12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661 |
- /*
- * random.c -- A strong random number generator
- *
- * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
- *
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
- * rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.
- */
- /*
- * (now, with legal B.S. out of the way.....)
- *
- * This routine gathers environmental noise from device drivers, etc.,
- * and returns good random numbers, suitable for cryptographic use.
- * Besides the obvious cryptographic uses, these numbers are also good
- * for seeding TCP sequence numbers, and other places where it is
- * desirable to have numbers which are not only random, but hard to
- * predict by an attacker.
- *
- * Theory of operation
- * ===================
- *
- * Computers are very predictable devices. Hence it is extremely hard
- * to produce truly random numbers on a computer --- as opposed to
- * pseudo-random numbers, which can easily generated by using a
- * algorithm. Unfortunately, it is very easy for attackers to guess
- * the sequence of pseudo-random number generators, and for some
- * applications this is not acceptable. So instead, we must try to
- * gather "environmental noise" from the computer's environment, which
- * must be hard for outside attackers to observe, and use that to
- * generate random numbers. In a Unix environment, this is best done
- * from inside the kernel.
- *
- * Sources of randomness from the environment include inter-keyboard
- * timings, inter-interrupt timings from some interrupts, and other
- * events which are both (a) non-deterministic and (b) hard for an
- * outside observer to measure. Randomness from these sources are
- * added to an "entropy pool", which is mixed using a CRC-like function.
- * This is not cryptographically strong, but it is adequate assuming
- * the randomness is not chosen maliciously, and it is fast enough that
- * the overhead of doing it on every interrupt is very reasonable.
- * As random bytes are mixed into the entropy pool, the routines keep
- * an *estimate* of how many bits of randomness have been stored into
- * the random number generator's internal state.
- *
- * When random bytes are desired, they are obtained by taking the SHA
- * hash of the contents of the "entropy pool". The SHA hash avoids
- * exposing the internal state of the entropy pool. It is believed to
- * be computationally infeasible to derive any useful information
- * about the input of SHA from its output. Even if it is possible to
- * analyze SHA in some clever way, as long as the amount of data
- * returned from the generator is less than the inherent entropy in
- * the pool, the output data is totally unpredictable. For this
- * reason, the routine decreases its internal estimate of how many
- * bits of "true randomness" are contained in the entropy pool as it
- * outputs random numbers.
- *
- * If this estimate goes to zero, the routine can still generate
- * random numbers; however, an attacker may (at least in theory) be
- * able to infer the future output of the generator from prior
- * outputs. This requires successful cryptanalysis of SHA, which is
- * not believed to be feasible, but there is a remote possibility.
- * Nonetheless, these numbers should be useful for the vast majority
- * of purposes.
- *
- * Exported interfaces ---- output
- * ===============================
- *
- * There are three exported interfaces; the first is one designed to
- * be used from within the kernel:
- *
- * void get_random_bytes(void *buf, int nbytes);
- *
- * This interface will return the requested number of random bytes,
- * and place it in the requested buffer.
- *
- * The two other interfaces are two character devices /dev/random and
- * /dev/urandom. /dev/random is suitable for use when very high
- * quality randomness is desired (for example, for key generation or
- * one-time pads), as it will only return a maximum of the number of
- * bits of randomness (as estimated by the random number generator)
- * contained in the entropy pool.
- *
- * The /dev/urandom device does not have this limit, and will return
- * as many bytes as are requested. As more and more random bytes are
- * requested without giving time for the entropy pool to recharge,
- * this will result in random numbers that are merely cryptographically
- * strong. For many applications, however, this is acceptable.
- *
- * Exported interfaces ---- input
- * ==============================
- *
- * The current exported interfaces for gathering environmental noise
- * from the devices are:
- *
- * void add_input_randomness(unsigned int type, unsigned int code,
- * unsigned int value);
- * void add_interrupt_randomness(int irq);
- *
- * add_input_randomness() uses the input layer interrupt timing, as well as
- * the event type information from the hardware.
- *
- * add_interrupt_randomness() uses the inter-interrupt timing as random
- * inputs to the entropy pool. Note that not all interrupts are good
- * sources of randomness! For example, the timer interrupts is not a
- * good choice, because the periodicity of the interrupts is too
- * regular, and hence predictable to an attacker. Disk interrupts are
- * a better measure, since the timing of the disk interrupts are more
- * unpredictable.
- *
- * All of these routines try to estimate how many bits of randomness a
- * particular randomness source. They do this by keeping track of the
- * first and second order deltas of the event timings.
- *
- * Ensuring unpredictability at system startup
- * ============================================
- *
- * When any operating system starts up, it will go through a sequence
- * of actions that are fairly predictable by an adversary, especially
- * if the start-up does not involve interaction with a human operator.
- * This reduces the actual number of bits of unpredictability in the
- * entropy pool below the value in entropy_count. In order to
- * counteract this effect, it helps to carry information in the
- * entropy pool across shut-downs and start-ups. To do this, put the
- * following lines an appropriate script which is run during the boot
- * sequence:
- *
- * echo "Initializing random number generator..."
- * random_seed=/var/run/random-seed
- * # Carry a random seed from start-up to start-up
- * # Load and then save the whole entropy pool
- * if [ -f $random_seed ]; then
- * cat $random_seed >/dev/urandom
- * else
- * touch $random_seed
- * fi
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * and the following lines in an appropriate script which is run as
- * the system is shutdown:
- *
- * # Carry a random seed from shut-down to start-up
- * # Save the whole entropy pool
- * echo "Saving random seed..."
- * random_seed=/var/run/random-seed
- * touch $random_seed
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * For example, on most modern systems using the System V init
- * scripts, such code fragments would be found in
- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
- *
- * Effectively, these commands cause the contents of the entropy pool
- * to be saved at shut-down time and reloaded into the entropy pool at
- * start-up. (The 'dd' in the addition to the bootup script is to
- * make sure that /etc/random-seed is different for every start-up,
- * even if the system crashes without executing rc.0.) Even with
- * complete knowledge of the start-up activities, predicting the state
- * of the entropy pool requires knowledge of the previous history of
- * the system.
