time.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/config.h>
  14. #include <linux/errno.h>
  15. #include <linux/module.h>
  16. #include <linux/sched.h>
  17. #include <linux/kernel.h>
  18. #include <linux/param.h>
  19. #include <linux/string.h>
  20. #include <linux/mm.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/smp.h>
  25. #include <linux/profile.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <asm/param.h>
  30. #include <asm/pdc.h>
  31. #include <asm/led.h>
  32. #include <linux/timex.h>
  33. /* xtime and wall_jiffies keep wall-clock time */
  34. extern unsigned long wall_jiffies;
  35. static long clocktick __read_mostly; /* timer cycles per tick */
  36. static long halftick __read_mostly;
  37. #ifdef CONFIG_SMP
  38. extern void smp_do_timer(struct pt_regs *regs);
  39. #endif
  40. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  41. {
  42. long now;
  43. long next_tick;
  44. int nticks;
  45. int cpu = smp_processor_id();
  46. profile_tick(CPU_PROFILING, regs);
  47. now = mfctl(16);
  48. /* initialize next_tick to time at last clocktick */
  49. next_tick = cpu_data[cpu].it_value;
  50. /* since time passes between the interrupt and the mfctl()
  51. * above, it is never true that last_tick + clocktick == now. If we
  52. * never miss a clocktick, we could set next_tick = last_tick + clocktick
  53. * but maybe we'll miss ticks, hence the loop.
  54. *
  55. * Variables are *signed*.
  56. */
  57. nticks = 0;
  58. while((next_tick - now) < halftick) {
  59. next_tick += clocktick;
  60. nticks++;
  61. }
  62. mtctl(next_tick, 16);
  63. cpu_data[cpu].it_value = next_tick;
  64. while (nticks--) {
  65. #ifdef CONFIG_SMP
  66. smp_do_timer(regs);
  67. #else
  68. update_process_times(user_mode(regs));
  69. #endif
  70. if (cpu == 0) {
  71. write_seqlock(&xtime_lock);
  72. do_timer(regs);
  73. write_sequnlock(&xtime_lock);
  74. }
  75. }
  76. /* check soft power switch status */
  77. if (cpu == 0 && !atomic_read(&power_tasklet.count))
  78. tasklet_schedule(&power_tasklet);
  79. return IRQ_HANDLED;
  80. }
  81. unsigned long profile_pc(struct pt_regs *regs)
  82. {
  83. unsigned long pc = instruction_pointer(regs);
  84. if (regs->gr[0] & PSW_N)
  85. pc -= 4;
  86. #ifdef CONFIG_SMP
  87. if (in_lock_functions(pc))
  88. pc = regs->gr[2];
  89. #endif
  90. return pc;
  91. }
  92. EXPORT_SYMBOL(profile_pc);
  93. /*** converted from ia64 ***/
  94. /*
  95. * Return the number of micro-seconds that elapsed since the last
  96. * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
  97. * must be at least read-locked when calling this routine.
  98. */
  99. static inline unsigned long
  100. gettimeoffset (void)
  101. {
  102. #ifndef CONFIG_SMP
  103. /*
  104. * FIXME: This won't work on smp because jiffies are updated by cpu 0.
  105. * Once parisc-linux learns the cr16 difference between processors,
  106. * this could be made to work.
  107. */
  108. long last_tick;
  109. long elapsed_cycles;
  110. /* it_value is the intended time of the next tick */
  111. last_tick = cpu_data[smp_processor_id()].it_value;
  112. /* Subtract one tick and account for possible difference between
  113. * when we expected the tick and when it actually arrived.
  114. * (aka wall vs real)
  115. */
  116. last_tick -= clocktick * (jiffies - wall_jiffies + 1);
  117. elapsed_cycles = mfctl(16) - last_tick;
  118. /* the precision of this math could be improved */
  119. return elapsed_cycles / (PAGE0->mem_10msec / 10000);
  120. #else
  121. return 0;
  122. #endif
  123. }
  124. void
  125. do_gettimeofday (struct timeval *tv)
  126. {
  127. unsigned long flags, seq, usec, sec;
  128. do {
  129. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  130. usec = gettimeoffset();
  131. sec = xtime.tv_sec;
  132. usec += (xtime.tv_nsec / 1000);
  133. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  134. while (usec >= 1000000) {
  135. usec -= 1000000;
  136. ++sec;
  137. }
  138. tv->tv_sec = sec;
  139. tv->tv_usec = usec;
  140. }
  141. EXPORT_SYMBOL(do_gettimeofday);
  142. int
  143. do_settimeofday (struct timespec *tv)
  144. {
  145. time_t wtm_sec, sec = tv->tv_sec;
  146. long wtm_nsec, nsec = tv->tv_nsec;
  147. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  148. return -EINVAL;
  149. write_seqlock_irq(&xtime_lock);
  150. {
  151. /*
  152. * This is revolting. We need to set "xtime"
  153. * correctly. However, the value in this location is
  154. * the value at the most recent update of wall time.
  155. * Discover what correction gettimeofday would have
  156. * done, and then undo it!
  157. */
  158. nsec -= gettimeoffset() * 1000;
  159. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  160. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  161. set_normalized_timespec(&xtime, sec, nsec);
  162. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  163. ntp_clear();
  164. }
  165. write_sequnlock_irq(&xtime_lock);
  166. clock_was_set();
  167. return 0;
  168. }
  169. EXPORT_SYMBOL(do_settimeofday);
  170. /*
  171. * XXX: We can do better than this.
  172. * Returns nanoseconds
  173. */
  174. unsigned long long sched_clock(void)
  175. {
  176. return (unsigned long long)jiffies * (1000000000 / HZ);
  177. }
  178. void __init time_init(void)
  179. {
  180. unsigned long next_tick;
  181. static struct pdc_tod tod_data;
  182. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  183. halftick = clocktick / 2;
  184. /* Setup clock interrupt timing */
  185. next_tick = mfctl(16);
  186. next_tick += clocktick;
  187. cpu_data[smp_processor_id()].it_value = next_tick;
  188. /* kick off Itimer (CR16) */
  189. mtctl(next_tick, 16);
  190. if(pdc_tod_read(&tod_data) == 0) {
  191. write_seqlock_irq(&xtime_lock);
  192. xtime.tv_sec = tod_data.tod_sec;
  193. xtime.tv_nsec = tod_data.tod_usec * 1000;
  194. set_normalized_timespec(&wall_to_monotonic,
  195. -xtime.tv_sec, -xtime.tv_nsec);
  196. write_sequnlock_irq(&xtime_lock);
  197. } else {
  198. printk(KERN_ERR "Error reading tod clock\n");
  199. xtime.tv_sec = 0;
  200. xtime.tv_nsec = 0;
  201. }
  202. }