buffer_sync.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. /**
  2. * @file buffer_sync.c
  3. *
  4. * @remark Copyright 2002 OProfile authors
  5. * @remark Read the file COPYING
  6. *
  7. * @author John Levon <levon@movementarian.org>
  8. *
  9. * This is the core of the buffer management. Each
  10. * CPU buffer is processed and entered into the
  11. * global event buffer. Such processing is necessary
  12. * in several circumstances, mentioned below.
  13. *
  14. * The processing does the job of converting the
  15. * transitory EIP value into a persistent dentry/offset
  16. * value that the profiler can record at its leisure.
  17. *
  18. * See fs/dcookies.c for a description of the dentry/offset
  19. * objects.
  20. */
  21. #include <linux/mm.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/notifier.h>
  24. #include <linux/dcookies.h>
  25. #include <linux/profile.h>
  26. #include <linux/module.h>
  27. #include <linux/fs.h>
  28. #include "oprofile_stats.h"
  29. #include "event_buffer.h"
  30. #include "cpu_buffer.h"
  31. #include "buffer_sync.h"
  32. static LIST_HEAD(dying_tasks);
  33. static LIST_HEAD(dead_tasks);
  34. static cpumask_t marked_cpus = CPU_MASK_NONE;
  35. static DEFINE_SPINLOCK(task_mortuary);
  36. static void process_task_mortuary(void);
  37. /* Take ownership of the task struct and place it on the
  38. * list for processing. Only after two full buffer syncs
  39. * does the task eventually get freed, because by then
  40. * we are sure we will not reference it again.
  41. * Can be invoked from softirq via RCU callback due to
  42. * call_rcu() of the task struct, hence the _irqsave.
  43. */
  44. static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
  45. {
  46. unsigned long flags;
  47. struct task_struct * task = data;
  48. spin_lock_irqsave(&task_mortuary, flags);
  49. list_add(&task->tasks, &dying_tasks);
  50. spin_unlock_irqrestore(&task_mortuary, flags);
  51. return NOTIFY_OK;
  52. }
  53. /* The task is on its way out. A sync of the buffer means we can catch
  54. * any remaining samples for this task.
  55. */
  56. static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
  57. {
  58. /* To avoid latency problems, we only process the current CPU,
  59. * hoping that most samples for the task are on this CPU
  60. */
  61. sync_buffer(raw_smp_processor_id());
  62. return 0;
  63. }
  64. /* The task is about to try a do_munmap(). We peek at what it's going to
  65. * do, and if it's an executable region, process the samples first, so
  66. * we don't lose any. This does not have to be exact, it's a QoI issue
  67. * only.
  68. */
  69. static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
  70. {
  71. unsigned long addr = (unsigned long)data;
  72. struct mm_struct * mm = current->mm;
  73. struct vm_area_struct * mpnt;
  74. down_read(&mm->mmap_sem);
  75. mpnt = find_vma(mm, addr);
  76. if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
  77. up_read(&mm->mmap_sem);
  78. /* To avoid latency problems, we only process the current CPU,
  79. * hoping that most samples for the task are on this CPU
  80. */
  81. sync_buffer(raw_smp_processor_id());
  82. return 0;
  83. }
  84. up_read(&mm->mmap_sem);
  85. return 0;
  86. }
  87. /* We need to be told about new modules so we don't attribute to a previously
  88. * loaded module, or drop the samples on the floor.
