cpufreq_ondemand.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/smp.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/ctype.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/sysctl.h>
  20. #include <linux/types.h>
  21. #include <linux/fs.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/sched.h>
  24. #include <linux/kmod.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/kernel_stat.h>
  28. #include <linux/percpu.h>
  29. #include <linux/mutex.h>
  30. /*
  31. * dbs is used in this file as a shortform for demandbased switching
  32. * It helps to keep variable names smaller, simpler
  33. */
  34. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  35. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  36. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  37. /*
  38. * The polling frequency of this governor depends on the capability of
  39. * the processor. Default polling frequency is 1000 times the transition
  40. * latency of the processor. The governor will work on any processor with
  41. * transition latency <= 10mS, using appropriate sampling
  42. * rate.
  43. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  44. * this governor will not work.
  45. * All times here are in uS.
  46. */
  47. static unsigned int def_sampling_rate;
  48. #define MIN_SAMPLING_RATE_RATIO (2)
  49. /* for correct statistics, we need at least 10 ticks between each measure */
  50. #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  51. #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  52. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  53. #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
  54. #define DEF_SAMPLING_DOWN_FACTOR (1)
  55. #define MAX_SAMPLING_DOWN_FACTOR (10)
  56. #define TRANSITION_LATENCY_LIMIT (10 * 1000)
  57. static void do_dbs_timer(void *data);
  58. struct cpu_dbs_info_s {
  59. struct cpufreq_policy *cur_policy;
  60. unsigned int prev_cpu_idle_up;
  61. unsigned int prev_cpu_idle_down;
  62. unsigned int enable;
  63. };
  64. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  65. static unsigned int dbs_enable; /* number of CPUs using this policy */
  66. static DEFINE_MUTEX (dbs_mutex);
  67. static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
  68. struct dbs_tuners {
  69. unsigned int sampling_rate;
  70. unsigned int sampling_down_factor;
  71. unsigned int up_threshold;
  72. unsigned int ignore_nice;
  73. };
  74. static struct dbs_tuners dbs_tuners_ins = {
  75. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  76. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  77. };
  78. static inline unsigned int get_cpu_idle_time(unsigned int cpu)
  79. {
  80. return kstat_cpu(cpu).cpustat.idle +
  81. kstat_cpu(cpu).cpustat.iowait +
  82. ( dbs_tuners_ins.ignore_nice ?
  83. kstat_cpu(cpu).cpustat.nice :
  84. 0);
  85. }
  86. /************************** sysfs interface ************************/
  87. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  88. {
  89. return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
  90. }
  91. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  92. {
  93. return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
  94. }
  95. #define define_one_ro(_name) \
  96. static struct freq_attr _name = \
  97. __ATTR(_name, 0444, show_##_name, NULL)
  98. define_one_ro(sampling_rate_max);
  99. define_one_ro(sampling_rate_min);
  100. /* cpufreq_ondemand Governor Tunables */
  101. #define show_one(file_name, object) \
  102. static ssize_t show_##file_name \
  103. (struct cpufreq_policy *unused, char *buf) \
  104. { \
  105. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  106. }
  107. show_one(sampling_rate, sampling_rate);
  108. show_one(sampling_down_factor, sampling_down_factor);
  109. show_one(up_threshold, up_threshold);
  110. show_one(ignore_nice_load, ignore_nice);
  111. static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
  112. const char *buf, size_t count)
  113. {
  114. unsigned int input;
  115. int ret;
  116. ret = sscanf (buf, "%u", &input);
  117. if (ret != 1 )
  118. return -EINVAL;
  119. if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  120. return -EINVAL;
  121. mutex_lock(&dbs_mutex);
  122. dbs_tuners_ins.sampling_down_factor = input;
  123. mutex_unlock(&dbs_mutex);
  124. return count;
  125. }
  126. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  127. const char *buf, size_t count)
  128. {
  129. unsigned int input;
  130. int ret;
  131. ret = sscanf (buf, "%u", &input);
  132. mutex_lock(&dbs_mutex);
  133. if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
  134. mutex_unlock(&dbs_mutex);
  135. return -EINVAL;
  136. }
  137. dbs_tuners_ins.sampling_rate = input;
  138. mutex_unlock(&dbs_mutex);
  139. return count;
  140. }
  141. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  142. const char *buf, size_t count)
  143. {
  144. unsigned int input;
  145. int ret;
  146. ret = sscanf (buf, "%u", &input);
  147. mutex_lock(&dbs_mutex);
  148. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  149. input < MIN_FREQUENCY_UP_THRESHOLD) {
  150. mutex_unlock(&dbs_mutex);
  151. return -EINVAL;
  152. }
  153. dbs_tuners_ins.up_threshold = input;
  154. mutex_unlock(&dbs_mutex);
  155. return count;
