ip22-time.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Time operations for IP22 machines. Original code may come from
  7. * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure)
  8. *
  9. * Copyright (C) 2001 by Ladislav Michl
  10. * Copyright (C) 2003 Ralf Baechle (ralf@linux-mips.org)
  11. */
  12. #include <linux/bcd.h>
  13. #include <linux/ds1286.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel_stat.h>
  18. #include <linux/time.h>
  19. #include <asm/cpu.h>
  20. #include <asm/mipsregs.h>
  21. #include <asm/io.h>
  22. #include <asm/irq.h>
  23. #include <asm/time.h>
  24. #include <asm/sgialib.h>
  25. #include <asm/sgi/ioc.h>
  26. #include <asm/sgi/hpc3.h>
  27. #include <asm/sgi/ip22.h>
  28. /*
  29. * note that mktime uses month from 1 to 12 while to_tm
  30. * uses 0 to 11.
  31. */
  32. static unsigned long indy_rtc_get_time(void)
  33. {
  34. unsigned int yrs, mon, day, hrs, min, sec;
  35. unsigned int save_control;
  36. unsigned long flags;
  37. spin_lock_irqsave(&rtc_lock, flags);
  38. save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
  39. hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
  40. sec = BCD2BIN(hpc3c0->rtcregs[RTC_SECONDS] & 0xff);
  41. min = BCD2BIN(hpc3c0->rtcregs[RTC_MINUTES] & 0xff);
  42. hrs = BCD2BIN(hpc3c0->rtcregs[RTC_HOURS] & 0x3f);
  43. day = BCD2BIN(hpc3c0->rtcregs[RTC_DATE] & 0xff);
  44. mon = BCD2BIN(hpc3c0->rtcregs[RTC_MONTH] & 0x1f);
  45. yrs = BCD2BIN(hpc3c0->rtcregs[RTC_YEAR] & 0xff);
  46. hpc3c0->rtcregs[RTC_CMD] = save_control;
  47. spin_unlock_irqrestore(&rtc_lock, flags);
  48. if (yrs < 45)
  49. yrs += 30;
  50. if ((yrs += 40) < 70)
  51. yrs += 100;
  52. return mktime(yrs + 1900, mon, day, hrs, min, sec);
  53. }
  54. static int indy_rtc_set_time(unsigned long tim)
  55. {
  56. struct rtc_time tm;
  57. unsigned int save_control;
  58. unsigned long flags;
  59. to_tm(tim, &tm);
  60. tm.tm_mon += 1; /* tm_mon starts at zero */
  61. tm.tm_year -= 1940;
  62. if (tm.tm_year >= 100)
  63. tm.tm_year -= 100;
  64. spin_lock_irqsave(&rtc_lock, flags);
  65. save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
  66. hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
  67. hpc3c0->rtcregs[RTC_YEAR] = BIN2BCD(tm.tm_sec);
  68. hpc3c0->rtcregs[RTC_MONTH] = BIN2BCD(tm.tm_mon);
  69. hpc3c0->rtcregs[RTC_DATE] = BIN2BCD(tm.tm_mday);
  70. hpc3c0->rtcregs[RTC_HOURS] = BIN2BCD(tm.tm_hour);
  71. hpc3c0->rtcregs[RTC_MINUTES] = BIN2BCD(tm.tm_min);
  72. hpc3c0->rtcregs[RTC_SECONDS] = BIN2BCD(tm.tm_sec);
  73. hpc3c0->rtcregs[RTC_HUNDREDTH_SECOND] = 0;
  74. hpc3c0->rtcregs[RTC_CMD] = save_control;
  75. spin_unlock_irqrestore(&rtc_lock, flags);
  76. return 0;
  77. }
  78. static unsigned long dosample(void)
  79. {
  80. u32 ct0, ct1;
  81. volatile u8 msb, lsb;
  82. /* Start the counter. */
  83. sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
  84. SGINT_TCWORD_MRGEN);
  85. sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff;
  86. sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8;
  87. /* Get initial counter invariant */
  88. ct0 = read_c0_count();
  89. /* Latch and spin until top byte of counter2 is zero */
  90. do {
  91. sgint->tcword = SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT;
  92. lsb = sgint->tcnt2;
  93. msb = sgint->tcnt2;
  94. ct1 = read_c0_count();
  95. } while (msb);
  96. /* Stop the counter. */
  97. sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
  98. SGINT_TCWORD_MSWST);
  99. /*
  100. * Return the difference, this is how far the r4k counter increments
  101. * for every 1/HZ seconds. We round off the nearest 1 MHz of master
  102. * clock (= 1000000 / HZ / 2).