  89. */
  90. static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
  91. {
  92. #ifdef CONFIG_MODULES
  93. if (val != MODULE_STATE_COMING)
  94. return 0;
  95. /* FIXME: should we process all CPU buffers ? */
  96. down(&buffer_sem);
  97. add_event_entry(ESCAPE_CODE);
  98. add_event_entry(MODULE_LOADED_CODE);
  99. up(&buffer_sem);
  100. #endif
  101. return 0;
  102. }
  103. static struct notifier_block task_free_nb = {
  104. .notifier_call = task_free_notify,
  105. };
  106. static struct notifier_block task_exit_nb = {
  107. .notifier_call = task_exit_notify,
  108. };
  109. static struct notifier_block munmap_nb = {
  110. .notifier_call = munmap_notify,
  111. };
  112. static struct notifier_block module_load_nb = {
  113. .notifier_call = module_load_notify,
  114. };
  115. static void end_sync(void)
  116. {
  117. end_cpu_work();
  118. /* make sure we don't leak task structs */
  119. process_task_mortuary();
  120. process_task_mortuary();
  121. }
  122. int sync_start(void)
  123. {
  124. int err;
  125. start_cpu_work();
  126. err = task_handoff_register(&task_free_nb);
  127. if (err)
  128. goto out1;
  129. err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
  130. if (err)
  131. goto out2;
  132. err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
  133. if (err)
  134. goto out3;
  135. err = register_module_notifier(&module_load_nb);
  136. if (err)
  137. goto out4;
  138. out:
  139. return err;
  140. out4:
  141. profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
  142. out3:
  143. profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
  144. out2:
  145. task_handoff_unregister(&task_free_nb);
  146. out1:
  147. end_sync();
  148. goto out;
  149. }
  150. void sync_stop(void)
  151. {
  152. unregister_module_notifier(&module_load_nb);
  153. profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
  154. profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
  155. task_handoff_unregister(&task_free_nb);
  156. end_sync();
  157. }
  158. /* Optimisation. We can manage without taking the dcookie sem
  159. * because we cannot reach this code without at least one
  160. * dcookie user still being registered (namely, the reader
  161. * of the event buffer). */
  162. static inline unsigned long fast_get_dcookie(struct dentry * dentry,
  163. struct vfsmount * vfsmnt)
  164. {
  165. unsigned long cookie;
  166. if (dentry->d_cookie)
  167. return (unsigned long)dentry;
  168. get_dcookie(dentry, vfsmnt, &cookie);
  169. return cookie;
  170. }
  171. /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
  172. * which corresponds loosely to "application name". This is
  173. * not strictly necessary but allows oprofile to associate
  174. * shared-library samples with particular applications
  175. */
  176. static unsigned long get_exec_dcookie(struct mm_struct * mm)
  177. {
  178. unsigned long cookie = NO_COOKIE;
  179. struct vm_area_struct * vma;
  180. if (!mm)
  181. goto out;
  182. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  183. if (!vma->vm_file)
  184. continue;
  185. if (!(vma->vm_flags & VM_EXECUTABLE))
  186. continue;
  187. cookie = fast_get_dcookie(vma->vm_file->f_dentry,
  188. vma->vm_file->f_vfsmnt);
  189. break;
  190. }
  191. out:
  192. return cookie;
  193. }
  194. /* Convert the EIP value of a sample into a persistent dentry/offset
  195. * pair that can then be added to the global event buffer. We make
  196. * sure to do this lookup before a mm->mmap modification happens so
  197. * we don't lose track.