  156. }
  157. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  158. const char *buf, size_t count)
  159. {
  160. unsigned int input;
  161. int ret;
  162. unsigned int j;
  163. ret = sscanf (buf, "%u", &input);
  164. if ( ret != 1 )
  165. return -EINVAL;
  166. if ( input > 1 )
  167. input = 1;
  168. mutex_lock(&dbs_mutex);
  169. if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
  170. mutex_unlock(&dbs_mutex);
  171. return count;
  172. }
  173. dbs_tuners_ins.ignore_nice = input;
  174. /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
  175. for_each_online_cpu(j) {
  176. struct cpu_dbs_info_s *j_dbs_info;
  177. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  178. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  179. j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
  180. }
  181. mutex_unlock(&dbs_mutex);
  182. return count;
  183. }
  184. #define define_one_rw(_name) \
  185. static struct freq_attr _name = \
  186. __ATTR(_name, 0644, show_##_name, store_##_name)
  187. define_one_rw(sampling_rate);
  188. define_one_rw(sampling_down_factor);
  189. define_one_rw(up_threshold);
  190. define_one_rw(ignore_nice_load);
  191. static struct attribute * dbs_attributes[] = {
  192. &sampling_rate_max.attr,
  193. &sampling_rate_min.attr,
  194. &sampling_rate.attr,
  195. &sampling_down_factor.attr,
  196. &up_threshold.attr,
  197. &ignore_nice_load.attr,
  198. NULL
  199. };
  200. static struct attribute_group dbs_attr_group = {
  201. .attrs = dbs_attributes,
  202. .name = "ondemand",
  203. };
  204. /************************** sysfs end ************************/
  205. static void dbs_check_cpu(int cpu)
  206. {
  207. unsigned int idle_ticks, up_idle_ticks, total_ticks;
  208. unsigned int freq_next;
  209. unsigned int freq_down_sampling_rate;
  210. static int down_skip[NR_CPUS];
  211. struct cpu_dbs_info_s *this_dbs_info;
  212. struct cpufreq_policy *policy;
  213. unsigned int j;
  214. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  215. if (!this_dbs_info->enable)
  216. return;
  217. policy = this_dbs_info->cur_policy;
  218. /*
  219. * Every sampling_rate, we check, if current idle time is less
  220. * than 20% (default), then we try to increase frequency
  221. * Every sampling_rate*sampling_down_factor, we look for a the lowest
  222. * frequency which can sustain the load while keeping idle time over
  223. * 30%. If such a frequency exist, we try to decrease to this frequency.
  224. *
  225. * Any frequency increase takes it to the maximum frequency.
  226. * Frequency reduction happens at minimum steps of
  227. * 5% (default) of current frequency
  228. */
  229. /* Check for frequency increase */
  230. idle_ticks = UINT_MAX;
  231. for_each_cpu_mask(j, policy->cpus) {
  232. unsigned int tmp_idle_ticks, total_idle_ticks;
  233. struct cpu_dbs_info_s *j_dbs_info;
  234. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  235. total_idle_ticks = get_cpu_idle_time(j);
  236. tmp_idle_ticks = total_idle_ticks -
  237. j_dbs_info->prev_cpu_idle_up;
  238. j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
  239. if (tmp_idle_ticks < idle_ticks)
  240. idle_ticks = tmp_idle_ticks;
  241. }
  242. /* Scale idle ticks by 100 and compare with up and down ticks */
  243. idle_ticks *= 100;
  244. up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
  245. usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  246. if (idle_ticks < up_idle_ticks) {
  247. down_skip[cpu] = 0;
  248. for_each_cpu_mask(j, policy->cpus) {
  249. struct cpu_dbs_info_s *j_dbs_info;
  250. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  251. j_dbs_info->prev_cpu_idle_down =
  252. j_dbs_info->prev_cpu_idle_up;
  253. }
  254. /* if we are already at full speed then break out early */
  255. if (policy->cur == policy->max)
  256. return;
  257. __cpufreq_driver_target(policy, policy->max,
  258. CPUFREQ_RELATION_H);
  259. return;
  260. }
  261. /* Check for frequency decrease */
  262. down_skip[cpu]++;
  263. if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
  264. return;
  265. idle_ticks = UINT_MAX;
  266. for_each_cpu_mask(j, policy->cpus) {
  267. unsigned int tmp_idle_ticks, total_idle_ticks;
  268. struct cpu_dbs_info_s *j_dbs_info;
  269. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  270. /* Check for frequency decrease */
  271. total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
  272. tmp_idle_ticks = total_idle_ticks -
  273. j_dbs_info->prev_cpu_idle_down;
  274. j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
  275. if (tmp_idle_ticks < idle_ticks)
  276. idle_ticks = tmp_idle_ticks;
  277. }
  278. down_skip[cpu] = 0;
  279. /* if we cannot reduce the frequency anymore, break out early */
  280. if (policy->cur == policy->min)
  281. return;
  282. /* Compute how many ticks there are between two measurements */
  283. freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
  284. dbs_tuners_ins.sampling_down_factor;
  285. total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
  286. /*
  287. * The optimal frequency is the frequency that is the lowest that
  288. * can support the current CPU usage without triggering the up
  289. * policy. To be safe, we focus 10 points under the threshold.
