numa.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/ctype.h>
  12. #include <linux/module.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/e820.h>
  15. #include <asm/proto.h>
  16. #include <asm/dma.h>
  17. #include <asm/numa.h>
  18. #include <asm/acpi.h>
  19. #ifndef Dprintk
  20. #define Dprintk(x...)
  21. #endif
  22. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  23. bootmem_data_t plat_node_bdata[MAX_NUMNODES];
  24. int memnode_shift;
  25. u8 memnodemap[NODEMAPSIZE];
  26. unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
  27. [0 ... NR_CPUS-1] = NUMA_NO_NODE
  28. };
  29. unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  30. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  31. };
  32. cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;
  33. int numa_off __initdata;
  34. /*
  35. * Given a shift value, try to populate memnodemap[]
  36. * Returns :
  37. * 1 if OK
  38. * 0 if memnodmap[] too small (of shift too small)
  39. * -1 if node overlap or lost ram (shift too big)
  40. */
  41. static int __init
  42. populate_memnodemap(const struct node *nodes, int numnodes, int shift)
  43. {
  44. int i;
  45. int res = -1;
  46. unsigned long addr, end;
  47. if (shift >= 64)
  48. return -1;
  49. memset(memnodemap, 0xff, sizeof(memnodemap));
  50. for (i = 0; i < numnodes; i++) {
  51. addr = nodes[i].start;
  52. end = nodes[i].end;
  53. if (addr >= end)
  54. continue;
  55. if ((end >> shift) >= NODEMAPSIZE)
  56. return 0;
  57. do {
  58. if (memnodemap[addr >> shift] != 0xff)
  59. return -1;
  60. memnodemap[addr >> shift] = i;
  61. addr += (1UL << shift);
  62. } while (addr < end);
  63. res = 1;
  64. }
  65. return res;
  66. }
  67. int __init compute_hash_shift(struct node *nodes, int numnodes)
  68. {
  69. int shift = 20;
  70. while (populate_memnodemap(nodes, numnodes, shift + 1) >= 0)
  71. shift++;
  72. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  73. shift);
  74. if (populate_memnodemap(nodes, numnodes, shift) != 1) {
  75. printk(KERN_INFO
  76. "Your memory is not aligned you need to rebuild your kernel "
  77. "with a bigger NODEMAPSIZE shift=%d\n",
  78. shift);
  79. return -1;
  80. }
  81. return shift;
  82. }
  83. #ifdef CONFIG_SPARSEMEM
  84. int early_pfn_to_nid(unsigned long pfn)
  85. {
  86. return phys_to_nid(pfn << PAGE_SHIFT);
  87. }
  88. #endif
  89. /* Initialize bootmem allocator for a node */
  90. void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
  91. {
  92. unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
  93. unsigned long nodedata_phys;
  94. const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
  95. start = round_up(start, ZONE_ALIGN);
  96. printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
  97. start_pfn = start >> PAGE_SHIFT;
  98. end_pfn = end >> PAGE_SHIFT;
  99. nodedata_phys = find_e820_area(start, end, pgdat_size);
  100. if (nodedata_phys == -1L)
  101. panic("Cannot find memory pgdat in node %d\n", nodeid);
  102. Dprintk("nodedata_phys %lx\n", nodedata_phys);
  103. node_data[nodeid] = phys_to_virt(nodedata_phys);
  104. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  105. NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
  106. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  107. NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
  108. /* Find a place for the bootmem map */
  109. bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  110. bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
  111. bootmap_start = find_e820_area(bootmap_start, end, bootmap_pages<<PAGE_SHIFT);
  112. if (bootmap_start == -1L)
  113. panic("Not enough continuous space for bootmap on node %d", nodeid);
  114. Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
  115. bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
  116. bootmap_start >> PAGE_SHIFT,
  117. start_pfn, end_pfn);
  118. e820_bootmem_free(NODE_DATA(nodeid), start, end);
  119. reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
  120. reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
  121. node_set_online(nodeid);
  122. }
  123. /* Initialize final allocator for a zone */
  124. void __init setup_node_zones(int nodeid)
  125. {
  126. unsigned long start_pfn, end_pfn;
  127. unsigned long zones[MAX_NR_ZONES];
  128. unsigned long holes[MAX_NR_ZONES];
  129. start_pfn = node_start_pfn(nodeid);
  130. end_pfn = node_end_pfn(nodeid);
  131. Dprintk(KERN_INFO "Setting up node %d %lx-%lx\n",
  132. nodeid, start_pfn, end_pfn);
  133. size_zones(zones, holes, start_pfn, end_pfn);
  134. free_area_init_node(nodeid, NODE_DATA(nodeid), zones,
  135. start_pfn, holes);
  136. }
  137. void __init numa_init_array(void)
  138. {
  139. int rr, i;
