padlock-aes.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for VIA PadLock hardware crypto engine.
  5. *
  6. * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
  7. *
  8. * Key expansion routine taken from crypto/aes.c
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * ---------------------------------------------------------------------------
  16. * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
  17. * All rights reserved.
  18. *
  19. * LICENSE TERMS
  20. *
  21. * The free distribution and use of this software in both source and binary
  22. * form is allowed (with or without changes) provided that:
  23. *
  24. * 1. distributions of this source code include the above copyright
  25. * notice, this list of conditions and the following disclaimer;
  26. *
  27. * 2. distributions in binary form include the above copyright
  28. * notice, this list of conditions and the following disclaimer
  29. * in the documentation and/or other associated materials;
  30. *
  31. * 3. the copyright holder's name is not used to endorse products
  32. * built using this software without specific written permission.
  33. *
  34. * ALTERNATIVELY, provided that this notice is retained in full, this product
  35. * may be distributed under the terms of the GNU General Public License (GPL),
  36. * in which case the provisions of the GPL apply INSTEAD OF those given above.
  37. *
  38. * DISCLAIMER
  39. *
  40. * This software is provided 'as is' with no explicit or implied warranties
  41. * in respect of its properties, including, but not limited to, correctness
  42. * and/or fitness for purpose.
  43. * ---------------------------------------------------------------------------
  44. */
  45. #include <linux/module.h>
  46. #include <linux/init.h>
  47. #include <linux/types.h>
  48. #include <linux/errno.h>
  49. #include <linux/crypto.h>
  50. #include <linux/interrupt.h>
  51. #include <linux/kernel.h>
  52. #include <asm/byteorder.h>
  53. #include "padlock.h"
  54. #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
  55. #define AES_MAX_KEY_SIZE 32 /* ditto */
  56. #define AES_BLOCK_SIZE 16 /* ditto */
  57. #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
  58. #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
  59. struct aes_ctx {
  60. uint32_t e_data[AES_EXTENDED_KEY_SIZE];
  61. uint32_t d_data[AES_EXTENDED_KEY_SIZE];
  62. struct {
  63. struct cword encrypt;
  64. struct cword decrypt;
  65. } cword;
  66. uint32_t *E;
  67. uint32_t *D;
  68. int key_length;
  69. };
  70. /* ====== Key management routines ====== */
  71. static inline uint32_t
  72. generic_rotr32 (const uint32_t x, const unsigned bits)
  73. {
  74. const unsigned n = bits % 32;
  75. return (x >> n) | (x << (32 - n));
  76. }
  77. static inline uint32_t
  78. generic_rotl32 (const uint32_t x, const unsigned bits)
  79. {
  80. const unsigned n = bits % 32;
  81. return (x << n) | (x >> (32 - n));
  82. }
  83. #define rotl generic_rotl32
  84. #define rotr generic_rotr32
  85. /*
  86. * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
  87. */
  88. static inline uint8_t
  89. byte(const uint32_t x, const unsigned n)
  90. {
  91. return x >> (n << 3);
  92. }
  93. #define E_KEY ctx->E
  94. #define D_KEY ctx->D
  95. static uint8_t pow_tab[256];
  96. static uint8_t log_tab[256];
  97. static uint8_t sbx_tab[256];
  98. static uint8_t isb_tab[256];
  99. static uint32_t rco_tab[10];
  100. static uint32_t ft_tab[4][256];
  101. static uint32_t it_tab[4][256];
  102. static uint32_t fl_tab[4][256];
  103. static uint32_t il_tab[4][256];
  104. static inline uint8_t
  105. f_mult (uint8_t a, uint8_t b)
  106. {
  107. uint8_t aa = log_tab[a], cc = aa + log_tab[b];
  108. return pow_tab[cc + (cc < aa ? 1 : 0)];
  109. }
  110. #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
  111. #define f_rn(bo, bi, n, k) \
  112. bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
