tlbex.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004,2005 by Thiemo Seufer
  9. * Copyright (C) 2005 Maciej W. Rozycki
  10. */
  11. #include <stdarg.h>
  12. #include <linux/config.h>
  13. #include <linux/mm.h>
  14. #include <linux/kernel.h>
  15. #include <linux/types.h>
  16. #include <linux/string.h>
  17. #include <linux/init.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/cacheflush.h>
  20. #include <asm/mmu_context.h>
  21. #include <asm/inst.h>
  22. #include <asm/elf.h>
  23. #include <asm/smp.h>
  24. #include <asm/war.h>
  25. /* #define DEBUG_TLB */
  26. static __init int __attribute__((unused)) r45k_bvahwbug(void)
  27. {
  28. /* XXX: We should probe for the presence of this bug, but we don't. */
  29. return 0;
  30. }
  31. static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
  32. {
  33. /* XXX: We should probe for the presence of this bug, but we don't. */
  34. return 0;
  35. }
  36. static __init int __attribute__((unused)) bcm1250_m3_war(void)
  37. {
  38. return BCM1250_M3_WAR;
  39. }
  40. static __init int __attribute__((unused)) r10000_llsc_war(void)
  41. {
  42. return R10000_LLSC_WAR;
  43. }
  44. /*
  45. * A little micro-assembler, intended for TLB refill handler
  46. * synthesizing. It is intentionally kept simple, does only support
  47. * a subset of instructions, and does not try to hide pipeline effects
  48. * like branch delay slots.
  49. */
  50. enum fields
  51. {
  52. RS = 0x001,
  53. RT = 0x002,
  54. RD = 0x004,
  55. RE = 0x008,
  56. SIMM = 0x010,
  57. UIMM = 0x020,
  58. BIMM = 0x040,
  59. JIMM = 0x080,
  60. FUNC = 0x100,
  61. };
  62. #define OP_MASK 0x2f
  63. #define OP_SH 26
  64. #define RS_MASK 0x1f
  65. #define RS_SH 21
  66. #define RT_MASK 0x1f
  67. #define RT_SH 16
  68. #define RD_MASK 0x1f
  69. #define RD_SH 11
  70. #define RE_MASK 0x1f
  71. #define RE_SH 6
  72. #define IMM_MASK 0xffff
  73. #define IMM_SH 0
  74. #define JIMM_MASK 0x3ffffff
  75. #define JIMM_SH 0
  76. #define FUNC_MASK 0x2f
  77. #define FUNC_SH 0
  78. enum opcode {
  79. insn_invalid,
  80. insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
  81. insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
  82. insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
  83. insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
  84. insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
  85. insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
  86. insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
  87. insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
  88. insn_tlbwr, insn_xor, insn_xori
  89. };
  90. struct insn {
  91. enum opcode opcode;
  92. u32 match;
  93. enum fields fields;
  94. };
  95. /* This macro sets the non-variable bits of an instruction. */
  96. #define M(a, b, c, d, e, f) \
  97. ((a) << OP_SH \
  98. | (b) << RS_SH \
  99. | (c) << RT_SH \
  100. | (d) << RD_SH \
  101. | (e) << RE_SH \
  102. | (f) << FUNC_SH)
  103. static __initdata struct insn insn_table[] = {
  104. { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
  105. { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
  106. { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
  107. { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
  108. { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
  109. { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
  110. { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
  111. { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
  112. { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
  113. { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
  114. { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
  115. { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
  116. { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
  117. { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD },
  118. { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD },
  119. { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
  120. { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
  121. { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
  122. { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
  123. { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
  124. { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
  125. { insn_j, M(j_op,0,0,0,0,0), JIMM },
  126. { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
  127. { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
  128. { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
  129. { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
  130. { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
  131. { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
  132. { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
  133. { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD },
  134. { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD },
  135. { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
  136. { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
  137. { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
  138. { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
  139. { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
  140. { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
  141. { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
  142. { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
  143. { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
  144. { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
  145. { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
  146. { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
  147. { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
  148. { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
  149. { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
  150. { insn_invalid, 0, 0 }
  151. };
  152. #undef M
  153. static __init u32 build_rs(u32 arg)
  154. {
  155. if (arg & ~RS_MASK)
  156. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  157. return (arg & RS_MASK) << RS_SH;
  158. }
  159. static __init u32 build_rt(u32 arg)
  160. {
  161. if (arg & ~RT_MASK)
  162. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  163. return (arg & RT_MASK) << RT_SH;
  164. }
  165. static __init u32 build_rd(u32 arg)
  166. {
  167. if (arg & ~RD_MASK)
  168. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  169. return (arg & RD_MASK) << RD_SH;
  170. }
  171. static __init u32 build_re(u32 arg)
  172. {
  173. if (arg & ~RE_MASK)
  174. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  175. return (arg & RE_MASK) << RE_SH;
  176. }
  177. static __init u32 build_simm(s32 arg)
  178. {
  179. if (arg > 0x7fff || arg < -0x8000)
  180. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  181. return arg & 0xffff;
  182. }
  183. static __init u32 build_uimm(u32 arg)
  184. {
  185. if (arg & ~IMM_MASK)
  186. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  187. return arg & IMM_MASK;
  188. }
  189. static __init u32 build_bimm(s32 arg)
  190. {
  191. if (arg > 0x1ffff || arg < -0x20000)
  192. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  193. if (arg & 0x3)
  194. printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
  195. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
  196. }
  197. static __init u32 build_jimm(u32 arg)
  198. {
  199. if (arg & ~((JIMM_MASK) << 2))
  200. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  201. return (arg >> 2) & JIMM_MASK;
  202. }
  203. static __init u32 build_func(u32 arg)
  204. {
  205. if (arg & ~FUNC_MASK)
  206. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  207. return arg & FUNC_MASK;
  208. }
  209. /*
  210. * The order of opcode arguments is implicitly left to right,
  211. * starting with RS and ending with FUNC or IMM.
  212. */
  213. static void __init build_insn(u32 **buf, enum opcode opc, ...)