  103. */
  104. /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
  105. return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
  106. }
  107. /*
  108. * Here we need to calibrate the cycle counter to at least be close.
  109. */
  110. static __init void indy_time_init(void)
  111. {
  112. unsigned long r4k_ticks[3];
  113. unsigned long r4k_tick;
  114. /*
  115. * Figure out the r4k offset, the algorithm is very simple and works in
  116. * _all_ cases as long as the 8254 counter register itself works ok (as
  117. * an interrupt driving timer it does not because of bug, this is why
  118. * we are using the onchip r4k counter/compare register to serve this
  119. * purpose, but for r4k_offset calculation it will work ok for us).
  120. * There are other very complicated ways of performing this calculation
  121. * but this one works just fine so I am not going to futz around. ;-)
  122. */
  123. printk(KERN_INFO "Calibrating system timer... ");
  124. dosample(); /* Prime cache. */
  125. dosample(); /* Prime cache. */
  126. /* Zero is NOT an option. */
  127. do {
  128. r4k_ticks[0] = dosample();
  129. } while (!r4k_ticks[0]);
  130. do {
  131. r4k_ticks[1] = dosample();
  132. } while (!r4k_ticks[1]);
  133. if (r4k_ticks[0] != r4k_ticks[1]) {
  134. printk("warning: timer counts differ, retrying... ");
  135. r4k_ticks[2] = dosample();
  136. if (r4k_ticks[2] == r4k_ticks[0]
  137. || r4k_ticks[2] == r4k_ticks[1])
  138. r4k_tick = r4k_ticks[2];
  139. else {
  140. printk("disagreement, using average... ");
  141. r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
  142. + r4k_ticks[2]) / 3;
  143. }
  144. } else
  145. r4k_tick = r4k_ticks[0];
  146. printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
  147. (int) (r4k_tick / (500000 / HZ)),
  148. (int) (r4k_tick % (500000 / HZ)));
  149. mips_hpt_frequency = r4k_tick * HZ;
  150. }
  151. /* Generic SGI handler for (spurious) 8254 interrupts */
  152. void indy_8254timer_irq(struct pt_regs *regs)
  153. {
  154. int irq = SGI_8254_0_IRQ;
  155. ULONG cnt;
  156. char c;
  157. irq_enter();
  158. kstat_this_cpu.irqs[irq]++;
  159. printk(KERN_ALERT "Oops, got 8254 interrupt.\n");
  160. ArcRead(0, &c, 1, &cnt);
  161. ArcEnterInteractiveMode();
  162. irq_exit();
  163. }
  164. void indy_r4k_timer_interrupt(struct pt_regs *regs)
  165. {
  166. int irq = SGI_TIMER_IRQ;
  167. irq_enter();
  168. kstat_this_cpu.irqs[irq]++;
  169. timer_interrupt(irq, NULL, regs);
  170. irq_exit();
  171. }
  172. extern int setup_irq(unsigned int irq, struct irqaction *irqaction);
  173. static void indy_timer_setup(struct irqaction *irq)
  174. {
  175. /* over-write the handler, we use our own way */
  176. irq->handler = no_action;
  177. /* setup irqaction */
  178. setup_irq(SGI_TIMER_IRQ, irq);
  179. }
  180. void __init ip22_time_init(void)
  181. {
  182. /* setup hookup functions */
  183. rtc_get_time = indy_rtc_get_time;
  184. rtc_set_time = indy_rtc_set_time;
  185. board_time_init = indy_time_init;
  186. board_timer_setup = indy_timer_setup;
  187. }