  198. */
  199. static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
  200. {
  201. unsigned long cookie = NO_COOKIE;
  202. struct vm_area_struct * vma;
  203. for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
  204. if (addr < vma->vm_start || addr >= vma->vm_end)
  205. continue;
  206. if (vma->vm_file) {
  207. cookie = fast_get_dcookie(vma->vm_file->f_dentry,
  208. vma->vm_file->f_vfsmnt);
  209. *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
  210. vma->vm_start;
  211. } else {
  212. /* must be an anonymous map */
  213. *offset = addr;
  214. }
  215. break;
  216. }
  217. if (!vma)
  218. cookie = INVALID_COOKIE;
  219. return cookie;
  220. }
  221. static unsigned long last_cookie = INVALID_COOKIE;
  222. static void add_cpu_switch(int i)
  223. {
  224. add_event_entry(ESCAPE_CODE);
  225. add_event_entry(CPU_SWITCH_CODE);
  226. add_event_entry(i);
  227. last_cookie = INVALID_COOKIE;
  228. }
  229. static void add_kernel_ctx_switch(unsigned int in_kernel)
  230. {
  231. add_event_entry(ESCAPE_CODE);
  232. if (in_kernel)
  233. add_event_entry(KERNEL_ENTER_SWITCH_CODE);
  234. else
  235. add_event_entry(KERNEL_EXIT_SWITCH_CODE);
  236. }
  237. static void
  238. add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
  239. {
  240. add_event_entry(ESCAPE_CODE);
  241. add_event_entry(CTX_SWITCH_CODE);
  242. add_event_entry(task->pid);
  243. add_event_entry(cookie);
  244. /* Another code for daemon back-compat */
  245. add_event_entry(ESCAPE_CODE);
  246. add_event_entry(CTX_TGID_CODE);
  247. add_event_entry(task->tgid);
  248. }
  249. static void add_cookie_switch(unsigned long cookie)
  250. {
  251. add_event_entry(ESCAPE_CODE);
  252. add_event_entry(COOKIE_SWITCH_CODE);
  253. add_event_entry(cookie);
  254. }
  255. static void add_trace_begin(void)
  256. {
  257. add_event_entry(ESCAPE_CODE);
  258. add_event_entry(TRACE_BEGIN_CODE);
  259. }
  260. static void add_sample_entry(unsigned long offset, unsigned long event)
  261. {
  262. add_event_entry(offset);
  263. add_event_entry(event);
  264. }
  265. static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
  266. {
  267. unsigned long cookie;
  268. off_t offset;
  269. cookie = lookup_dcookie(mm, s->eip, &offset);
  270. if (cookie == INVALID_COOKIE) {
  271. atomic_inc(&oprofile_stats.sample_lost_no_mapping);
  272. return 0;
  273. }
  274. if (cookie != last_cookie) {
  275. add_cookie_switch(cookie);
  276. last_cookie = cookie;
  277. }
  278. add_sample_entry(offset, s->event);
  279. return 1;
  280. }
  281. /* Add a sample to the global event buffer. If possible the
  282. * sample is converted into a persistent dentry/offset pair
  283. * for later lookup from userspace.
  284. */
  285. static int
  286. add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
  287. {
  288. if (in_kernel) {
  289. add_sample_entry(s->eip, s->event);
  290. return 1;
  291. } else if (mm) {
  292. return add_us_sample(mm, s);
  293. } else {
  294. atomic_inc(&oprofile_stats.sample_lost_no_mm);
  295. }
  296. return 0;
  297. }
  298. static void release_mm(struct mm_struct * mm)
  299. {
  300. if (!mm)
  301. return;
  302. up_read(&mm->mmap_sem);
  303. mmput(mm);
  304. }
  305. static struct mm_struct * take_tasks_mm(struct task_struct * task)
  306. {
  307. struct mm_struct * mm = get_task_mm(task);
  308. if (mm)
  309. down_read(&mm->mmap_sem);
  310. return mm;
  311. }
  312. static inline int is_code(unsigned long val)
  313. {
  314. return val == ESCAPE_CODE;
  315. }
  316. /* "acquire" as many cpu buffer slots as we can */
  317. static unsigned long get_slots(struct oprofile_cpu_buffer * b)
  318. {
  319. unsigned long head = b->head_pos;
  320. unsigned long tail = b->tail_pos;
  321. /*
  322. * Subtle. This resets the persistent last_task
  323. * and in_kernel values used for switching notes.
  324. * BUT, there is a small window between reading
  325. * head_pos, and this call, that means samples
  326. * can appear at the new head position, but not
  327. * be prefixed with the notes for switching
  328. * kernel mode or a task switch. This small hole
  329. * can lead to mis-attribution or samples where
  330. * we don't know if it's in the kernel or not,
  331. * at the start of an event buffer.
  332. */
  333. cpu_buffer_reset(b);
  334. if (head >= tail)
  335. return head - tail;
  336. return head + (b->buffer_size - tail);
  337. }
  338. static void increment_tail(struct oprofile_cpu_buffer * b)
  339. {
  340. unsigned long new_tail = b->tail_pos + 1;
  341. rmb();
  342. if (new_tail < b->buffer_size)
  343. b->tail_pos = new_tail;
  344. else
  345. b->tail_pos = 0;
  346. }
  347. /* Move tasks along towards death. Any tasks on dead_tasks
  348. * will definitely have no remaining references in any
  349. * CPU buffers at this point, because we use two lists,
  350. * and to have reached the list, it must have gone through
  351. * one full sync already.
