ide-timing.h 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. #ifndef _IDE_TIMING_H
  2. #define _IDE_TIMING_H
  3. /*
  4. * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $
  5. *
  6. * Copyright (c) 1999-2001 Vojtech Pavlik
  7. */
  8. /*
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. * Should you need to contact me, the author, you can do so either by
  24. * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
  25. * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/hdreg.h>
  29. #define XFER_PIO_5 0x0d
  30. #define XFER_UDMA_SLOW 0x4f
  31. struct ide_timing {
  32. short mode;
  33. short setup; /* t1 */
  34. short act8b; /* t2 for 8-bit io */
  35. short rec8b; /* t2i for 8-bit io */
  36. short cyc8b; /* t0 for 8-bit io */
  37. short active; /* t2 or tD */
  38. short recover; /* t2i or tK */
  39. short cycle; /* t0 */
  40. short udma; /* t2CYCTYP/2 */
  41. };
  42. /*
  43. * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
  44. * These were taken from ATA/ATAPI-6 standard, rev 0a, except
  45. * for PIO 5, which is a nonstandard extension and UDMA6, which
  46. * is currently supported only by Maxtor drives.
  47. */
  48. static struct ide_timing ide_timing[] = {
  49. { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
  50. { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
  51. { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
  52. { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
  53. { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
  54. { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
  55. { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
  56. { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 },
  57. { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
  58. { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
  59. { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
  60. { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
  61. { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
  62. { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
  63. { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
  64. { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
  65. { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
  66. { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
  67. { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
  68. { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
  69. { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
  70. { -1 }
  71. };
  72. #define IDE_TIMING_SETUP 0x01
  73. #define IDE_TIMING_ACT8B 0x02
  74. #define IDE_TIMING_REC8B 0x04
  75. #define IDE_TIMING_CYC8B 0x08
  76. #define IDE_TIMING_8BIT 0x0e
  77. #define IDE_TIMING_ACTIVE 0x10
  78. #define IDE_TIMING_RECOVER 0x20
  79. #define IDE_TIMING_CYCLE 0x40
  80. #define IDE_TIMING_UDMA 0x80
  81. #define IDE_TIMING_ALL 0xff
  82. #define FIT(v,vmin,vmax) max_t(short,min_t(short,v,vmax),vmin)
  83. #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
  84. #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
  85. #define XFER_MODE 0xf0
  86. #define XFER_UDMA_133 0x48
  87. #define XFER_UDMA_100 0x44
  88. #define XFER_UDMA_66 0x42
  89. #define XFER_UDMA 0x40
  90. #define XFER_MWDMA 0x20
  91. #define XFER_SWDMA 0x10
  92. #define XFER_EPIO 0x01
  93. #define XFER_PIO 0x00
  94. static short ide_find_best_mode(ide_drive_t *drive, int map)
  95. {
  96. struct hd_driveid *id = drive->id;
  97. short best = 0;
  98. if (!id)
  99. return XFER_PIO_SLOW;
  100. if ((map & XFER_UDMA) && (id->field_valid & 4)) { /* Want UDMA and UDMA bitmap valid */
  101. if ((map & XFER_UDMA_133) == XFER_UDMA_133)
  102. if ((best = (id->dma_ultra & 0x0040) ? XFER_UDMA_6 : 0)) return best;
  103. if ((map & XFER_UDMA_100) == XFER_UDMA_100)
  104. if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best;
  105. if ((map & XFER_UDMA_66) == XFER_UDMA_66)
  106. if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 :
  107. (id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best;
  108. if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 :
  109. (id->dma_ultra & 0x0002) ? XFER_UDMA_1 :
  110. (id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best;
  111. }
  112. if ((map & XFER_MWDMA) && (id->field_valid & 2)) { /* Want MWDMA and drive has EIDE fields */