  214. {
  215. struct insn *ip = NULL;
  216. unsigned int i;
  217. va_list ap;
  218. u32 op;
  219. for (i = 0; insn_table[i].opcode != insn_invalid; i++)
  220. if (insn_table[i].opcode == opc) {
  221. ip = &insn_table[i];
  222. break;
  223. }
  224. if (!ip)
  225. panic("Unsupported TLB synthesizer instruction %d", opc);
  226. op = ip->match;
  227. va_start(ap, opc);
  228. if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
  229. if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
  230. if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
  231. if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
  232. if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
  233. if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
  234. if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
  235. if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
  236. if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
  237. va_end(ap);
  238. **buf = op;
  239. (*buf)++;
  240. }
  241. #define I_u1u2u3(op) \
  242. static inline void i##op(u32 **buf, unsigned int a, \
  243. unsigned int b, unsigned int c) \
  244. { \
  245. build_insn(buf, insn##op, a, b, c); \
  246. }
  247. #define I_u2u1u3(op) \
  248. static inline void i##op(u32 **buf, unsigned int a, \
  249. unsigned int b, unsigned int c) \
  250. { \
  251. build_insn(buf, insn##op, b, a, c); \
  252. }
  253. #define I_u3u1u2(op) \
  254. static inline void i##op(u32 **buf, unsigned int a, \
  255. unsigned int b, unsigned int c) \
  256. { \
  257. build_insn(buf, insn##op, b, c, a); \
  258. }
  259. #define I_u1u2s3(op) \
  260. static inline void i##op(u32 **buf, unsigned int a, \
  261. unsigned int b, signed int c) \
  262. { \
  263. build_insn(buf, insn##op, a, b, c); \
  264. }
  265. #define I_u2s3u1(op) \
  266. static inline void i##op(u32 **buf, unsigned int a, \
  267. signed int b, unsigned int c) \
  268. { \
  269. build_insn(buf, insn##op, c, a, b); \
  270. }
  271. #define I_u2u1s3(op) \
  272. static inline void i##op(u32 **buf, unsigned int a, \
  273. unsigned int b, signed int c) \
  274. { \
  275. build_insn(buf, insn##op, b, a, c); \
  276. }
  277. #define I_u1u2(op) \
  278. static inline void i##op(u32 **buf, unsigned int a, \
  279. unsigned int b) \
  280. { \
  281. build_insn(buf, insn##op, a, b); \
  282. }
  283. #define I_u1s2(op) \
  284. static inline void i##op(u32 **buf, unsigned int a, \
  285. signed int b) \
  286. { \
  287. build_insn(buf, insn##op, a, b); \
  288. }
  289. #define I_u1(op) \
  290. static inline void i##op(u32 **buf, unsigned int a) \
  291. { \
  292. build_insn(buf, insn##op, a); \
  293. }
  294. #define I_0(op) \
  295. static inline void i##op(u32 **buf) \
  296. { \
  297. build_insn(buf, insn##op); \
  298. }
  299. I_u2u1s3(_addiu);
  300. I_u3u1u2(_addu);
  301. I_u2u1u3(_andi);
  302. I_u3u1u2(_and);
  303. I_u1u2s3(_beq);
  304. I_u1u2s3(_beql);
  305. I_u1s2(_bgez);
  306. I_u1s2(_bgezl);
  307. I_u1s2(_bltz);
  308. I_u1s2(_bltzl);
  309. I_u1u2s3(_bne);
  310. I_u1u2(_dmfc0);
  311. I_u1u2(_dmtc0);
  312. I_u2u1s3(_daddiu);
  313. I_u3u1u2(_daddu);
  314. I_u2u1u3(_dsll);
  315. I_u2u1u3(_dsll32);
  316. I_u2u1u3(_dsra);
  317. I_u2u1u3(_dsrl);
  318. I_u3u1u2(_dsubu);
  319. I_0(_eret);
  320. I_u1(_j);
  321. I_u1(_jal);
  322. I_u1(_jr);
  323. I_u2s3u1(_ld);
  324. I_u2s3u1(_ll);
  325. I_u2s3u1(_lld);
  326. I_u1s2(_lui);
  327. I_u2s3u1(_lw);
  328. I_u1u2(_mfc0);
  329. I_u1u2(_mtc0);
  330. I_u2u1u3(_ori);
  331. I_0(_rfe);
  332. I_u2s3u1(_sc);
  333. I_u2s3u1(_scd);
  334. I_u2s3u1(_sd);
  335. I_u2u1u3(_sll);
  336. I_u2u1u3(_sra);
  337. I_u2u1u3(_srl);
  338. I_u3u1u2(_subu);
  339. I_u2s3u1(_sw);
  340. I_0(_tlbp);
  341. I_0(_tlbwi);
  342. I_0(_tlbwr);
  343. I_u3u1u2(_xor)
  344. I_u2u1u3(_xori);
  345. /*
  346. * handling labels
  347. */
  348. enum label_id {
  349. label_invalid,
  350. label_second_part,
  351. label_leave,
  352. label_vmalloc,
  353. label_vmalloc_done,
  354. label_tlbw_hazard,
  355. label_split,
  356. label_nopage_tlbl,
  357. label_nopage_tlbs,
  358. label_nopage_tlbm,
  359. label_smp_pgtable_change,
  360. label_r3000_write_probe_fail,
  361. };
  362. struct label {
  363. u32 *addr;
  364. enum label_id lab;
  365. };
  366. static __init void build_label(struct label **lab, u32 *addr,
  367. enum label_id l)
  368. {
  369. (*lab)->addr = addr;
  370. (*lab)->lab = l;
  371. (*lab)++;
  372. }
  373. #define L_LA(lb) \
  374. static inline void l##lb(struct label **lab, u32 *addr) \
  375. { \
  376. build_label(lab, addr, label##lb); \
  377. }
  378. L_LA(_second_part)
  379. L_LA(_leave)
  380. L_LA(_vmalloc)
  381. L_LA(_vmalloc_done)
  382. L_LA(_tlbw_hazard)
  383. L_LA(_split)
  384. L_LA(_nopage_tlbl)
  385. L_LA(_nopage_tlbs)
  386. L_LA(_nopage_tlbm)
  387. L_LA(_smp_pgtable_change)
  388. L_LA(_r3000_write_probe_fail)
  389. /* convenience macros for instructions */
  390. #ifdef CONFIG_64BIT
  391. # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
  392. # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
  393. # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
  394. # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
  395. # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
  396. # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd)
  397. # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd)
  398. # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
  399. # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
  400. # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
  401. # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
  402. # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
  403. #else
  404. # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
  405. # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
  406. # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
  407. # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
  408. # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
  409. # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd)
  410. # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd)
  411. # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
  412. # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
  413. # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
  414. # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
  415. # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
  416. #endif
  417. #define i_b(buf, off) i_beq(buf, 0, 0, off)
  418. #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
  419. #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
  420. #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
  421. #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
  422. #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
  423. #define i_nop(buf) i_sll(buf, 0, 0, 0)
  424. #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
  425. #define i_ehb(buf) i_sll(buf, 0, 0, 3)
  426. #ifdef CONFIG_64BIT
  427. static __init int __attribute__((unused)) in_compat_space_p(long addr)
  428. {
  429. /* Is this address in 32bit compat space? */