- *
- * Configuring the /dev/random driver under Linux
- * ==============================================
- *
- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
- * the /dev/mem major number (#1). So if your system does not have
- * /dev/random and /dev/urandom created already, they can be created
- * by using the commands:
- *
- * mknod /dev/random c 1 8
- * mknod /dev/urandom c 1 9
- *
- * Acknowledgements:
- * =================
- *
- * Ideas for constructing this random number generator were derived
- * from Pretty Good Privacy's random number generator, and from private
- * discussions with Phil Karn. Colin Plumb provided a faster random
- * number generator, which speed up the mixing function of the entropy
- * pool, taken from PGPfone. Dale Worley has also contributed many
- * useful ideas and suggestions to improve this driver.
- *
- * Any flaws in the design are solely my responsibility, and should
- * not be attributed to the Phil, Colin, or any of authors of PGP.
- *
- * Further background information on this topic may be obtained from
- * RFC 1750, "Randomness Recommendations for Security", by Donald
- * Eastlake, Steve Crocker, and Jeff Schiller.
- */
- #include <linux/utsname.h>
- #include <linux/config.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/major.h>
- #include <linux/string.h>
- #include <linux/fcntl.h>
- #include <linux/slab.h>
- #include <linux/random.h>
- #include <linux/poll.h>
- #include <linux/init.h>
- #include <linux/fs.h>
- #include <linux/genhd.h>
- #include <linux/interrupt.h>
- #include <linux/spinlock.h>
- #include <linux/percpu.h>
- #include <linux/cryptohash.h>
- #include <asm/processor.h>
- #include <asm/uaccess.h>
- #include <asm/irq.h>
- #include <asm/io.h>
- /*
- * Configuration information
- */
- #define INPUT_POOL_WORDS 128
- #define OUTPUT_POOL_WORDS 32
- #define SEC_XFER_SIZE 512
- /*
- * The minimum number of bits of entropy before we wake up a read on
- * /dev/random. Should be enough to do a significant reseed.
- */
- static int random_read_wakeup_thresh = 64;
- /*
- * If the entropy count falls under this number of bits, then we
- * should wake up processes which are selecting or polling on write
- * access to /dev/random.
- */
- static int random_write_wakeup_thresh = 128;
- /*
- * When the input pool goes over trickle_thresh, start dropping most
- * samples to avoid wasting CPU time and reduce lock contention.
- */
- static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
- static DEFINE_PER_CPU(int, trickle_count) = 0;
- /*
- * A pool of size .poolwords is stirred with a primitive polynomial
- * of degree .poolwords over GF(2). The taps for various sizes are
- * defined below. They are chosen to be evenly spaced (minimum RMS
- * distance from evenly spaced; the numbers in the comments are a
- * scaled squared error sum) except for the last tap, which is 1 to
- * get the twisting happening as fast as possible.
- */
- static struct poolinfo {
- int poolwords;
- int tap1, tap2, tap3, tap4, tap5;
- } poolinfo_table[] = {
- /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
- { 128, 103, 76, 51, 25, 1 },
- /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
- { 32, 26, 20, 14, 7, 1 },
- #if 0
- /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
- { 2048, 1638, 1231, 819, 411, 1 },
- /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
- { 1024, 817, 615, 412, 204, 1 },
- /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
- { 1024, 819, 616, 410, 207, 2 },
- /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
- { 512, 411, 308, 208, 104, 1 },
- /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
- { 512, 409, 307, 206, 102, 2 },
- /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
- { 512, 409, 309, 205, 103, 2 },
- /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
- { 256, 205, 155, 101, 52, 1 },
- /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
- { 128, 103, 78, 51, 27, 2 },
- /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
- { 64, 52, 39, 26, 14, 1 },
- #endif
- };
- #define POOLBITS poolwords*32
- #define POOLBYTES poolwords*4
- /*
- * For the purposes of better mixing, we use the CRC-32 polynomial as
- * well to make a twisted Generalized Feedback Shift Reigster
- *
- * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
- * Transactions on Modeling and Computer Simulation 2(3):179-194.
- * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
- * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
- *
- * Thanks to Colin Plumb for suggesting this.
- *
- * We have not analyzed the resultant polynomial to prove it primitive;
- * in fact it almost certainly isn't. Nonetheless, the irreducible factors
- * of a random large-degree polynomial over GF(2) are more than large enough
- * that periodicity is not a concern.
- *
- * The input hash is much less sensitive than the output hash. All
- * that we want of it is that it be a good non-cryptographic hash;
- * i.e. it not produce collisions when fed "random" data of the sort
- * we expect to see. As long as the pool state differs for different
- * inputs, we have preserved the input entropy and done a good job.
- * The fact that an intelligent attacker can construct inputs that
- * will produce controlled alterations to the pool's state is not
- * important because we don't consider such inputs to contribute any
- * randomness. The only property we need with respect to them is that
- * the attacker can't increase his/her knowledge of the pool's state.
- * Since all additions are reversible (knowing the final state and the
- * input, you can reconstruct the initial state), if an attacker has
- * any uncertainty about the initial state, he/she can only shuffle
- * that uncertainty about, but never cause any collisions (which would
- * decrease the uncertainty).
- *
- * The chosen system lets the state of the pool be (essentially) the input
- * modulo the generator polymnomial. Now, for random primitive polynomials,
- * this is a universal class of hash functions, meaning that the chance
- * of a collision is limited by the attacker's knowledge of the generator
- * polynomail, so if it is chosen at random, an attacker can never force
- * a collision. Here, we use a fixed polynomial, but we *can* assume that
- * ###--> it is unknown to the processes generating the input entropy. <-###
- * Because of this important property, this is a good, collision-resistant
- * hash; hash collisions will occur no more often than chance.