  290. */
  291. freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
  292. freq_next = (freq_next * policy->cur) /
  293. (dbs_tuners_ins.up_threshold - 10);
  294. if (freq_next <= ((policy->cur * 95) / 100))
  295. __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
  296. }
  297. static void do_dbs_timer(void *data)
  298. {
  299. int i;
  300. mutex_lock(&dbs_mutex);
  301. for_each_online_cpu(i)
  302. dbs_check_cpu(i);
  303. schedule_delayed_work(&dbs_work,
  304. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  305. mutex_unlock(&dbs_mutex);
  306. }
  307. static inline void dbs_timer_init(void)
  308. {
  309. INIT_WORK(&dbs_work, do_dbs_timer, NULL);
  310. schedule_delayed_work(&dbs_work,
  311. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  312. return;
  313. }
  314. static inline void dbs_timer_exit(void)
  315. {
  316. cancel_delayed_work(&dbs_work);
  317. return;
  318. }
  319. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  320. unsigned int event)
  321. {
  322. unsigned int cpu = policy->cpu;
  323. struct cpu_dbs_info_s *this_dbs_info;
  324. unsigned int j;
  325. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  326. switch (event) {
  327. case CPUFREQ_GOV_START:
  328. if ((!cpu_online(cpu)) ||
  329. (!policy->cur))
  330. return -EINVAL;
  331. if (policy->cpuinfo.transition_latency >
  332. (TRANSITION_LATENCY_LIMIT * 1000))
  333. return -EINVAL;
  334. if (this_dbs_info->enable) /* Already enabled */
  335. break;
  336. mutex_lock(&dbs_mutex);
  337. for_each_cpu_mask(j, policy->cpus) {
  338. struct cpu_dbs_info_s *j_dbs_info;
  339. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  340. j_dbs_info->cur_policy = policy;
  341. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  342. j_dbs_info->prev_cpu_idle_down
  343. = j_dbs_info->prev_cpu_idle_up;
  344. }
  345. this_dbs_info->enable = 1;
  346. sysfs_create_group(&policy->kobj, &dbs_attr_group);
  347. dbs_enable++;
  348. /*
  349. * Start the timerschedule work, when this governor
  350. * is used for first time
  351. */
  352. if (dbs_enable == 1) {
  353. unsigned int latency;
  354. /* policy latency is in nS. Convert it to uS first */
  355. latency = policy->cpuinfo.transition_latency / 1000;
  356. if (latency == 0)
  357. latency = 1;
  358. def_sampling_rate = latency *
  359. DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
  360. if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
  361. def_sampling_rate = MIN_STAT_SAMPLING_RATE;
  362. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  363. dbs_tuners_ins.ignore_nice = 0;
  364. dbs_timer_init();
  365. }
  366. mutex_unlock(&dbs_mutex);
  367. break;
  368. case CPUFREQ_GOV_STOP:
  369. mutex_lock(&dbs_mutex);
  370. this_dbs_info->enable = 0;
  371. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  372. dbs_enable--;
  373. /*
  374. * Stop the timerschedule work, when this governor
  375. * is used for first time
  376. */
  377. if (dbs_enable == 0)
  378. dbs_timer_exit();
  379. mutex_unlock(&dbs_mutex);
  380. break;
  381. case CPUFREQ_GOV_LIMITS:
  382. mutex_lock(&dbs_mutex);
  383. if (policy->max < this_dbs_info->cur_policy->cur)
  384. __cpufreq_driver_target(
  385. this_dbs_info->cur_policy,
  386. policy->max, CPUFREQ_RELATION_H);
  387. else if (policy->min > this_dbs_info->cur_policy->cur)
  388. __cpufreq_driver_target(
  389. this_dbs_info->cur_policy,
  390. policy->min, CPUFREQ_RELATION_L);
  391. mutex_unlock(&dbs_mutex);
  392. break;
  393. }
  394. return 0;
  395. }
  396. static struct cpufreq_governor cpufreq_gov_dbs = {
  397. .name = "ondemand",
  398. .governor = cpufreq_governor_dbs,
  399. .owner = THIS_MODULE,
  400. };
  401. static int __init cpufreq_gov_dbs_init(void)
  402. {
  403. return cpufreq_register_governor(&cpufreq_gov_dbs);
  404. }
  405. static void __exit cpufreq_gov_dbs_exit(void)
  406. {
  407. /* Make sure that the scheduled work is indeed not running */
  408. flush_scheduled_work();
  409. cpufreq_unregister_governor(&cpufreq_gov_dbs);
  410. }
  411. MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  412. MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  413. "Low Latency Frequency Transition capable processors");
  414. MODULE_LICENSE ("GPL");
  415. module_init(cpufreq_gov_dbs_init);
  416. module_exit(cpufreq_gov_dbs_exit);