  113. ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
  114. ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  115. ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  116. #define i_rn(bo, bi, n, k) \
  117. bo[n] = it_tab[0][byte(bi[n],0)] ^ \
  118. it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
  119. it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  120. it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  121. #define ls_box(x) \
  122. ( fl_tab[0][byte(x, 0)] ^ \
  123. fl_tab[1][byte(x, 1)] ^ \
  124. fl_tab[2][byte(x, 2)] ^ \
  125. fl_tab[3][byte(x, 3)] )
  126. #define f_rl(bo, bi, n, k) \
  127. bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
  128. fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
  129. fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  130. fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  131. #define i_rl(bo, bi, n, k) \
  132. bo[n] = il_tab[0][byte(bi[n],0)] ^ \
  133. il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
  134. il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  135. il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  136. static void
  137. gen_tabs (void)
  138. {
  139. uint32_t i, t;
  140. uint8_t p, q;
  141. /* log and power tables for GF(2**8) finite field with
  142. 0x011b as modular polynomial - the simplest prmitive
  143. root is 0x03, used here to generate the tables */
  144. for (i = 0, p = 1; i < 256; ++i) {
  145. pow_tab[i] = (uint8_t) p;
  146. log_tab[p] = (uint8_t) i;
  147. p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  148. }
  149. log_tab[1] = 0;
  150. for (i = 0, p = 1; i < 10; ++i) {
  151. rco_tab[i] = p;
  152. p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  153. }
  154. for (i = 0; i < 256; ++i) {
  155. p = (i ? pow_tab[255 - log_tab[i]] : 0);
  156. q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
  157. p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
  158. sbx_tab[i] = p;
  159. isb_tab[p] = (uint8_t) i;
  160. }
  161. for (i = 0; i < 256; ++i) {
  162. p = sbx_tab[i];
  163. t = p;
  164. fl_tab[0][i] = t;
  165. fl_tab[1][i] = rotl (t, 8);
  166. fl_tab[2][i] = rotl (t, 16);
  167. fl_tab[3][i] = rotl (t, 24);
  168. t = ((uint32_t) ff_mult (2, p)) |
  169. ((uint32_t) p << 8) |
  170. ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
  171. ft_tab[0][i] = t;
  172. ft_tab[1][i] = rotl (t, 8);
  173. ft_tab[2][i] = rotl (t, 16);
  174. ft_tab[3][i] = rotl (t, 24);
  175. p = isb_tab[i];
  176. t = p;
  177. il_tab[0][i] = t;
  178. il_tab[1][i] = rotl (t, 8);
  179. il_tab[2][i] = rotl (t, 16);
  180. il_tab[3][i] = rotl (t, 24);
  181. t = ((uint32_t) ff_mult (14, p)) |
  182. ((uint32_t) ff_mult (9, p) << 8) |
  183. ((uint32_t) ff_mult (13, p) << 16) |
  184. ((uint32_t) ff_mult (11, p) << 24);
  185. it_tab[0][i] = t;
  186. it_tab[1][i] = rotl (t, 8);
  187. it_tab[2][i] = rotl (t, 16);
  188. it_tab[3][i] = rotl (t, 24);
  189. }
  190. }
  191. #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
  192. #define imix_col(y,x) \
  193. u = star_x(x); \
  194. v = star_x(u); \
  195. w = star_x(v); \
  196. t = w ^ (x); \
  197. (y) = u ^ v ^ w; \
  198. (y) ^= rotr(u ^ t, 8) ^ \
  199. rotr(v ^ t, 16) ^ \
  200. rotr(t,24)
  201. /* initialise the key schedule from the user supplied key */
  202. #define loop4(i) \
  203. { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
  204. t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
  205. t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
  206. t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
  207. t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
  208. }
  209. #define loop6(i) \
  210. { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
  211. t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
  212. t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
  213. t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
  214. t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