  113. if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 :
  114. (id->dma_mword & 0x0002) ? XFER_MW_DMA_1 :
  115. (id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best;
  116. }
  117. if (map & XFER_SWDMA) { /* Want SWDMA */
  118. if (id->field_valid & 2) { /* EIDE SWDMA */
  119. if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 :
  120. (id->dma_1word & 0x0002) ? XFER_SW_DMA_1 :
  121. (id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best;
  122. }
  123. if (id->capability & 1) { /* Pre-EIDE style SWDMA */
  124. if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 :
  125. (id->tDMA == 1) ? XFER_SW_DMA_1 :
  126. (id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best;
  127. }
  128. }
  129. if ((map & XFER_EPIO) && (id->field_valid & 2)) { /* EIDE PIO modes */
  130. if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 :
  131. (drive->id->eide_pio_modes & 2) ? XFER_PIO_4 :
  132. (drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best;
  133. }
  134. return (drive->id->tPIO == 2) ? XFER_PIO_2 :
  135. (drive->id->tPIO == 1) ? XFER_PIO_1 :
  136. (drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW;
  137. }
  138. static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
  139. {
  140. q->setup = EZ(t->setup * 1000, T);
  141. q->act8b = EZ(t->act8b * 1000, T);
  142. q->rec8b = EZ(t->rec8b * 1000, T);
  143. q->cyc8b = EZ(t->cyc8b * 1000, T);
  144. q->active = EZ(t->active * 1000, T);
  145. q->recover = EZ(t->recover * 1000, T);
  146. q->cycle = EZ(t->cycle * 1000, T);
  147. q->udma = EZ(t->udma * 1000, UT);
  148. }
  149. static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
  150. {
  151. if (what & IDE_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
  152. if (what & IDE_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
  153. if (what & IDE_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
  154. if (what & IDE_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
  155. if (what & IDE_TIMING_ACTIVE ) m->active = max(a->active, b->active);
  156. if (what & IDE_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
  157. if (what & IDE_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
  158. if (what & IDE_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
  159. }
  160. static struct ide_timing* ide_timing_find_mode(short speed)
  161. {
  162. struct ide_timing *t;
  163. for (t = ide_timing; t->mode != speed; t++)
  164. if (t->mode < 0)
  165. return NULL;
  166. return t;
  167. }
  168. static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
  169. {
  170. struct hd_driveid *id = drive->id;
  171. struct ide_timing *s, p;
  172. /*
  173. * Find the mode.
  174. */
  175. if (!(s = ide_timing_find_mode(speed)))
  176. return -EINVAL;
  177. /*
  178. * If the drive is an EIDE drive, it can tell us it needs extended
  179. * PIO/MWDMA cycle timing.
  180. */
  181. if (id && id->field_valid & 2) { /* EIDE drive */
  182. memset(&p, 0, sizeof(p));
  183. switch (speed & XFER_MODE) {
  184. case XFER_PIO:
  185. if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
  186. else p.cycle = p.cyc8b = id->eide_pio_iordy;
  187. break;
  188. case XFER_MWDMA:
  189. p.cycle = id->eide_dma_min;
  190. break;
  191. }
  192. ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
  193. }
  194. /*
  195. * Convert the timing to bus clock counts.
  196. */
  197. ide_timing_quantize(s, t, T, UT);
  198. /*
  199. * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
  200. * and some other commands. We have to ensure that the DMA cycle timing is
  201. * slower/equal than the fastest PIO timing.
  202. */
  203. if ((speed & XFER_MODE) != XFER_PIO) {
  204. ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT);
  205. ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
  206. }
  207. /*
  208. * Lenghten active & recovery time so that cycle time is correct.
  209. */
  210. if (t->act8b + t->rec8b < t->cyc8b) {
  211. t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
  212. t->rec8b = t->cyc8b - t->act8b;
  213. }
  214. if (t->active + t->recover < t->cycle) {
  215. t->active += (t->cycle - (t->active + t->recover)) / 2;
  216. t->recover = t->cycle - t->active;
  217. }
  218. return 0;
  219. }
  220. #endif