  430. return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
  431. }
  432. static __init int __attribute__((unused)) rel_highest(long val)
  433. {
  434. return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
  435. }
  436. static __init int __attribute__((unused)) rel_higher(long val)
  437. {
  438. return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
  439. }
  440. #endif
  441. static __init int rel_hi(long val)
  442. {
  443. return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
  444. }
  445. static __init int rel_lo(long val)
  446. {
  447. return ((val & 0xffff) ^ 0x8000) - 0x8000;
  448. }
  449. static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
  450. {
  451. #ifdef CONFIG_64BIT
  452. if (!in_compat_space_p(addr)) {
  453. i_lui(buf, rs, rel_highest(addr));
  454. if (rel_higher(addr))
  455. i_daddiu(buf, rs, rs, rel_higher(addr));
  456. if (rel_hi(addr)) {
  457. i_dsll(buf, rs, rs, 16);
  458. i_daddiu(buf, rs, rs, rel_hi(addr));
  459. i_dsll(buf, rs, rs, 16);
  460. } else
  461. i_dsll32(buf, rs, rs, 0);
  462. } else
  463. #endif
  464. i_lui(buf, rs, rel_hi(addr));
  465. }
  466. static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
  467. long addr)
  468. {
  469. i_LA_mostly(buf, rs, addr);
  470. if (rel_lo(addr))
  471. i_ADDIU(buf, rs, rs, rel_lo(addr));
  472. }
  473. /*
  474. * handle relocations
  475. */
  476. struct reloc {
  477. u32 *addr;
  478. unsigned int type;
  479. enum label_id lab;
  480. };
  481. static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
  482. enum label_id l)
  483. {
  484. (*rel)->addr = addr;
  485. (*rel)->type = R_MIPS_PC16;
  486. (*rel)->lab = l;
  487. (*rel)++;
  488. }
  489. static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
  490. {
  491. long laddr = (long)lab->addr;
  492. long raddr = (long)rel->addr;
  493. switch (rel->type) {
  494. case R_MIPS_PC16:
  495. *rel->addr |= build_bimm(laddr - (raddr + 4));
  496. break;
  497. default:
  498. panic("Unsupported TLB synthesizer relocation %d",
  499. rel->type);
  500. }
  501. }
  502. static __init void resolve_relocs(struct reloc *rel, struct label *lab)
  503. {
  504. struct label *l;
  505. for (; rel->lab != label_invalid; rel++)
  506. for (l = lab; l->lab != label_invalid; l++)
  507. if (rel->lab == l->lab)
  508. __resolve_relocs(rel, l);
  509. }
  510. static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
  511. long off)
  512. {
  513. for (; rel->lab != label_invalid; rel++)
  514. if (rel->addr >= first && rel->addr < end)
  515. rel->addr += off;
  516. }
  517. static __init void move_labels(struct label *lab, u32 *first, u32 *end,
  518. long off)
  519. {
  520. for (; lab->lab != label_invalid; lab++)
  521. if (lab->addr >= first && lab->addr < end)
  522. lab->addr += off;
  523. }
  524. static __init void copy_handler(struct reloc *rel, struct label *lab,
  525. u32 *first, u32 *end, u32 *target)
  526. {
  527. long off = (long)(target - first);
  528. memcpy(target, first, (end - first) * sizeof(u32));
  529. move_relocs(rel, first, end, off);
  530. move_labels(lab, first, end, off);
  531. }
  532. static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
  533. u32 *addr)
  534. {
  535. for (; rel->lab != label_invalid; rel++) {
  536. if (rel->addr == addr
  537. && (rel->type == R_MIPS_PC16
  538. || rel->type == R_MIPS_26))
  539. return 1;
  540. }
  541. return 0;
  542. }
  543. /* convenience functions for labeled branches */
  544. static void __attribute__((unused)) il_bltz(u32 **p, struct reloc **r,
  545. unsigned int reg, enum label_id l)
  546. {
  547. r_mips_pc16(r, *p, l);
  548. i_bltz(p, reg, 0);
  549. }
  550. static void __attribute__((unused)) il_b(u32 **p, struct reloc **r,
  551. enum label_id l)
  552. {
  553. r_mips_pc16(r, *p, l);
  554. i_b(p, 0);
  555. }
  556. static void il_beqz(u32 **p, struct reloc **r, unsigned int reg,
  557. enum label_id l)
  558. {
  559. r_mips_pc16(r, *p, l);
  560. i_beqz(p, reg, 0);
  561. }
  562. static void __attribute__((unused))
  563. il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  564. {
  565. r_mips_pc16(r, *p, l);
  566. i_beqzl(p, reg, 0);
  567. }
  568. static void il_bnez(u32 **p, struct reloc **r, unsigned int reg,
  569. enum label_id l)
  570. {
  571. r_mips_pc16(r, *p, l);
  572. i_bnez(p, reg, 0);
  573. }
  574. static void il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
  575. enum label_id l)
  576. {
  577. r_mips_pc16(r, *p, l);
  578. i_bgezl(p, reg, 0);
  579. }
  580. /* The only general purpose registers allowed in TLB handlers. */
  581. #define K0 26
  582. #define K1 27
  583. /* Some CP0 registers */
  584. #define C0_INDEX 0
  585. #define C0_ENTRYLO0 2
  586. #define C0_ENTRYLO1 3
  587. #define C0_CONTEXT 4
  588. #define C0_BADVADDR 8
  589. #define C0_ENTRYHI 10
  590. #define C0_EPC 14
  591. #define C0_XCONTEXT 20
  592. #ifdef CONFIG_64BIT
  593. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
  594. #else
  595. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
  596. #endif
  597. /* The worst case length of the handler is around 18 instructions for
  598. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  599. * Maximum space available is 32 instructions for R3000 and 64
  600. * instructions for R4000.
  601. *
  602. * We deliberately chose a buffer size of 128, so we won't scribble
  603. * over anything important on overflow before we panic.
  604. */
  605. static __initdata u32 tlb_handler[128];
  606. /* simply assume worst case size for labels and relocs */
  607. static __initdata struct label labels[128];
  608. static __initdata struct reloc relocs[128];
  609. /*
  610. * The R3000 TLB handler is simple.
  611. */
  612. static void __init build_r3000_tlb_refill_handler(void)
  613. {
  614. long pgdc = (long)pgd_current;
  615. u32 *p;
  616. memset(tlb_handler, 0, sizeof(tlb_handler));
  617. p = tlb_handler;
  618. i_mfc0(&p, K0, C0_BADVADDR);
  619. i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
  620. i_lw(&p, K1, rel_lo(pgdc), K1);
  621. i_srl(&p, K0, K0, 22); /* load delay */
  622. i_sll(&p, K0, K0, 2);
  623. i_addu(&p, K1, K1, K0);
  624. i_mfc0(&p, K0, C0_CONTEXT);
  625. i_lw(&p, K1, 0, K1); /* cp0 delay */
  626. i_andi(&p, K0, K0, 0xffc); /* load delay */
  627. i_addu(&p, K1, K1, K0);
  628. i_lw(&p, K0, 0, K1);
  629. i_nop(&p); /* load delay */
  630. i_mtc0(&p, K0, C0_ENTRYLO0);
  631. i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  632. i_tlbwr(&p); /* cp0 delay */
  633. i_jr(&p, K1);
  634. i_rfe(&p); /* branch delay */
  635. if (p > tlb_handler + 32)
  636. panic("TLB refill handler space exceeded");
  637. printk("Synthesized TLB refill handler (%u instructions).\n",
  638. (unsigned int)(p - tlb_handler));
  639. #ifdef DEBUG_TLB
  640. {
  641. int i;
  642. for (i = 0; i < (p - tlb_handler); i++)
  643. printk("%08x\n", tlb_handler[i]);
  644. }
  645. #endif
  646. memcpy((void *)CAC_BASE, tlb_handler, 0x80);
  647. }
  648. /*
  649. * The R4000 TLB handler is much more complicated. We have two
  650. * consecutive handler areas with 32 instructions space each.