  215. t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
  216. t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
  217. }
  218. #define loop8(i) \
  219. { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
  220. t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
  221. t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
  222. t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
  223. t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
  224. t = E_KEY[8 * i + 4] ^ ls_box(t); \
  225. E_KEY[8 * i + 12] = t; \
  226. t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
  227. t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
  228. t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
  229. }
  230. /* Tells whether the ACE is capable to generate
  231. the extended key for a given key_len. */
  232. static inline int
  233. aes_hw_extkey_available(uint8_t key_len)
  234. {
  235. /* TODO: We should check the actual CPU model/stepping
  236. as it's possible that the capability will be
  237. added in the next CPU revisions. */
  238. if (key_len == 16)
  239. return 1;
  240. return 0;
  241. }
  242. static inline struct aes_ctx *aes_ctx(void *ctx)
  243. {
  244. return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT);
  245. }
  246. static int
  247. aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
  248. {
  249. struct aes_ctx *ctx = aes_ctx(ctx_arg);
  250. const __le32 *key = (const __le32 *)in_key;
  251. uint32_t i, t, u, v, w;
  252. uint32_t P[AES_EXTENDED_KEY_SIZE];
  253. uint32_t rounds;
  254. if (key_len != 16 && key_len != 24 && key_len != 32) {
  255. *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  256. return -EINVAL;
  257. }
  258. ctx->key_length = key_len;
  259. /*
  260. * If the hardware is capable of generating the extended key
  261. * itself we must supply the plain key for both encryption
  262. * and decryption.
  263. */
  264. ctx->E = ctx->e_data;
  265. ctx->D = ctx->e_data;
  266. E_KEY[0] = le32_to_cpu(key[0]);
  267. E_KEY[1] = le32_to_cpu(key[1]);
  268. E_KEY[2] = le32_to_cpu(key[2]);
  269. E_KEY[3] = le32_to_cpu(key[3]);
  270. /* Prepare control words. */
  271. memset(&ctx->cword, 0, sizeof(ctx->cword));
  272. ctx->cword.decrypt.encdec = 1;
  273. ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
  274. ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
  275. ctx->cword.encrypt.ksize = (key_len - 16) / 8;
  276. ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
  277. /* Don't generate extended keys if the hardware can do it. */
  278. if (aes_hw_extkey_available(key_len))
  279. return 0;
  280. ctx->D = ctx->d_data;
  281. ctx->cword.encrypt.keygen = 1;
  282. ctx->cword.decrypt.keygen = 1;
  283. switch (key_len) {
  284. case 16:
  285. t = E_KEY[3];
  286. for (i = 0; i < 10; ++i)
  287. loop4 (i);
  288. break;
  289. case 24:
  290. E_KEY[4] = le32_to_cpu(key[4]);
  291. t = E_KEY[5] = le32_to_cpu(key[5]);
  292. for (i = 0; i < 8; ++i)
  293. loop6 (i);
  294. break;
  295. case 32:
  296. E_KEY[4] = le32_to_cpu(in_key[4]);
  297. E_KEY[5] = le32_to_cpu(in_key[5]);
  298. E_KEY[6] = le32_to_cpu(in_key[6]);
  299. t = E_KEY[7] = le32_to_cpu(in_key[7]);
  300. for (i = 0; i < 7; ++i)
  301. loop8 (i);
  302. break;
  303. }
  304. D_KEY[0] = E_KEY[0];
  305. D_KEY[1] = E_KEY[1];
  306. D_KEY[2] = E_KEY[2];
  307. D_KEY[3] = E_KEY[3];
  308. for (i = 4; i < key_len + 24; ++i) {
  309. imix_col (D_KEY[i], E_KEY[i]);
  310. }
  311. /* PadLock needs a different format of the decryption key. */
  312. rounds = 10 + (key_len - 16) / 4;
  313. for (i = 0; i < rounds; i++) {
  314. P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
  315. P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
  316. P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
  317. P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
  318. }
  319. P[0] = E_KEY[(rounds * 4) + 0];
  320. P[1] = E_KEY[(rounds * 4) + 1];