- */
- /*
- * Static global variables
- */
- static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
- static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
- #if 0
- static int debug = 0;
- module_param(debug, bool, 0644);
- #define DEBUG_ENT(fmt, arg...) do { if (debug) \
- printk(KERN_DEBUG "random %04d %04d %04d: " \
- fmt,\
- input_pool.entropy_count,\
- blocking_pool.entropy_count,\
- nonblocking_pool.entropy_count,\
- ## arg); } while (0)
- #else
- #define DEBUG_ENT(fmt, arg...) do {} while (0)
- #endif
- /**********************************************************************
- *
- * OS independent entropy store. Here are the functions which handle
- * storing entropy in an entropy pool.
- *
- **********************************************************************/
- struct entropy_store;
- struct entropy_store {
- /* mostly-read data: */
- struct poolinfo *poolinfo;
- __u32 *pool;
- const char *name;
- int limit;
- struct entropy_store *pull;
- /* read-write data: */
- spinlock_t lock ____cacheline_aligned_in_smp;
- unsigned add_ptr;
- int entropy_count;
- int input_rotate;
- };
- static __u32 input_pool_data[INPUT_POOL_WORDS];
- static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
- static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
- static struct entropy_store input_pool = {
- .poolinfo = &poolinfo_table[0],
- .name = "input",
- .limit = 1,
- .lock = SPIN_LOCK_UNLOCKED,
- .pool = input_pool_data
- };
- static struct entropy_store blocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "blocking",
- .limit = 1,
- .pull = &input_pool,
- .lock = SPIN_LOCK_UNLOCKED,
- .pool = blocking_pool_data
- };
- static struct entropy_store nonblocking_pool = {
- .poolinfo = &poolinfo_table[1],
- .name = "nonblocking",
- .pull = &input_pool,
- .lock = SPIN_LOCK_UNLOCKED,
- .pool = nonblocking_pool_data
- };
- /*
- * This function adds a byte into the entropy "pool". It does not
- * update the entropy estimate. The caller should call
- * credit_entropy_store if this is appropriate.
- *
- * The pool is stirred with a primitive polynomial of the appropriate
- * degree, and then twisted. We twist by three bits at a time because
- * it's cheap to do so and helps slightly in the expected case where
- * the entropy is concentrated in the low-order bits.
- */
- static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
- int nwords, __u32 out[16])
- {
- static __u32 const twist_table[8] = {
- 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
- unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
- int new_rotate, input_rotate;
- int wordmask = r->poolinfo->poolwords - 1;
- __u32 w, next_w;
- unsigned long flags;
- /* Taps are constant, so we can load them without holding r->lock. */
- tap1 = r->poolinfo->tap1;
- tap2 = r->poolinfo->tap2;
- tap3 = r->poolinfo->tap3;
- tap4 = r->poolinfo->tap4;
- tap5 = r->poolinfo->tap5;
- next_w = *in++;
- spin_lock_irqsave(&r->lock, flags);
- prefetch_range(r->pool, wordmask);
- input_rotate = r->input_rotate;
- add_ptr = r->add_ptr;
- while (nwords--) {
- w = rol32(next_w, input_rotate);
- if (nwords > 0)
- next_w = *in++;
- i = add_ptr = (add_ptr - 1) & wordmask;
- /*
- * Normally, we add 7 bits of rotation to the pool.
- * At the beginning of the pool, add an extra 7 bits
- * rotation, so that successive passes spread the
- * input bits across the pool evenly.
- */
- new_rotate = input_rotate + 14;
- if (i)
- new_rotate = input_rotate + 7;
- input_rotate = new_rotate & 31;
- /* XOR in the various taps */
- w ^= r->pool[(i + tap1) & wordmask];
- w ^= r->pool[(i + tap2) & wordmask];
- w ^= r->pool[(i + tap3) & wordmask];
- w ^= r->pool[(i + tap4) & wordmask];
- w ^= r->pool[(i + tap5) & wordmask];
- w ^= r->pool[i];
- r->pool[i] = (w >> 3) ^ twist_table[w & 7];
- }
- r->input_rotate = input_rotate;
- r->add_ptr = add_ptr;
- if (out) {
- for (i = 0; i < 16; i++) {
- out[i] = r->pool[add_ptr];
- add_ptr = (add_ptr - 1) & wordmask;
- }
- }
- spin_unlock_irqrestore(&r->lock, flags);
- }
- static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
- int nwords)
- {
- __add_entropy_words(r, in, nwords, NULL);
- }
- /*
- * Credit (or debit) the entropy store with n bits of entropy
- */
- static void credit_entropy_store(struct entropy_store *r, int nbits)
- {
- unsigned long flags;
- spin_lock_irqsave(&r->lock, flags);
- if (r->entropy_count + nbits < 0) {
- DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
- r->entropy_count, nbits);
- r->entropy_count = 0;
- } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
- r->entropy_count = r->poolinfo->POOLBITS;
- } else {
- r->entropy_count += nbits;
- if (nbits)
- DEBUG_ENT("added %d entropy credits to %s\n",
- nbits, r->name);
- }
- spin_unlock_irqrestore(&r->lock, flags);
- }
- /*********************************************************************
- *
- * Entropy input management
- *
- *********************************************************************/
- /* There is one of these per entropy source */
- struct timer_rand_state {
- cycles_t last_time;
- long last_delta,last_delta2;
- unsigned dont_count_entropy:1;
- };
- static struct timer_rand_state input_timer_state;
- static struct timer_rand_state *irq_timer_state[NR_IRQS];
- /*
- * This function adds entropy to the entropy "pool" by using timing
- * delays. It uses the timer_rand_state structure to make an estimate
- * of how many bits of entropy this call has added to the pool.
- *
- * The number "num" is also added to the pool - it should somehow describe
- * the type of event which just happened. This is currently 0-255 for
- * keyboard scan codes, and 256 upwards for interrupts.