  651. * Since they aren't used at the same time, we can overflow in the
  652. * other one.To keep things simple, we first assume linear space,
  653. * then we relocate it to the final handler layout as needed.
  654. */
  655. static __initdata u32 final_handler[64];
  656. /*
  657. * Hazards
  658. *
  659. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  660. * 2. A timing hazard exists for the TLBP instruction.
  661. *
  662. * stalling_instruction
  663. * TLBP
  664. *
  665. * The JTLB is being read for the TLBP throughout the stall generated by the
  666. * previous instruction. This is not really correct as the stalling instruction
  667. * can modify the address used to access the JTLB. The failure symptom is that
  668. * the TLBP instruction will use an address created for the stalling instruction
  669. * and not the address held in C0_ENHI and thus report the wrong results.
  670. *
  671. * The software work-around is to not allow the instruction preceding the TLBP
  672. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  673. *
  674. * Errata 2 will not be fixed. This errata is also on the R5000.
  675. *
  676. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  677. */
  678. static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
  679. {
  680. switch (current_cpu_data.cputype) {
  681. /* Found by experiment: R4600 v2.0 needs this, too. */
  682. case CPU_R4600:
  683. case CPU_R5000:
  684. case CPU_R5000A:
  685. case CPU_NEVADA:
  686. i_nop(p);
  687. i_tlbp(p);
  688. break;
  689. default:
  690. i_tlbp(p);
  691. break;
  692. }
  693. }
  694. /*
  695. * Write random or indexed TLB entry, and care about the hazards from
  696. * the preceeding mtc0 and for the following eret.
  697. */
  698. enum tlb_write_entry { tlb_random, tlb_indexed };
  699. static __init void build_tlb_write_entry(u32 **p, struct label **l,
  700. struct reloc **r,
  701. enum tlb_write_entry wmode)
  702. {
  703. void(*tlbw)(u32 **) = NULL;
  704. switch (wmode) {
  705. case tlb_random: tlbw = i_tlbwr; break;
  706. case tlb_indexed: tlbw = i_tlbwi; break;
  707. }
  708. switch (current_cpu_data.cputype) {
  709. case CPU_R4000PC:
  710. case CPU_R4000SC:
  711. case CPU_R4000MC:
  712. case CPU_R4400PC:
  713. case CPU_R4400SC:
  714. case CPU_R4400MC:
  715. /*
  716. * This branch uses up a mtc0 hazard nop slot and saves
  717. * two nops after the tlbw instruction.
  718. */
  719. il_bgezl(p, r, 0, label_tlbw_hazard);
  720. tlbw(p);
  721. l_tlbw_hazard(l, *p);
  722. i_nop(p);
  723. break;
  724. case CPU_R4600:
  725. case CPU_R4700:
  726. case CPU_R5000:
  727. case CPU_R5000A:
  728. i_nop(p);
  729. tlbw(p);
  730. i_nop(p);
  731. break;
  732. case CPU_R4300:
  733. case CPU_5KC:
  734. case CPU_TX49XX:
  735. case CPU_AU1000:
  736. case CPU_AU1100:
  737. case CPU_AU1500:
  738. case CPU_AU1550:
  739. case CPU_AU1200:
  740. case CPU_PR4450:
  741. i_nop(p);
  742. tlbw(p);
  743. break;
  744. case CPU_R10000:
  745. case CPU_R12000:
  746. case CPU_4KC:
  747. case CPU_SB1:
  748. case CPU_SB1A:
  749. case CPU_4KSC:
  750. case CPU_20KC:
  751. case CPU_25KF:
  752. tlbw(p);
  753. break;
  754. case CPU_NEVADA:
  755. i_nop(p); /* QED specifies 2 nops hazard */
  756. /*
  757. * This branch uses up a mtc0 hazard nop slot and saves
  758. * a nop after the tlbw instruction.
  759. */
  760. il_bgezl(p, r, 0, label_tlbw_hazard);
  761. tlbw(p);
  762. l_tlbw_hazard(l, *p);
  763. break;
  764. case CPU_RM7000:
  765. i_nop(p);
  766. i_nop(p);
  767. i_nop(p);
  768. i_nop(p);
  769. tlbw(p);
  770. break;
  771. case CPU_4KEC:
  772. case CPU_24K:
  773. case CPU_34K:
  774. i_ehb(p);
  775. tlbw(p);
  776. break;
  777. case CPU_RM9000:
  778. /*
  779. * When the JTLB is updated by tlbwi or tlbwr, a subsequent
  780. * use of the JTLB for instructions should not occur for 4
  781. * cpu cycles and use for data translations should not occur
  782. * for 3 cpu cycles.
  783. */
  784. i_ssnop(p);
  785. i_ssnop(p);
  786. i_ssnop(p);
  787. i_ssnop(p);
  788. tlbw(p);
  789. i_ssnop(p);
  790. i_ssnop(p);
  791. i_ssnop(p);
  792. i_ssnop(p);
  793. break;
  794. case CPU_VR4111:
  795. case CPU_VR4121:
  796. case CPU_VR4122:
  797. case CPU_VR4181:
  798. case CPU_VR4181A:
  799. i_nop(p);
  800. i_nop(p);
  801. tlbw(p);
  802. i_nop(p);
  803. i_nop(p);
  804. break;
  805. case CPU_VR4131:
  806. case CPU_VR4133:
  807. case CPU_R5432:
  808. i_nop(p);
  809. i_nop(p);
  810. tlbw(p);
  811. break;
  812. default:
  813. panic("No TLB refill handler yet (CPU type: %d)",
  814. current_cpu_data.cputype);
  815. break;
  816. }
  817. }
  818. #ifdef CONFIG_64BIT
  819. /*
  820. * TMP and PTR are scratch.
  821. * TMP will be clobbered, PTR will hold the pmd entry.
  822. */
  823. static __init void
  824. build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
  825. unsigned int tmp, unsigned int ptr)
  826. {
  827. long pgdc = (long)pgd_current;
  828. /*
  829. * The vmalloc handling is not in the hotpath.
  830. */
  831. i_dmfc0(p, tmp, C0_BADVADDR);
  832. il_bltz(p, r, tmp, label_vmalloc);
  833. /* No i_nop needed here, since the next insn doesn't touch TMP. */
  834. #ifdef CONFIG_SMP
  835. # ifdef CONFIG_BUILD_ELF64
  836. /*
  837. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  838. * stored in CONTEXT.