  140. /* There are unfortunately some poorly designed mainboards around
  141. that only connect memory to a single CPU. This breaks the 1:1 cpu->node
  142. mapping. To avoid this fill in the mapping for all possible
  143. CPUs, as the number of CPUs is not known yet.
  144. We round robin the existing nodes. */
  145. rr = first_node(node_online_map);
  146. for (i = 0; i < NR_CPUS; i++) {
  147. if (cpu_to_node[i] != NUMA_NO_NODE)
  148. continue;
  149. numa_set_node(i, rr);
  150. rr = next_node(rr, node_online_map);
  151. if (rr == MAX_NUMNODES)
  152. rr = first_node(node_online_map);
  153. }
  154. }
  155. #ifdef CONFIG_NUMA_EMU
  156. int numa_fake __initdata = 0;
  157. /* Numa emulation */
  158. static int numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
  159. {
  160. int i;
  161. struct node nodes[MAX_NUMNODES];
  162. unsigned long sz = ((end_pfn - start_pfn)<<PAGE_SHIFT) / numa_fake;
  163. /* Kludge needed for the hash function */
  164. if (hweight64(sz) > 1) {
  165. unsigned long x = 1;
  166. while ((x << 1) < sz)
  167. x <<= 1;
  168. if (x < sz/2)
  169. printk(KERN_ERR "Numa emulation unbalanced. Complain to maintainer\n");
  170. sz = x;
  171. }
  172. memset(&nodes,0,sizeof(nodes));
  173. for (i = 0; i < numa_fake; i++) {
  174. nodes[i].start = (start_pfn<<PAGE_SHIFT) + i*sz;
  175. if (i == numa_fake-1)
  176. sz = (end_pfn<<PAGE_SHIFT) - nodes[i].start;
  177. nodes[i].end = nodes[i].start + sz;
  178. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n",
  179. i,
  180. nodes[i].start, nodes[i].end,
  181. (nodes[i].end - nodes[i].start) >> 20);
  182. node_set_online(i);
  183. }
  184. memnode_shift = compute_hash_shift(nodes, numa_fake);
  185. if (memnode_shift < 0) {
  186. memnode_shift = 0;
  187. printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n");
  188. return -1;
  189. }
  190. for_each_online_node(i)
  191. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  192. numa_init_array();
  193. return 0;
  194. }
  195. #endif
  196. void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  197. {
  198. int i;
  199. #ifdef CONFIG_NUMA_EMU
  200. if (numa_fake && !numa_emulation(start_pfn, end_pfn))
  201. return;
  202. #endif
  203. #ifdef CONFIG_ACPI_NUMA
  204. if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  205. end_pfn << PAGE_SHIFT))
  206. return;
  207. #endif
  208. #ifdef CONFIG_K8_NUMA
  209. if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
  210. return;
  211. #endif
  212. printk(KERN_INFO "%s\n",
  213. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  214. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  215. start_pfn << PAGE_SHIFT,
  216. end_pfn << PAGE_SHIFT);
  217. /* setup dummy node covering all memory */
  218. memnode_shift = 63;
  219. memnodemap[0] = 0;
  220. nodes_clear(node_online_map);
  221. node_set_online(0);
  222. for (i = 0; i < NR_CPUS; i++)
  223. numa_set_node(i, 0);
  224. node_to_cpumask[0] = cpumask_of_cpu(0);
  225. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  226. }
  227. __cpuinit void numa_add_cpu(int cpu)
  228. {
  229. set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
  230. }
  231. void __cpuinit numa_set_node(int cpu, int node)
  232. {
  233. cpu_pda(cpu)->nodenumber = node;
  234. cpu_to_node[cpu] = node;