- *
- */
- static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
- {
- struct {
- cycles_t cycles;
- long jiffies;
- unsigned num;
- } sample;
- long delta, delta2, delta3;
- preempt_disable();
- /* if over the trickle threshold, use only 1 in 4096 samples */
- if (input_pool.entropy_count > trickle_thresh &&
- (__get_cpu_var(trickle_count)++ & 0xfff))
- goto out;
- sample.jiffies = jiffies;
- sample.cycles = get_cycles();
- sample.num = num;
- add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
- /*
- * Calculate number of bits of randomness we probably added.
- * We take into account the first, second and third-order deltas
- * in order to make our estimate.
- */
- if (!state->dont_count_entropy) {
- delta = sample.jiffies - state->last_time;
- state->last_time = sample.jiffies;
- delta2 = delta - state->last_delta;
- state->last_delta = delta;
- delta3 = delta2 - state->last_delta2;
- state->last_delta2 = delta2;
- if (delta < 0)
- delta = -delta;
- if (delta2 < 0)
- delta2 = -delta2;
- if (delta3 < 0)
- delta3 = -delta3;
- if (delta > delta2)
- delta = delta2;
- if (delta > delta3)
- delta = delta3;
- /*
- * delta is now minimum absolute delta.
- * Round down by 1 bit on general principles,
- * and limit entropy entimate to 12 bits.
- */
- credit_entropy_store(&input_pool,
- min_t(int, fls(delta>>1), 11));
- }
- if(input_pool.entropy_count >= random_read_wakeup_thresh)
- wake_up_interruptible(&random_read_wait);
- out:
- preempt_enable();
- }
- void add_input_randomness(unsigned int type, unsigned int code,
- unsigned int value)
- {
- static unsigned char last_value;
- /* ignore autorepeat and the like */
- if (value == last_value)
- return;
- DEBUG_ENT("input event\n");
- last_value = value;
- add_timer_randomness(&input_timer_state,
- (type << 4) ^ code ^ (code >> 4) ^ value);
- }
- void add_interrupt_randomness(int irq)
- {
- if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
- return;
- DEBUG_ENT("irq event %d\n", irq);
- add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
- }
- void add_disk_randomness(struct gendisk *disk)
- {
- if (!disk || !disk->random)
- return;
- /* first major is 1, so we get >= 0x200 here */
- DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
- add_timer_randomness(disk->random,
- 0x100 + MKDEV(disk->major, disk->first_minor));
- }
- EXPORT_SYMBOL(add_disk_randomness);
- #define EXTRACT_SIZE 10
- /*********************************************************************
- *
- * Entropy extraction routines
- *
- *********************************************************************/
- static ssize_t extract_entropy(struct entropy_store *r, void * buf,
- size_t nbytes, int min, int rsvd);
- /*
- * This utility inline function is responsible for transfering entropy
- * from the primary pool to the secondary extraction pool. We make
- * sure we pull enough for a 'catastrophic reseed'.
- */
- static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
- {
- __u32 tmp[OUTPUT_POOL_WORDS];
- if (r->pull && r->entropy_count < nbytes * 8 &&
- r->entropy_count < r->poolinfo->POOLBITS) {
- int bytes = max_t(int, random_read_wakeup_thresh / 8,
- min_t(int, nbytes, sizeof(tmp)));
- int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
- DEBUG_ENT("going to reseed %s with %d bits "
- "(%d of %d requested)\n",
- r->name, bytes * 8, nbytes * 8, r->entropy_count);
- bytes=extract_entropy(r->pull, tmp, bytes,
- random_read_wakeup_thresh / 8, rsvd);
- add_entropy_words(r, tmp, (bytes + 3) / 4);
- credit_entropy_store(r, bytes*8);
- }
- }
- /*
- * These functions extracts randomness from the "entropy pool", and
- * returns it in a buffer.
- *
- * The min parameter specifies the minimum amount we can pull before
- * failing to avoid races that defeat catastrophic reseeding while the
- * reserved parameter indicates how much entropy we must leave in the
- * pool after each pull to avoid starving other readers.
- *
- * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
- */
- static size_t account(struct entropy_store *r, size_t nbytes, int min,
- int reserved)
- {
- unsigned long flags;
- BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
- /* Hold lock while accounting */
- spin_lock_irqsave(&r->lock, flags);
- DEBUG_ENT("trying to extract %d bits from %s\n",
- nbytes * 8, r->name);
- /* Can we pull enough? */
- if (r->entropy_count / 8 < min + reserved) {
- nbytes = 0;
- } else {
- /* If limited, never pull more than available */
- if (r->limit && nbytes + reserved >= r->entropy_count / 8)
- nbytes = r->entropy_count/8 - reserved;
- if(r->entropy_count / 8 >= nbytes + reserved)
- r->entropy_count -= nbytes*8;
- else
- r->entropy_count = reserved;
- if (r->entropy_count < random_write_wakeup_thresh)
- wake_up_interruptible(&random_write_wait);
- }
- DEBUG_ENT("debiting %d entropy credits from %s%s\n",
- nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
- spin_unlock_irqrestore(&r->lock, flags);
- return nbytes;
- }
- static void extract_buf(struct entropy_store *r, __u8 *out)
- {
- int i, x;
- __u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
- sha_init(buf);
- /*
- * As we hash the pool, we mix intermediate values of
- * the hash back into the pool. This eliminates
- * backtracking attacks (where the attacker knows
- * the state of the pool plus the current outputs, and
- * attempts to find previous ouputs), unless the hash
- * function can be inverted.
- */
- for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) {
- sha_transform(buf, (__u8 *)r->pool+i, buf + 5);
- add_entropy_words(r, &buf[x % 5], 1);
- }
- /*
- * To avoid duplicates, we atomically extract a
- * portion of the pool while mixing, and hash one
- * final time.
- */
- __add_entropy_words(r, &buf[x % 5], 1, data);
- sha_transform(buf, (__u8 *)data, buf + 5);
- /*
- * In case the hash function has some recognizable
- * output pattern, we fold it in half.