  839. */
  840. i_dmfc0(p, ptr, C0_CONTEXT);
  841. i_dsrl(p, ptr, ptr, 23);
  842. i_LA_mostly(p, tmp, pgdc);
  843. i_daddu(p, ptr, ptr, tmp);
  844. i_dmfc0(p, tmp, C0_BADVADDR);
  845. i_ld(p, ptr, rel_lo(pgdc), ptr);
  846. # else
  847. /*
  848. * 64 bit SMP running in compat space has the lower part of
  849. * &pgd_current[smp_processor_id()] stored in CONTEXT.
  850. */
  851. if (!in_compat_space_p(pgdc))
  852. panic("Invalid page directory address!");
  853. i_dmfc0(p, ptr, C0_CONTEXT);
  854. i_dsra(p, ptr, ptr, 23);
  855. i_ld(p, ptr, 0, ptr);
  856. # endif
  857. #else
  858. i_LA_mostly(p, ptr, pgdc);
  859. i_ld(p, ptr, rel_lo(pgdc), ptr);
  860. #endif
  861. l_vmalloc_done(l, *p);
  862. i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
  863. i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  864. i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  865. i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  866. i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  867. i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  868. i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  869. i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  870. }
  871. /*
  872. * BVADDR is the faulting address, PTR is scratch.
  873. * PTR will hold the pgd for vmalloc.
  874. */
  875. static __init void
  876. build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
  877. unsigned int bvaddr, unsigned int ptr)
  878. {
  879. long swpd = (long)swapper_pg_dir;
  880. l_vmalloc(l, *p);
  881. i_LA(p, ptr, VMALLOC_START);
  882. i_dsubu(p, bvaddr, bvaddr, ptr);
  883. if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
  884. il_b(p, r, label_vmalloc_done);
  885. i_lui(p, ptr, rel_hi(swpd));
  886. } else {
  887. i_LA_mostly(p, ptr, swpd);
  888. il_b(p, r, label_vmalloc_done);
  889. i_daddiu(p, ptr, ptr, rel_lo(swpd));
  890. }
  891. }
  892. #else /* !CONFIG_64BIT */
  893. /*
  894. * TMP and PTR are scratch.
  895. * TMP will be clobbered, PTR will hold the pgd entry.
  896. */
  897. static __init void __attribute__((unused))
  898. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  899. {
  900. long pgdc = (long)pgd_current;
  901. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  902. #ifdef CONFIG_SMP
  903. i_mfc0(p, ptr, C0_CONTEXT);
  904. i_LA_mostly(p, tmp, pgdc);
  905. i_srl(p, ptr, ptr, 23);
  906. i_addu(p, ptr, tmp, ptr);
  907. #else
  908. i_LA_mostly(p, ptr, pgdc);
  909. #endif
  910. i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  911. i_lw(p, ptr, rel_lo(pgdc), ptr);
  912. i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  913. i_sll(p, tmp, tmp, PGD_T_LOG2);
  914. i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  915. }
  916. #endif /* !CONFIG_64BIT */
  917. static __init void build_adjust_context(u32 **p, unsigned int ctx)
  918. {
  919. unsigned int shift = 4 - (PTE_T_LOG2 + 1);
  920. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  921. switch (current_cpu_data.cputype) {
  922. case CPU_VR41XX:
  923. case CPU_VR4111:
  924. case CPU_VR4121:
  925. case CPU_VR4122:
  926. case CPU_VR4131:
  927. case CPU_VR4181:
  928. case CPU_VR4181A:
  929. case CPU_VR4133:
  930. shift += 2;
  931. break;
  932. default:
  933. break;
  934. }
  935. if (shift)
  936. i_SRL(p, ctx, ctx, shift);
  937. i_andi(p, ctx, ctx, mask);
  938. }
  939. static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  940. {
  941. /*
  942. * Bug workaround for the Nevada. It seems as if under certain
  943. * circumstances the move from cp0_context might produce a
  944. * bogus result when the mfc0 instruction and its consumer are
  945. * in a different cacheline or a load instruction, probably any
  946. * memory reference, is between them.
  947. */
  948. switch (current_cpu_data.cputype) {
  949. case CPU_NEVADA:
  950. i_LW(p, ptr, 0, ptr);
  951. GET_CONTEXT(p, tmp); /* get context reg */
  952. break;
  953. default:
  954. GET_CONTEXT(p, tmp); /* get context reg */
  955. i_LW(p, ptr, 0, ptr);
  956. break;
  957. }
  958. build_adjust_context(p, tmp);
  959. i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  960. }
  961. static __init void build_update_entries(u32 **p, unsigned int tmp,
  962. unsigned int ptep)
  963. {
  964. /*
  965. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  966. * Kernel is a special case. Only a few CPUs use it.
  967. */
  968. #ifdef CONFIG_64BIT_PHYS_ADDR
  969. if (cpu_has_64bits) {
  970. i_ld(p, tmp, 0, ptep); /* get even pte */
  971. i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  972. i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
  973. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  974. i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
  975. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  976. } else {
  977. int pte_off_even = sizeof(pte_t) / 2;
  978. int pte_off_odd = pte_off_even + sizeof(pte_t);
  979. /* The pte entries are pre-shifted */
  980. i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  981. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  982. i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  983. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  984. }
  985. #else
  986. i_LW(p, tmp, 0, ptep); /* get even pte */
  987. i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  988. if (r45k_bvahwbug())
  989. build_tlb_probe_entry(p);
  990. i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
  991. if (r4k_250MHZhwbug())
  992. i_mtc0(p, 0, C0_ENTRYLO0);
  993. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  994. i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
  995. if (r45k_bvahwbug())
  996. i_mfc0(p, tmp, C0_INDEX);
  997. if (r4k_250MHZhwbug())
  998. i_mtc0(p, 0, C0_ENTRYLO1);
  999. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1000. #endif
  1001. }
  1002. static void __init build_r4000_tlb_refill_handler(void)
  1003. {
  1004. u32 *p = tlb_handler;
  1005. struct label *l = labels;
  1006. struct reloc *r = relocs;
  1007. u32 *f;
  1008. unsigned int final_len;
  1009. memset(tlb_handler, 0, sizeof(tlb_handler));
  1010. memset(labels, 0, sizeof(labels));
  1011. memset(relocs, 0, sizeof(relocs));
  1012. memset(final_handler, 0, sizeof(final_handler));
  1013. /*
  1014. * create the plain linear handler
  1015. */
  1016. if (bcm1250_m3_war()) {
  1017. i_MFC0(&p, K0, C0_BADVADDR);
  1018. i_MFC0(&p, K1, C0_ENTRYHI);
  1019. i_xor(&p, K0, K0, K1);
  1020. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1021. il_bnez(&p, &r, K0, label_leave);
  1022. /* No need for i_nop */
  1023. }
  1024. #ifdef CONFIG_64BIT
  1025. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1026. #else
  1027. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1028. #endif
  1029. build_get_ptep(&p, K0, K1);
  1030. build_update_entries(&p, K0, K1);
  1031. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1032. l_leave(&l, p);
  1033. i_eret(&p); /* return from trap */
  1034. #ifdef CONFIG_64BIT
  1035. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
  1036. #endif
  1037. /*
  1038. * Overflow check: For the 64bit handler, we need at least one
  1039. * free instruction slot for the wrap-around branch. In worst
  1040. * case, if the intended insertion point is a delay slot, we
  1041. * need three, with the the second nop'ed and the third being
  1042. * unused.