  235. }
  236. unsigned long __init numa_free_all_bootmem(void)
  237. {
  238. int i;
  239. unsigned long pages = 0;
  240. for_each_online_node(i) {
  241. pages += free_all_bootmem_node(NODE_DATA(i));
  242. }
  243. return pages;
  244. }
  245. #ifdef CONFIG_SPARSEMEM
  246. static void __init arch_sparse_init(void)
  247. {
  248. int i;
  249. for_each_online_node(i)
  250. memory_present(i, node_start_pfn(i), node_end_pfn(i));
  251. sparse_init();
  252. }
  253. #else
  254. #define arch_sparse_init() do {} while (0)
  255. #endif
  256. void __init paging_init(void)
  257. {
  258. int i;
  259. arch_sparse_init();
  260. for_each_online_node(i) {
  261. setup_node_zones(i);
  262. }
  263. }
  264. /* [numa=off] */
  265. __init int numa_setup(char *opt)
  266. {
  267. if (!strncmp(opt,"off",3))
  268. numa_off = 1;
  269. #ifdef CONFIG_NUMA_EMU
  270. if(!strncmp(opt, "fake=", 5)) {
  271. numa_fake = simple_strtoul(opt+5,NULL,0); ;
  272. if (numa_fake >= MAX_NUMNODES)
  273. numa_fake = MAX_NUMNODES;
  274. }
  275. #endif
  276. #ifdef CONFIG_ACPI_NUMA
  277. if (!strncmp(opt,"noacpi",6))
  278. acpi_numa = -1;
  279. #endif
  280. return 1;
  281. }
  282. /*
  283. * Setup early cpu_to_node.
  284. *
  285. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  286. * and apicid_to_node[] tables have valid entries for a CPU.
  287. * This means we skip cpu_to_node[] initialisation for NUMA
  288. * emulation and faking node case (when running a kernel compiled
  289. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  290. * is already initialized in a round robin manner at numa_init_array,
  291. * prior to this call, and this initialization is good enough
  292. * for the fake NUMA cases.
  293. */
  294. void __init init_cpu_to_node(void)
  295. {
  296. int i;
  297. for (i = 0; i < NR_CPUS; i++) {
  298. u8 apicid = x86_cpu_to_apicid[i];
  299. if (apicid == BAD_APICID)
  300. continue;
  301. if (apicid_to_node[apicid] == NUMA_NO_NODE)
  302. continue;
  303. cpu_to_node[i] = apicid_to_node[apicid];
  304. }
  305. }
  306. EXPORT_SYMBOL(cpu_to_node);
  307. EXPORT_SYMBOL(node_to_cpumask);
  308. EXPORT_SYMBOL(memnode_shift);
  309. EXPORT_SYMBOL(memnodemap);
  310. EXPORT_SYMBOL(node_data);
  311. #ifdef CONFIG_DISCONTIGMEM
  312. /*
  313. * Functions to convert PFNs from/to per node page addresses.
  314. * These are out of line because they are quite big.
  315. * They could be all tuned by pre caching more state.
  316. * Should do that.
  317. */
  318. /* Requires pfn_valid(pfn) to be true */
  319. struct page *pfn_to_page(unsigned long pfn)
  320. {
  321. int nid = phys_to_nid(((unsigned long)(pfn)) << PAGE_SHIFT);
  322. return (pfn - node_start_pfn(nid)) + NODE_DATA(nid)->node_mem_map;
  323. }
  324. EXPORT_SYMBOL(pfn_to_page);
  325. unsigned long page_to_pfn(struct page *page)
  326. {
  327. return (long)(((page) - page_zone(page)->zone_mem_map) +
  328. page_zone(page)->zone_start_pfn);
  329. }
  330. EXPORT_SYMBOL(page_to_pfn);
  331. int pfn_valid(unsigned long pfn)
  332. {
  333. unsigned nid;
  334. if (pfn >= num_physpages)
  335. return 0;
  336. nid = pfn_to_nid(pfn);
  337. if (nid == 0xff)
  338. return 0;
  339. return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
  340. }
  341. EXPORT_SYMBOL(pfn_valid);
  342. #endif