- */
- buf[0] ^= buf[3];
- buf[1] ^= buf[4];
- buf[0] ^= rol32(buf[3], 16);
- memcpy(out, buf, EXTRACT_SIZE);
- memset(buf, 0, sizeof(buf));
- }
- static ssize_t extract_entropy(struct entropy_store *r, void * buf,
- size_t nbytes, int min, int reserved)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, min, reserved);
- while (nbytes) {
- extract_buf(r, tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- memcpy(buf, tmp, i);
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memset(tmp, 0, sizeof(tmp));
- return ret;
- }
- static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
- size_t nbytes)
- {
- ssize_t ret = 0, i;
- __u8 tmp[EXTRACT_SIZE];
- xfer_secondary_pool(r, nbytes);
- nbytes = account(r, nbytes, 0, 0);
- while (nbytes) {
- if (need_resched()) {
- if (signal_pending(current)) {
- if (ret == 0)
- ret = -ERESTARTSYS;
- break;
- }
- schedule();
- }
- extract_buf(r, tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- if (copy_to_user(buf, tmp, i)) {
- ret = -EFAULT;
- break;
- }
- nbytes -= i;
- buf += i;
- ret += i;
- }
- /* Wipe data just returned from memory */
- memset(tmp, 0, sizeof(tmp));
- return ret;
- }
- /*
- * This function is the exported kernel interface. It returns some
- * number of good random numbers, suitable for seeding TCP sequence
- * numbers, etc.
- */
- void get_random_bytes(void *buf, int nbytes)
- {
- extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
- }
- EXPORT_SYMBOL(get_random_bytes);
- /*
- * init_std_data - initialize pool with system data
- *
- * @r: pool to initialize
- *
- * This function clears the pool's entropy count and mixes some system
- * data into the pool to prepare it for use. The pool is not cleared
- * as that can only decrease the entropy in the pool.
- */
- static void init_std_data(struct entropy_store *r)
- {
- struct timeval tv;
- unsigned long flags;
- spin_lock_irqsave(&r->lock, flags);
- r->entropy_count = 0;
- spin_unlock_irqrestore(&r->lock, flags);
- do_gettimeofday(&tv);
- add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4);
- add_entropy_words(r, (__u32 *)&system_utsname,
- sizeof(system_utsname)/4);
- }
- static int __init rand_initialize(void)
- {
- init_std_data(&input_pool);
- init_std_data(&blocking_pool);
- init_std_data(&nonblocking_pool);
- return 0;
- }
- module_init(rand_initialize);
- void rand_initialize_irq(int irq)
- {
- struct timer_rand_state *state;
- if (irq >= NR_IRQS || irq_timer_state[irq])
- return;
- /*
- * If kmalloc returns null, we just won't use that entropy
- * source.
- */
- state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state) {
- memset(state, 0, sizeof(struct timer_rand_state));
- irq_timer_state[irq] = state;
- }
- }
- void rand_initialize_disk(struct gendisk *disk)
- {
- struct timer_rand_state *state;
- /*
- * If kmalloc returns null, we just won't use that entropy
- * source.
- */
- state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state) {
- memset(state, 0, sizeof(struct timer_rand_state));
- disk->random = state;
- }
- }
- static ssize_t
- random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
- {
- ssize_t n, retval = 0, count = 0;
- if (nbytes == 0)
- return 0;
- while (nbytes > 0) {
- n = nbytes;
- if (n > SEC_XFER_SIZE)
- n = SEC_XFER_SIZE;
- DEBUG_ENT("reading %d bits\n", n*8);
- n = extract_entropy_user(&blocking_pool, buf, n);
- DEBUG_ENT("read got %d bits (%d still needed)\n",
- n*8, (nbytes-n)*8);
- if (n == 0) {
- if (file->f_flags & O_NONBLOCK) {
- retval = -EAGAIN;
- break;
- }
- DEBUG_ENT("sleeping?\n");
- wait_event_interruptible(random_read_wait,
- input_pool.entropy_count >=
- random_read_wakeup_thresh);
- DEBUG_ENT("awake\n");
- if (signal_pending(current)) {
- retval = -ERESTARTSYS;
- break;
- }
- continue;
- }
- if (n < 0) {
- retval = n;
- break;
- }
- count += n;
- buf += n;
- nbytes -= n;
- break; /* This break makes the device work */
- /* like a named pipe */
- }
- /*
- * If we gave the user some bytes, update the access time.
- */
- if (count)
- file_accessed(file);
- return (count ? count : retval);
- }
- static ssize_t
- urandom_read(struct file * file, char __user * buf,
- size_t nbytes, loff_t *ppos)
- {
- return extract_entropy_user(&nonblocking_pool, buf, nbytes);
- }
- static unsigned int
- random_poll(struct file *file, poll_table * wait)
- {
- unsigned int mask;
- poll_wait(file, &random_read_wait, wait);
- poll_wait(file, &random_write_wait, wait);
- mask = 0;
- if (input_pool.entropy_count >= random_read_wakeup_thresh)
- mask |= POLLIN | POLLRDNORM;
- if (input_pool.entropy_count < random_write_wakeup_thresh)
- mask |= POLLOUT | POLLWRNORM;
- return mask;
- }
- static ssize_t
- random_write(struct file * file, const char __user * buffer,
- size_t count, loff_t *ppos)
- {
- int ret = 0;
- size_t bytes;
- __u32 buf[16];
- const char __user *p = buffer;
- size_t c = count;
- while (c > 0) {
- bytes = min(c, sizeof(buf));
- bytes -= copy_from_user(&buf, p, bytes);
- if (!bytes) {
- ret = -EFAULT;
- break;
- }
- c -= bytes;
- p += bytes;
- add_entropy_words(&input_pool, buf, (bytes + 3) / 4);
- }
- if (p == buffer) {
- return (ssize_t)ret;
- } else {
- struct inode *inode = file->f_dentry->d_inode;
- inode->i_mtime = current_fs_time(inode->i_sb);
- mark_inode_dirty(inode);
- return (ssize_t)(p - buffer);
- }
- }
- static int
- random_ioctl(struct inode * inode, struct file * file,
- unsigned int cmd, unsigned long arg)
- {
- int size, ent_count;
- int __user *p = (int __user *)arg;
- int retval;
- switch (cmd) {
- case RNDGETENTCNT:
- ent_count = input_pool.entropy_count;
- if (put_user(ent_count, p))
- return -EFAULT;
- return 0;
- case RNDADDTOENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p))
- return -EFAULT;
- credit_entropy_store(&input_pool, ent_count);
- /*
- * Wake up waiting processes if we have enough
- * entropy.