  1043. */
  1044. #ifdef CONFIG_32BIT
  1045. if ((p - tlb_handler) > 64)
  1046. panic("TLB refill handler space exceeded");
  1047. #else
  1048. if (((p - tlb_handler) > 63)
  1049. || (((p - tlb_handler) > 61)
  1050. && insn_has_bdelay(relocs, tlb_handler + 29)))
  1051. panic("TLB refill handler space exceeded");
  1052. #endif
  1053. /*
  1054. * Now fold the handler in the TLB refill handler space.
  1055. */
  1056. #ifdef CONFIG_32BIT
  1057. f = final_handler;
  1058. /* Simplest case, just copy the handler. */
  1059. copy_handler(relocs, labels, tlb_handler, p, f);
  1060. final_len = p - tlb_handler;
  1061. #else /* CONFIG_64BIT */
  1062. f = final_handler + 32;
  1063. if ((p - tlb_handler) <= 32) {
  1064. /* Just copy the handler. */
  1065. copy_handler(relocs, labels, tlb_handler, p, f);
  1066. final_len = p - tlb_handler;
  1067. } else {
  1068. u32 *split = tlb_handler + 30;
  1069. /*
  1070. * Find the split point.
  1071. */
  1072. if (insn_has_bdelay(relocs, split - 1))
  1073. split--;
  1074. /* Copy first part of the handler. */
  1075. copy_handler(relocs, labels, tlb_handler, split, f);
  1076. f += split - tlb_handler;
  1077. /* Insert branch. */
  1078. l_split(&l, final_handler);
  1079. il_b(&f, &r, label_split);
  1080. if (insn_has_bdelay(relocs, split))
  1081. i_nop(&f);
  1082. else {
  1083. copy_handler(relocs, labels, split, split + 1, f);
  1084. move_labels(labels, f, f + 1, -1);
  1085. f++;
  1086. split++;
  1087. }
  1088. /* Copy the rest of the handler. */
  1089. copy_handler(relocs, labels, split, p, final_handler);
  1090. final_len = (f - (final_handler + 32)) + (p - split);
  1091. }
  1092. #endif /* CONFIG_64BIT */
  1093. resolve_relocs(relocs, labels);
  1094. printk("Synthesized TLB refill handler (%u instructions).\n",
  1095. final_len);
  1096. #ifdef DEBUG_TLB
  1097. {
  1098. int i;
  1099. f = final_handler;
  1100. #ifdef CONFIG_64BIT
  1101. if (final_len > 32)
  1102. final_len = 64;
  1103. else
  1104. f = final_handler + 32;
  1105. #endif /* CONFIG_64BIT */
  1106. for (i = 0; i < final_len; i++)
  1107. printk("%08x\n", f[i]);
  1108. }
  1109. #endif
  1110. memcpy((void *)CAC_BASE, final_handler, 0x100);
  1111. }
  1112. /*
  1113. * TLB load/store/modify handlers.
  1114. *
  1115. * Only the fastpath gets synthesized at runtime, the slowpath for
  1116. * do_page_fault remains normal asm.
  1117. */
  1118. extern void tlb_do_page_fault_0(void);
  1119. extern void tlb_do_page_fault_1(void);
  1120. #define __tlb_handler_align \
  1121. __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
  1122. /*
  1123. * 128 instructions for the fastpath handler is generous and should
  1124. * never be exceeded.
  1125. */
  1126. #define FASTPATH_SIZE 128
  1127. u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
  1128. u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
  1129. u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
  1130. static void __init
  1131. iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
  1132. {
  1133. #ifdef CONFIG_SMP
  1134. # ifdef CONFIG_64BIT_PHYS_ADDR
  1135. if (cpu_has_64bits)
  1136. i_lld(p, pte, 0, ptr);
  1137. else
  1138. # endif
  1139. i_LL(p, pte, 0, ptr);
  1140. #else
  1141. # ifdef CONFIG_64BIT_PHYS_ADDR
  1142. if (cpu_has_64bits)
  1143. i_ld(p, pte, 0, ptr);
  1144. else
  1145. # endif
  1146. i_LW(p, pte, 0, ptr);
  1147. #endif
  1148. }
  1149. static void __init
  1150. iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
  1151. unsigned int mode)
  1152. {
  1153. #ifdef CONFIG_64BIT_PHYS_ADDR
  1154. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1155. #endif
  1156. i_ori(p, pte, pte, mode);
  1157. #ifdef CONFIG_SMP
  1158. # ifdef CONFIG_64BIT_PHYS_ADDR
  1159. if (cpu_has_64bits)
  1160. i_scd(p, pte, 0, ptr);
  1161. else
  1162. # endif
  1163. i_SC(p, pte, 0, ptr);
  1164. if (r10000_llsc_war())
  1165. il_beqzl(p, r, pte, label_smp_pgtable_change);
  1166. else
  1167. il_beqz(p, r, pte, label_smp_pgtable_change);
  1168. # ifdef CONFIG_64BIT_PHYS_ADDR
  1169. if (!cpu_has_64bits) {
  1170. /* no i_nop needed */
  1171. i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1172. i_ori(p, pte, pte, hwmode);
  1173. i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1174. il_beqz(p, r, pte, label_smp_pgtable_change);
  1175. /* no i_nop needed */
  1176. i_lw(p, pte, 0, ptr);
  1177. } else
  1178. i_nop(p);
  1179. # else
  1180. i_nop(p);
  1181. # endif
  1182. #else
  1183. # ifdef CONFIG_64BIT_PHYS_ADDR
  1184. if (cpu_has_64bits)
  1185. i_sd(p, pte, 0, ptr);
  1186. else
  1187. # endif
  1188. i_SW(p, pte, 0, ptr);
  1189. # ifdef CONFIG_64BIT_PHYS_ADDR
  1190. if (!cpu_has_64bits) {
  1191. i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1192. i_ori(p, pte, pte, hwmode);
  1193. i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1194. i_lw(p, pte, 0, ptr);
  1195. }
  1196. # endif
  1197. #endif
  1198. }
  1199. /*
  1200. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1201. * the page table where this PTE is located, PTE will be re-loaded
  1202. * with it's original value.