  352. */
  353. static void process_task_mortuary(void)
  354. {
  355. unsigned long flags;
  356. LIST_HEAD(local_dead_tasks);
  357. struct task_struct * task;
  358. struct task_struct * ttask;
  359. spin_lock_irqsave(&task_mortuary, flags);
  360. list_splice_init(&dead_tasks, &local_dead_tasks);
  361. list_splice_init(&dying_tasks, &dead_tasks);
  362. spin_unlock_irqrestore(&task_mortuary, flags);
  363. list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
  364. list_del(&task->tasks);
  365. free_task(task);
  366. }
  367. }
  368. static void mark_done(int cpu)
  369. {
  370. int i;
  371. cpu_set(cpu, marked_cpus);
  372. for_each_online_cpu(i) {
  373. if (!cpu_isset(i, marked_cpus))
  374. return;
  375. }
  376. /* All CPUs have been processed at least once,
  377. * we can process the mortuary once
  378. */
  379. process_task_mortuary();
  380. cpus_clear(marked_cpus);
  381. }
  382. /* FIXME: this is not sufficient if we implement syscall barrier backtrace
  383. * traversal, the code switch to sb_sample_start at first kernel enter/exit
  384. * switch so we need a fifth state and some special handling in sync_buffer()
  385. */
  386. typedef enum {
  387. sb_bt_ignore = -2,
  388. sb_buffer_start,
  389. sb_bt_start,
  390. sb_sample_start,
  391. } sync_buffer_state;
  392. /* Sync one of the CPU's buffers into the global event buffer.
  393. * Here we need to go through each batch of samples punctuated
  394. * by context switch notes, taking the task's mmap_sem and doing
  395. * lookup in task->mm->mmap to convert EIP into dcookie/offset
  396. * value.
  397. */
  398. void sync_buffer(int cpu)
  399. {
  400. struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
  401. struct mm_struct *mm = NULL;
  402. struct task_struct * new;
  403. unsigned long cookie = 0;
  404. int in_kernel = 1;
  405. unsigned int i;
  406. sync_buffer_state state = sb_buffer_start;
  407. unsigned long available;
  408. down(&buffer_sem);
  409. add_cpu_switch(cpu);
  410. /* Remember, only we can modify tail_pos */
  411. available = get_slots(cpu_buf);
  412. for (i = 0; i < available; ++i) {
  413. struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
  414. if (is_code(s->eip)) {
  415. if (s->event <= CPU_IS_KERNEL) {
  416. /* kernel/userspace switch */
  417. in_kernel = s->event;
  418. if (state == sb_buffer_start)
  419. state = sb_sample_start;
  420. add_kernel_ctx_switch(s->event);
  421. } else if (s->event == CPU_TRACE_BEGIN) {
  422. state = sb_bt_start;
  423. add_trace_begin();
  424. } else {
  425. struct mm_struct * oldmm = mm;
  426. /* userspace context switch */
  427. new = (struct task_struct *)s->event;
  428. release_mm(oldmm);
  429. mm = take_tasks_mm(new);
  430. if (mm != oldmm)
  431. cookie = get_exec_dcookie(mm);
  432. add_user_ctx_switch(new, cookie);
  433. }
  434. } else {
  435. if (state >= sb_bt_start &&
  436. !add_sample(mm, s, in_kernel)) {
  437. if (state == sb_bt_start) {
  438. state = sb_bt_ignore;
  439. atomic_inc(&oprofile_stats.bt_lost_no_mapping);
  440. }
  441. }
  442. }
  443. increment_tail(cpu_buf);
  444. }
  445. release_mm(mm);
  446. mark_done(cpu);
  447. up(&buffer_sem);
  448. }