- */
- if (input_pool.entropy_count >= random_read_wakeup_thresh)
- wake_up_interruptible(&random_read_wait);
- return 0;
- case RNDADDENTROPY:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p++))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- if (get_user(size, p++))
- return -EFAULT;
- retval = random_write(file, (const char __user *) p,
- size, &file->f_pos);
- if (retval < 0)
- return retval;
- credit_entropy_store(&input_pool, ent_count);
- /*
- * Wake up waiting processes if we have enough
- * entropy.
- */
- if (input_pool.entropy_count >= random_read_wakeup_thresh)
- wake_up_interruptible(&random_read_wait);
- return 0;
- case RNDZAPENTCNT:
- case RNDCLEARPOOL:
- /* Clear the entropy pool counters. */
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- init_std_data(&input_pool);
- init_std_data(&blocking_pool);
- init_std_data(&nonblocking_pool);
- return 0;
- default:
- return -EINVAL;
- }
- }
- struct file_operations random_fops = {
- .read = random_read,
- .write = random_write,
- .poll = random_poll,
- .ioctl = random_ioctl,
- };
- struct file_operations urandom_fops = {
- .read = urandom_read,
- .write = random_write,
- .ioctl = random_ioctl,
- };
- /***************************************************************
- * Random UUID interface
- *
- * Used here for a Boot ID, but can be useful for other kernel
- * drivers.
- ***************************************************************/
- /*
- * Generate random UUID
- */
- void generate_random_uuid(unsigned char uuid_out[16])
- {
- get_random_bytes(uuid_out, 16);
- /* Set UUID version to 4 --- truely random generation */
- uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
- /* Set the UUID variant to DCE */
- uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
- }
- EXPORT_SYMBOL(generate_random_uuid);
- /********************************************************************
- *
- * Sysctl interface
- *
- ********************************************************************/
- #ifdef CONFIG_SYSCTL
- #include <linux/sysctl.h>
- static int min_read_thresh = 8, min_write_thresh;
- static int max_read_thresh = INPUT_POOL_WORDS * 32;
- static int max_write_thresh = INPUT_POOL_WORDS * 32;
- static char sysctl_bootid[16];
- /*
- * These functions is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
- * then a new UUID is generated and returned to the user.
- *
- * If the user accesses this via the proc interface, it will be returned
- * as an ASCII string in the standard UUID format. If accesses via the
- * sysctl system call, it is returned as 16 bytes of binary data.
- */
- static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- ctl_table fake_table;
- unsigned char buf[64], tmp_uuid[16], *uuid;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- uuid[8] = 0;
- }
- if (uuid[8] == 0)
- generate_random_uuid(uuid);
- sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
- "%02x%02x%02x%02x%02x%02x",
- uuid[0], uuid[1], uuid[2], uuid[3],
- uuid[4], uuid[5], uuid[6], uuid[7],
- uuid[8], uuid[9], uuid[10], uuid[11],
- uuid[12], uuid[13], uuid[14], uuid[15]);
- fake_table.data = buf;
- fake_table.maxlen = sizeof(buf);
- return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
- }
- static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
- void __user *oldval, size_t __user *oldlenp,
- void __user *newval, size_t newlen, void **context)
- {
- unsigned char tmp_uuid[16], *uuid;
- unsigned int len;
- if (!oldval || !oldlenp)
- return 1;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- uuid[8] = 0;
- }
- if (uuid[8] == 0)
- generate_random_uuid(uuid);
- if (get_user(len, oldlenp))
- return -EFAULT;
- if (len) {
- if (len > 16)
- len = 16;
- if (copy_to_user(oldval, uuid, len) ||
- put_user(len, oldlenp))
- return -EFAULT;
- }
- return 1;
- }
- static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
- ctl_table random_table[] = {
- {
- .ctl_name = RANDOM_POOLSIZE,
- .procname = "poolsize",
- .data = &sysctl_poolsize,
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = &proc_dointvec,
- },
- {
- .ctl_name = RANDOM_ENTROPY_COUNT,
- .procname = "entropy_avail",
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = &proc_dointvec,
- .data = &input_pool.entropy_count,
- },
- {
- .ctl_name = RANDOM_READ_THRESH,
- .procname = "read_wakeup_threshold",
- .data = &random_read_wakeup_thresh,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = &proc_dointvec_minmax,
- .strategy = &sysctl_intvec,
- .extra1 = &min_read_thresh,
- .extra2 = &max_read_thresh,
- },
- {
- .ctl_name = RANDOM_WRITE_THRESH,
- .procname = "write_wakeup_threshold",
- .data = &random_write_wakeup_thresh,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = &proc_dointvec_minmax,
- .strategy = &sysctl_intvec,
- .extra1 = &min_write_thresh,
- .extra2 = &max_write_thresh,
- },
- {
- .ctl_name = RANDOM_BOOT_ID,
- .procname = "boot_id",
- .data = &sysctl_bootid,
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = &proc_do_uuid,
- .strategy = &uuid_strategy,
- },
- {
- .ctl_name = RANDOM_UUID,
- .procname = "uuid",
- .maxlen = 16,
- .mode = 0444,
- .proc_handler = &proc_do_uuid,
- .strategy = &uuid_strategy,
- },
- { .ctl_name = 0 }
- };
- #endif /* CONFIG_SYSCTL */
- /********************************************************************
- *
- * Random funtions for networking
- *
- ********************************************************************/
- /*
- * TCP initial sequence number picking. This uses the random number
- * generator to pick an initial secret value. This value is hashed
- * along with the TCP endpoint information to provide a unique
- * starting point for each pair of TCP endpoints. This defeats
- * attacks which rely on guessing the initial TCP sequence number.