  1203. */
  1204. static void __init
  1205. build_pte_present(u32 **p, struct label **l, struct reloc **r,
  1206. unsigned int pte, unsigned int ptr, enum label_id lid)
  1207. {
  1208. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1209. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1210. il_bnez(p, r, pte, lid);
  1211. iPTE_LW(p, l, pte, ptr);
  1212. }
  1213. /* Make PTE valid, store result in PTR. */
  1214. static void __init
  1215. build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
  1216. unsigned int ptr)
  1217. {
  1218. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1219. iPTE_SW(p, r, pte, ptr, mode);
  1220. }
  1221. /*
  1222. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1223. * restore PTE with value from PTR when done.
  1224. */
  1225. static void __init
  1226. build_pte_writable(u32 **p, struct label **l, struct reloc **r,
  1227. unsigned int pte, unsigned int ptr, enum label_id lid)
  1228. {
  1229. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1230. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1231. il_bnez(p, r, pte, lid);
  1232. iPTE_LW(p, l, pte, ptr);
  1233. }
  1234. /* Make PTE writable, update software status bits as well, then store
  1235. * at PTR.
  1236. */
  1237. static void __init
  1238. build_make_write(u32 **p, struct reloc **r, unsigned int pte,
  1239. unsigned int ptr)
  1240. {
  1241. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1242. | _PAGE_DIRTY);
  1243. iPTE_SW(p, r, pte, ptr, mode);
  1244. }
  1245. /*
  1246. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1247. * restore PTE with value from PTR when done.
  1248. */
  1249. static void __init
  1250. build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
  1251. unsigned int pte, unsigned int ptr, enum label_id lid)
  1252. {
  1253. i_andi(p, pte, pte, _PAGE_WRITE);
  1254. il_beqz(p, r, pte, lid);
  1255. iPTE_LW(p, l, pte, ptr);
  1256. }
  1257. /*
  1258. * R3000 style TLB load/store/modify handlers.
  1259. */
  1260. /*
  1261. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1262. * Then it returns.
  1263. */
  1264. static void __init
  1265. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1266. {
  1267. i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1268. i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1269. i_tlbwi(p);
  1270. i_jr(p, tmp);
  1271. i_rfe(p); /* branch delay */
  1272. }
  1273. /*
  1274. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1275. * or tlbwr as appropriate. This is because the index register
  1276. * may have the probe fail bit set as a result of a trap on a
  1277. * kseg2 access, i.e. without refill. Then it returns.
  1278. */
  1279. static void __init
  1280. build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
  1281. unsigned int pte, unsigned int tmp)
  1282. {
  1283. i_mfc0(p, tmp, C0_INDEX);
  1284. i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1285. il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1286. i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1287. i_tlbwi(p); /* cp0 delay */
  1288. i_jr(p, tmp);
  1289. i_rfe(p); /* branch delay */
  1290. l_r3000_write_probe_fail(l, *p);
  1291. i_tlbwr(p); /* cp0 delay */
  1292. i_jr(p, tmp);
  1293. i_rfe(p); /* branch delay */
  1294. }
  1295. static void __init
  1296. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1297. unsigned int ptr)
  1298. {
  1299. long pgdc = (long)pgd_current;
  1300. i_mfc0(p, pte, C0_BADVADDR);
  1301. i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
  1302. i_lw(p, ptr, rel_lo(pgdc), ptr);
  1303. i_srl(p, pte, pte, 22); /* load delay */
  1304. i_sll(p, pte, pte, 2);
  1305. i_addu(p, ptr, ptr, pte);
  1306. i_mfc0(p, pte, C0_CONTEXT);
  1307. i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1308. i_andi(p, pte, pte, 0xffc); /* load delay */
  1309. i_addu(p, ptr, ptr, pte);
  1310. i_lw(p, pte, 0, ptr);
  1311. i_tlbp(p); /* load delay */
  1312. }
  1313. static void __init build_r3000_tlb_load_handler(void)
  1314. {
  1315. u32 *p = handle_tlbl;
  1316. struct label *l = labels;
  1317. struct reloc *r = relocs;
  1318. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1319. memset(labels, 0, sizeof(labels));
  1320. memset(relocs, 0, sizeof(relocs));
  1321. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1322. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1323. i_nop(&p); /* load delay */
  1324. build_make_valid(&p, &r, K0, K1);
  1325. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1326. l_nopage_tlbl(&l, p);
  1327. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1328. i_nop(&p);
  1329. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1330. panic("TLB load handler fastpath space exceeded");
  1331. resolve_relocs(relocs, labels);
  1332. printk("Synthesized TLB load handler fastpath (%u instructions).\n",
  1333. (unsigned int)(p - handle_tlbl));
  1334. #ifdef DEBUG_TLB
  1335. {
  1336. int i;
  1337. for (i = 0; i < (p - handle_tlbl); i++)
  1338. printk("%08x\n", handle_tlbl[i]);
  1339. }
  1340. #endif
  1341. }
  1342. static void __init build_r3000_tlb_store_handler(void)
  1343. {
  1344. u32 *p = handle_tlbs;
  1345. struct label *l = labels;
  1346. struct reloc *r = relocs;
  1347. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1348. memset(labels, 0, sizeof(labels));
  1349. memset(relocs, 0, sizeof(relocs));
  1350. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1351. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1352. i_nop(&p); /* load delay */
  1353. build_make_write(&p, &r, K0, K1);
  1354. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1355. l_nopage_tlbs(&l, p);
  1356. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1357. i_nop(&p);
  1358. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1359. panic("TLB store handler fastpath space exceeded");
  1360. resolve_relocs(relocs, labels);
  1361. printk("Synthesized TLB store handler fastpath (%u instructions).\n",
  1362. (unsigned int)(p - handle_tlbs));
  1363. #ifdef DEBUG_TLB
  1364. {
  1365. int i;
  1366. for (i = 0; i < (p - handle_tlbs); i++)
  1367. printk("%08x\n", handle_tlbs[i]);
  1368. }
  1369. #endif
  1370. }
  1371. static void __init build_r3000_tlb_modify_handler(void)
  1372. {
  1373. u32 *p = handle_tlbm;
  1374. struct label *l = labels;
  1375. struct reloc *r = relocs;
  1376. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1377. memset(labels, 0, sizeof(labels));
  1378. memset(relocs, 0, sizeof(relocs));
  1379. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1380. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1381. i_nop(&p); /* load delay */
  1382. build_make_write(&p, &r, K0, K1);
  1383. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1384. l_nopage_tlbm(&l, p);
  1385. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1386. i_nop(&p);
  1387. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1388. panic("TLB modify handler fastpath space exceeded");
  1389. resolve_relocs(relocs, labels);
  1390. printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1391. (unsigned int)(p - handle_tlbm));
  1392. #ifdef DEBUG_TLB
  1393. {
  1394. int i;
  1395. for (i = 0; i < (p - handle_tlbm); i++)
  1396. printk("%08x\n", handle_tlbm[i]);
  1397. }
  1398. #endif
  1399. }
  1400. /*
  1401. * R4000 style TLB load/store/modify handlers.