  321. P[2] = E_KEY[(rounds * 4) + 2];
  322. P[3] = E_KEY[(rounds * 4) + 3];
  323. memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
  324. return 0;
  325. }
  326. /* ====== Encryption/decryption routines ====== */
  327. /* These are the real call to PadLock. */
  328. static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
  329. void *control_word, u32 count)
  330. {
  331. asm volatile ("pushfl; popfl"); /* enforce key reload. */
  332. asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
  333. : "+S"(input), "+D"(output)
  334. : "d"(control_word), "b"(key), "c"(count));
  335. }
  336. static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
  337. u8 *iv, void *control_word, u32 count)
  338. {
  339. /* Enforce key reload. */
  340. asm volatile ("pushfl; popfl");
  341. /* rep xcryptcbc */
  342. asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
  343. : "+S" (input), "+D" (output), "+a" (iv)
  344. : "d" (control_word), "b" (key), "c" (count));
  345. return iv;
  346. }
  347. static void
  348. aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
  349. {
  350. struct aes_ctx *ctx = aes_ctx(ctx_arg);
  351. padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
  352. }
  353. static void
  354. aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
  355. {
  356. struct aes_ctx *ctx = aes_ctx(ctx_arg);
  357. padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
  358. }
  359. static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
  360. const u8 *in, unsigned int nbytes)
  361. {
  362. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  363. padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
  364. nbytes / AES_BLOCK_SIZE);
  365. return nbytes & ~(AES_BLOCK_SIZE - 1);
  366. }
  367. static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
  368. const u8 *in, unsigned int nbytes)
  369. {
  370. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  371. padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
  372. nbytes / AES_BLOCK_SIZE);
  373. return nbytes & ~(AES_BLOCK_SIZE - 1);
  374. }
  375. static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
  376. const u8 *in, unsigned int nbytes)
  377. {
  378. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  379. u8 *iv;
  380. iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
  381. &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
  382. memcpy(desc->info, iv, AES_BLOCK_SIZE);
  383. return nbytes & ~(AES_BLOCK_SIZE - 1);
  384. }
  385. static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
  386. const u8 *in, unsigned int nbytes)
  387. {
  388. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  389. padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
  390. nbytes / AES_BLOCK_SIZE);
  391. return nbytes & ~(AES_BLOCK_SIZE - 1);
  392. }
  393. static struct crypto_alg aes_alg = {
  394. .cra_name = "aes",
  395. .cra_driver_name = "aes-padlock",
  396. .cra_priority = 300,
  397. .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
  398. .cra_blocksize = AES_BLOCK_SIZE,
  399. .cra_ctxsize = sizeof(struct aes_ctx),
  400. .cra_alignmask = PADLOCK_ALIGNMENT - 1,
  401. .cra_module = THIS_MODULE,
  402. .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
  403. .cra_u = {
  404. .cipher = {
  405. .cia_min_keysize = AES_MIN_KEY_SIZE,
  406. .cia_max_keysize = AES_MAX_KEY_SIZE,
  407. .cia_setkey = aes_set_key,
  408. .cia_encrypt = aes_encrypt,
  409. .cia_decrypt = aes_decrypt,
  410. .cia_encrypt_ecb = aes_encrypt_ecb,
  411. .cia_decrypt_ecb = aes_decrypt_ecb,
  412. .cia_encrypt_cbc = aes_encrypt_cbc,
  413. .cia_decrypt_cbc = aes_decrypt_cbc,
  414. }
  415. }
  416. };
  417. int __init padlock_init_aes(void)
  418. {
  419. printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
  420. gen_tabs();
  421. return crypto_register_alg(&aes_alg);
  422. }
  423. void __exit padlock_fini_aes(void)
  424. {
  425. crypto_unregister_alg(&aes_alg);
  426. }