- * This algorithm was suggested by Steve Bellovin.
- *
- * Using a very strong hash was taking an appreciable amount of the total
- * TCP connection establishment time, so this is a weaker hash,
- * compensated for by changing the secret periodically.
- */
- /* F, G and H are basic MD4 functions: selection, majority, parity */
- #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
- #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
- #define H(x, y, z) ((x) ^ (y) ^ (z))
- /*
- * The generic round function. The application is so specific that
- * we don't bother protecting all the arguments with parens, as is generally
- * good macro practice, in favor of extra legibility.
- * Rotation is separate from addition to prevent recomputation
- */
- #define ROUND(f, a, b, c, d, x, s) \
- (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
- #define K1 0
- #define K2 013240474631UL
- #define K3 015666365641UL
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
- {
- __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
- /* Round 1 */
- ROUND(F, a, b, c, d, in[ 0] + K1, 3);
- ROUND(F, d, a, b, c, in[ 1] + K1, 7);
- ROUND(F, c, d, a, b, in[ 2] + K1, 11);
- ROUND(F, b, c, d, a, in[ 3] + K1, 19);
- ROUND(F, a, b, c, d, in[ 4] + K1, 3);
- ROUND(F, d, a, b, c, in[ 5] + K1, 7);
- ROUND(F, c, d, a, b, in[ 6] + K1, 11);
- ROUND(F, b, c, d, a, in[ 7] + K1, 19);
- ROUND(F, a, b, c, d, in[ 8] + K1, 3);
- ROUND(F, d, a, b, c, in[ 9] + K1, 7);
- ROUND(F, c, d, a, b, in[10] + K1, 11);
- ROUND(F, b, c, d, a, in[11] + K1, 19);
- /* Round 2 */
- ROUND(G, a, b, c, d, in[ 1] + K2, 3);
- ROUND(G, d, a, b, c, in[ 3] + K2, 5);
- ROUND(G, c, d, a, b, in[ 5] + K2, 9);
- ROUND(G, b, c, d, a, in[ 7] + K2, 13);
- ROUND(G, a, b, c, d, in[ 9] + K2, 3);
- ROUND(G, d, a, b, c, in[11] + K2, 5);
- ROUND(G, c, d, a, b, in[ 0] + K2, 9);
- ROUND(G, b, c, d, a, in[ 2] + K2, 13);
- ROUND(G, a, b, c, d, in[ 4] + K2, 3);
- ROUND(G, d, a, b, c, in[ 6] + K2, 5);
- ROUND(G, c, d, a, b, in[ 8] + K2, 9);
- ROUND(G, b, c, d, a, in[10] + K2, 13);
- /* Round 3 */
- ROUND(H, a, b, c, d, in[ 3] + K3, 3);
- ROUND(H, d, a, b, c, in[ 7] + K3, 9);
- ROUND(H, c, d, a, b, in[11] + K3, 11);
- ROUND(H, b, c, d, a, in[ 2] + K3, 15);
- ROUND(H, a, b, c, d, in[ 6] + K3, 3);
- ROUND(H, d, a, b, c, in[10] + K3, 9);
- ROUND(H, c, d, a, b, in[ 1] + K3, 11);
- ROUND(H, b, c, d, a, in[ 5] + K3, 15);
- ROUND(H, a, b, c, d, in[ 9] + K3, 3);
- ROUND(H, d, a, b, c, in[ 0] + K3, 9);
- ROUND(H, c, d, a, b, in[ 4] + K3, 11);
- ROUND(H, b, c, d, a, in[ 8] + K3, 15);
- return buf[1] + b; /* "most hashed" word */
- /* Alternative: return sum of all words? */
- }
- #endif
- #undef ROUND
- #undef F
- #undef G
- #undef H
- #undef K1
- #undef K2
- #undef K3
- /* This should not be decreased so low that ISNs wrap too fast. */
- #define REKEY_INTERVAL (300 * HZ)
- /*
- * Bit layout of the tcp sequence numbers (before adding current time):
- * bit 24-31: increased after every key exchange
- * bit 0-23: hash(source,dest)
- *
- * The implementation is similar to the algorithm described
- * in the Appendix of RFC 1185, except that
- * - it uses a 1 MHz clock instead of a 250 kHz clock
- * - it performs a rekey every 5 minutes, which is equivalent
- * to a (source,dest) tulple dependent forward jump of the
- * clock by 0..2^(HASH_BITS+1)
- *
- * Thus the average ISN wraparound time is 68 minutes instead of
- * 4.55 hours.
- *
- * SMP cleanup and lock avoidance with poor man's RCU.
- * Manfred Spraul <manfred@colorfullife.com>
- *
- */
- #define COUNT_BITS 8
- #define COUNT_MASK ((1 << COUNT_BITS) - 1)
- #define HASH_BITS 24
- #define HASH_MASK ((1 << HASH_BITS) - 1)
- static struct keydata {
- __u32 count; /* already shifted to the final position */
- __u32 secret[12];
- } ____cacheline_aligned ip_keydata[2];
- static unsigned int ip_cnt;
- static void rekey_seq_generator(void *private_);
- static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL);
- /*
- * Lock avoidance:
- * The ISN generation runs lockless - it's just a hash over random data.
- * State changes happen every 5 minutes when the random key is replaced.
- * Synchronization is performed by having two copies of the hash function
- * state and rekey_seq_generator always updates the inactive copy.
- * The copy is then activated by updating ip_cnt.
- * The implementation breaks down if someone blocks the thread
- * that processes SYN requests for more than 5 minutes. Should never
- * happen, and even if that happens only a not perfectly compliant
- * ISN is generated, nothing fatal.