  1402. */
  1403. static void __init
  1404. build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
  1405. struct reloc **r, unsigned int pte,
  1406. unsigned int ptr)
  1407. {
  1408. #ifdef CONFIG_64BIT
  1409. build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
  1410. #else
  1411. build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
  1412. #endif
  1413. i_MFC0(p, pte, C0_BADVADDR);
  1414. i_LW(p, ptr, 0, ptr);
  1415. i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1416. i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1417. i_ADDU(p, ptr, ptr, pte);
  1418. #ifdef CONFIG_SMP
  1419. l_smp_pgtable_change(l, *p);
  1420. # endif
  1421. iPTE_LW(p, l, pte, ptr); /* get even pte */
  1422. build_tlb_probe_entry(p);
  1423. }
  1424. static void __init
  1425. build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
  1426. struct reloc **r, unsigned int tmp,
  1427. unsigned int ptr)
  1428. {
  1429. i_ori(p, ptr, ptr, sizeof(pte_t));
  1430. i_xori(p, ptr, ptr, sizeof(pte_t));
  1431. build_update_entries(p, tmp, ptr);
  1432. build_tlb_write_entry(p, l, r, tlb_indexed);
  1433. l_leave(l, *p);
  1434. i_eret(p); /* return from trap */
  1435. #ifdef CONFIG_64BIT
  1436. build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
  1437. #endif
  1438. }
  1439. static void __init build_r4000_tlb_load_handler(void)
  1440. {
  1441. u32 *p = handle_tlbl;
  1442. struct label *l = labels;
  1443. struct reloc *r = relocs;
  1444. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1445. memset(labels, 0, sizeof(labels));
  1446. memset(relocs, 0, sizeof(relocs));
  1447. if (bcm1250_m3_war()) {
  1448. i_MFC0(&p, K0, C0_BADVADDR);
  1449. i_MFC0(&p, K1, C0_ENTRYHI);
  1450. i_xor(&p, K0, K0, K1);
  1451. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1452. il_bnez(&p, &r, K0, label_leave);
  1453. /* No need for i_nop */
  1454. }
  1455. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1456. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1457. build_make_valid(&p, &r, K0, K1);
  1458. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1459. l_nopage_tlbl(&l, p);
  1460. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1461. i_nop(&p);
  1462. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1463. panic("TLB load handler fastpath space exceeded");
  1464. resolve_relocs(relocs, labels);
  1465. printk("Synthesized TLB load handler fastpath (%u instructions).\n",
  1466. (unsigned int)(p - handle_tlbl));
  1467. #ifdef DEBUG_TLB
  1468. {
  1469. int i;
  1470. for (i = 0; i < (p - handle_tlbl); i++)
  1471. printk("%08x\n", handle_tlbl[i]);
  1472. }
  1473. #endif
  1474. }
  1475. static void __init build_r4000_tlb_store_handler(void)
  1476. {
  1477. u32 *p = handle_tlbs;
  1478. struct label *l = labels;
  1479. struct reloc *r = relocs;
  1480. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1481. memset(labels, 0, sizeof(labels));
  1482. memset(relocs, 0, sizeof(relocs));
  1483. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1484. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1485. build_make_write(&p, &r, K0, K1);
  1486. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1487. l_nopage_tlbs(&l, p);
  1488. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1489. i_nop(&p);
  1490. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1491. panic("TLB store handler fastpath space exceeded");
  1492. resolve_relocs(relocs, labels);
  1493. printk("Synthesized TLB store handler fastpath (%u instructions).\n",
  1494. (unsigned int)(p - handle_tlbs));
  1495. #ifdef DEBUG_TLB
  1496. {
  1497. int i;
  1498. for (i = 0; i < (p - handle_tlbs); i++)
  1499. printk("%08x\n", handle_tlbs[i]);
  1500. }
  1501. #endif
  1502. }
  1503. static void __init build_r4000_tlb_modify_handler(void)
  1504. {
  1505. u32 *p = handle_tlbm;
  1506. struct label *l = labels;
  1507. struct reloc *r = relocs;
  1508. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1509. memset(labels, 0, sizeof(labels));
  1510. memset(relocs, 0, sizeof(relocs));
  1511. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1512. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1513. /* Present and writable bits set, set accessed and dirty bits. */
  1514. build_make_write(&p, &r, K0, K1);
  1515. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1516. l_nopage_tlbm(&l, p);
  1517. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1518. i_nop(&p);
  1519. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1520. panic("TLB modify handler fastpath space exceeded");
  1521. resolve_relocs(relocs, labels);
  1522. printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1523. (unsigned int)(p - handle_tlbm));
  1524. #ifdef DEBUG_TLB
  1525. {
  1526. int i;
  1527. for (i = 0; i < (p - handle_tlbm); i++)
  1528. printk("%08x\n", handle_tlbm[i]);
  1529. }
  1530. #endif
  1531. }
  1532. void __init build_tlb_refill_handler(void)
  1533. {
  1534. /*
  1535. * The refill handler is generated per-CPU, multi-node systems
  1536. * may have local storage for it. The other handlers are only
  1537. * needed once.
  1538. */
  1539. static int run_once = 0;
  1540. switch (current_cpu_data.cputype) {
  1541. case CPU_R2000:
  1542. case CPU_R3000:
  1543. case CPU_R3000A:
  1544. case CPU_R3081E:
  1545. case CPU_TX3912:
  1546. case CPU_TX3922:
  1547. case CPU_TX3927:
  1548. build_r3000_tlb_refill_handler();
  1549. if (!run_once) {
  1550. build_r3000_tlb_load_handler();
  1551. build_r3000_tlb_store_handler();
  1552. build_r3000_tlb_modify_handler();
  1553. run_once++;
  1554. }
  1555. break;
  1556. case CPU_R6000:
  1557. case CPU_R6000A:
  1558. panic("No R6000 TLB refill handler yet");
  1559. break;
  1560. case CPU_R8000:
  1561. panic("No R8000 TLB refill handler yet");
  1562. break;
  1563. default:
  1564. build_r4000_tlb_refill_handler();
  1565. if (!run_once) {
  1566. build_r4000_tlb_load_handler();
  1567. build_r4000_tlb_store_handler();
  1568. build_r4000_tlb_modify_handler();
  1569. run_once++;
  1570. }
  1571. }
  1572. }
  1573. void __init flush_tlb_handlers(void)
  1574. {
  1575. flush_icache_range((unsigned long)handle_tlbl,
  1576. (unsigned long)handle_tlbl + sizeof(handle_tlbl));
  1577. flush_icache_range((unsigned long)handle_tlbs,
  1578. (unsigned long)handle_tlbs + sizeof(handle_tlbs));
  1579. flush_icache_range((unsigned long)handle_tlbm,
  1580. (unsigned long)handle_tlbm + sizeof(handle_tlbm));
  1581. }