * events whenever is_kernel changes
  139. */
  140. static int log_sample(struct oprofile_cpu_buffer * cpu_buf, unsigned long pc,
  141. int is_kernel, unsigned long event)
  142. {
  143. struct task_struct * task;
  144. cpu_buf->sample_received++;
  145. if (nr_available_slots(cpu_buf) < 3) {
  146. cpu_buf->sample_lost_overflow++;
  147. return 0;
  148. }
  149. is_kernel = !!is_kernel;
  150. task = current;
  151. /* notice a switch from user->kernel or vice versa */
  152. if (cpu_buf->last_is_kernel != is_kernel) {
  153. cpu_buf->last_is_kernel = is_kernel;
  154. add_code(cpu_buf, is_kernel);
  155. }
  156. /* notice a task switch */
  157. if (cpu_buf->last_task != task) {
  158. cpu_buf->last_task = task;
  159. add_code(cpu_buf, (unsigned long)task);
  160. }
  161. add_sample(cpu_buf, pc, event);
  162. return 1;
  163. }
  164. static int oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf)
  165. {
  166. if (nr_available_slots(cpu_buf) < 4) {
  167. cpu_buf->sample_lost_overflow++;
  168. return 0;
  169. }
  170. add_code(cpu_buf, CPU_TRACE_BEGIN);
  171. cpu_buf->tracing = 1;
  172. return 1;
  173. }
  174. static void oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)
  175. {
  176. cpu_buf->tracing = 0;
  177. }
  178. void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
  179. {
  180. struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
  181. unsigned long pc = profile_pc(regs);
  182. int is_kernel = !user_mode(regs);
  183. if (!backtrace_depth) {
  184. log_sample(cpu_buf, pc, is_kernel, event);
  185. return;
  186. }
  187. if (!oprofile_begin_trace(cpu_buf))
  188. return;
  189. /* if log_sample() fail we can't backtrace since we lost the source
  190. * of this event */
  191. if (log_sample(cpu_buf, pc, is_kernel, event))
  192. oprofile_ops.backtrace(regs, backtrace_depth);
  193. oprofile_end_trace(cpu_buf);
  194. }
  195. void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
  196. {
  197. struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
  198. log_sample(cpu_buf, pc, is_kernel, event);
  199. }
  200. void oprofile_add_trace(unsigned long pc)
  201. {
  202. struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
  203. if (!cpu_buf->tracing)
  204. return;
  205. if (nr_available_slots(cpu_buf) < 1) {
  206. cpu_buf->tracing = 0;
  207. cpu_buf->sample_lost_overflow++;
  208. return;
  209. }
  210. /* broken frame can give an eip with the same value as an escape code,
  211. * abort the trace if we get it */
  212. if (pc == ESCAPE_CODE) {
  213. cpu_buf->tracing = 0;
  214. cpu_buf->backtrace_aborted++;
  215. return;
  216. }
  217. add_sample(cpu_buf, pc, 0);
  218. }
  219. /*
  220. * This serves to avoid cpu buffer overflow, and makes sure
  221. * the task mortuary progresses
  222. *
  223. * By using schedule_delayed_work_on and then schedule_delayed_work
  224. * we guarantee this will stay on the correct cpu
  225. */
  226. static void wq_sync_buffer(void * data)
  227. {
  228. struct oprofile_cpu_buffer * b = data;
  229. if (b->cpu != smp_processor_id()) {
  230. printk("WQ on CPU%d, prefer CPU%d\n",
  231. smp_processor_id(), b->cpu);
  232. }
  233. sync_buffer(b->cpu);
  234. /* don't re-add the work if we're shutting down */
  235. if (work_enabled)
  236. schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
  237. }