- */
- static void rekey_seq_generator(void *private_)
- {
- struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
- get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
- keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
- smp_wmb();
- ip_cnt++;
- schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
- }
- static inline struct keydata *get_keyptr(void)
- {
- struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
- smp_rmb();
- return keyptr;
- }
- static __init int seqgen_init(void)
- {
- rekey_seq_generator(NULL);
- return 0;
- }
- late_initcall(seqgen_init);
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
- __u16 sport, __u16 dport)
- {
- struct timeval tv;
- __u32 seq;
- __u32 hash[12];
- struct keydata *keyptr = get_keyptr();
- /* The procedure is the same as for IPv4, but addresses are longer.
- * Thus we must use twothirdsMD4Transform.
- */
- memcpy(hash, saddr, 16);
- hash[4]=(sport << 16) + dport;
- memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
- seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK;
- seq += keyptr->count;
- do_gettimeofday(&tv);
- seq += tv.tv_usec + tv.tv_sec * 1000000;
- return seq;
- }
- EXPORT_SYMBOL(secure_tcpv6_sequence_number);
- #endif
- /* The code below is shamelessly stolen from secure_tcp_sequence_number().
- * All blames to Andrey V. Savochkin <saw@msu.ru>.
- */
- __u32 secure_ip_id(__u32 daddr)
- {
- struct keydata *keyptr;
- __u32 hash[4];
- keyptr = get_keyptr();
- /*
- * Pick a unique starting offset for each IP destination.
- * The dest ip address is placed in the starting vector,
- * which is then hashed with random data.
- */
- hash[0] = daddr;
- hash[1] = keyptr->secret[9];
- hash[2] = keyptr->secret[10];
- hash[3] = keyptr->secret[11];
- return half_md4_transform(hash, keyptr->secret);
- }
- #ifdef CONFIG_INET
- __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
- __u16 sport, __u16 dport)
- {
- struct timeval tv;
- __u32 seq;
- __u32 hash[4];
- struct keydata *keyptr = get_keyptr();
- /*
- * Pick a unique starting offset for each TCP connection endpoints
- * (saddr, daddr, sport, dport).
- * Note that the words are placed into the starting vector, which is
- * then mixed with a partial MD4 over random data.
- */
- hash[0]=saddr;
- hash[1]=daddr;
- hash[2]=(sport << 16) + dport;
- hash[3]=keyptr->secret[11];
- seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
- seq += keyptr->count;
- /*
- * As close as possible to RFC 793, which
- * suggests using a 250 kHz clock.
- * Further reading shows this assumes 2 Mb/s networks.
- * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
- * That's funny, Linux has one built in! Use it!
- * (Networks are faster now - should this be increased?)
- */
- do_gettimeofday(&tv);
- seq += tv.tv_usec + tv.tv_sec * 1000000;
- #if 0
- printk("init_seq(%lx, %lx, %d, %d) = %d\n",
- saddr, daddr, sport, dport, seq);
- #endif
- return seq;
- }
- EXPORT_SYMBOL(secure_tcp_sequence_number);
- /* Generate secure starting point for ephemeral IPV4 transport port search */
- u32 secure_ipv4_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport)
- {
- struct keydata *keyptr = get_keyptr();
- u32 hash[4];
- /*
- * Pick a unique starting offset for each ephemeral port search
- * (saddr, daddr, dport) and 48bits of random data.
- */
- hash[0] = saddr;
- hash[1] = daddr;
- hash[2] = dport ^ keyptr->secret[10];
- hash[3] = keyptr->secret[11];
- return half_md4_transform(hash, keyptr->secret);
- }
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- u32 secure_ipv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport)
- {
- struct keydata *keyptr = get_keyptr();
- u32 hash[12];
- memcpy(hash, saddr, 16);
- hash[4] = dport;
- memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
- return twothirdsMD4Transform(daddr, hash);
- }
- EXPORT_SYMBOL(secure_ipv6_port_ephemeral);
- #endif
- #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
- /* Similar to secure_tcp_sequence_number but generate a 48 bit value
- * bit's 32-47 increase every key exchange
- * 0-31 hash(source, dest)
- */
- u64 secure_dccp_sequence_number(__u32 saddr, __u32 daddr,
- __u16 sport, __u16 dport)
- {
- struct timeval tv;
- u64 seq;
- __u32 hash[4];
- struct keydata *keyptr = get_keyptr();
- hash[0] = saddr;
- hash[1] = daddr;
- hash[2] = (sport << 16) + dport;
- hash[3] = keyptr->secret[11];
- seq = half_md4_transform(hash, keyptr->secret);
- seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
- do_gettimeofday(&tv);
- seq += tv.tv_usec + tv.tv_sec * 1000000;
- seq &= (1ull << 48) - 1;
- #if 0
- printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
- saddr, daddr, sport, dport, seq);
- #endif
- return seq;
- }
- EXPORT_SYMBOL(secure_dccp_sequence_number);
- #endif
- #endif /* CONFIG_INET */
- /*
- * Get a random word for internal kernel use only. Similar to urandom but
- * with the goal of minimal entropy pool depletion. As a result, the random
- * value is not cryptographically secure but for several uses the cost of
- * depleting entropy is too high
- */
- unsigned int get_random_int(void)
- {
- /*
- * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
- * every second, from the entropy pool (and thus creates a limited
- * drain on it), and uses halfMD4Transform within the second. We
- * also mix it with jiffies and the PID:
- */
- return secure_ip_id(current->pid + jiffies);
- }
- /*
- * randomize_range() returns a start address such that
- *
- * [...... <range> .....]
- * start end
- *
- * a <range> with size "len" starting at the return value is inside in the
- * area defined by [start, end], but is otherwise randomized.
- */
- unsigned long
- randomize_range(unsigned long start, unsigned long end, unsigned long len)
- {
- unsigned long range = end - len - start;
- if (end <= start + len)
- return 0;
- return PAGE_ALIGN(get_random_int() % range + start);
- }
|