init.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /*
  2. * Initialize MMU support.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. */
  7. #include <linux/config.h>
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bootmem.h>
  11. #include <linux/efi.h>
  12. #include <linux/elf.h>
  13. #include <linux/mm.h>
  14. #include <linux/mmzone.h>
  15. #include <linux/module.h>
  16. #include <linux/personality.h>
  17. #include <linux/reboot.h>
  18. #include <linux/slab.h>
  19. #include <linux/swap.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/bitops.h>
  22. #include <asm/a.out.h>
  23. #include <asm/dma.h>
  24. #include <asm/ia32.h>
  25. #include <asm/io.h>
  26. #include <asm/machvec.h>
  27. #include <asm/numa.h>
  28. #include <asm/patch.h>
  29. #include <asm/pgalloc.h>
  30. #include <asm/sal.h>
  31. #include <asm/sections.h>
  32. #include <asm/system.h>
  33. #include <asm/tlb.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/unistd.h>
  36. #include <asm/mca.h>
  37. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  38. DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
  39. DEFINE_PER_CPU(long, __pgtable_quicklist_size);
  40. extern void ia64_tlb_init (void);
  41. unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  42. #ifdef CONFIG_VIRTUAL_MEM_MAP
  43. unsigned long vmalloc_end = VMALLOC_END_INIT;
  44. EXPORT_SYMBOL(vmalloc_end);
  45. struct page *vmem_map;
  46. EXPORT_SYMBOL(vmem_map);
  47. #endif
  48. struct page *zero_page_memmap_ptr; /* map entry for zero page */
  49. EXPORT_SYMBOL(zero_page_memmap_ptr);
  50. #define MIN_PGT_PAGES 25UL
  51. #define MAX_PGT_FREES_PER_PASS 16L
  52. #define PGT_FRACTION_OF_NODE_MEM 16
  53. static inline long
  54. max_pgt_pages(void)
  55. {
  56. u64 node_free_pages, max_pgt_pages;
  57. #ifndef CONFIG_NUMA
  58. node_free_pages = nr_free_pages();
  59. #else
  60. node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
  61. #endif
  62. max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
  63. max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
  64. return max_pgt_pages;
  65. }
  66. static inline long
  67. min_pages_to_free(void)
  68. {
  69. long pages_to_free;
  70. pages_to_free = pgtable_quicklist_size - max_pgt_pages();
  71. pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
  72. return pages_to_free;
  73. }
  74. void
  75. check_pgt_cache(void)
  76. {
  77. long pages_to_free;
  78. if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
  79. return;
  80. preempt_disable();
  81. while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
  82. while (pages_to_free--) {
  83. free_page((unsigned long)pgtable_quicklist_alloc());
  84. }
  85. preempt_enable();
  86. preempt_disable();
  87. }
  88. preempt_enable();
  89. }
  90. void
  91. lazy_mmu_prot_update (pte_t pte)
  92. {
  93. unsigned long addr;
  94. struct page *page;
  95. if (!pte_exec(pte))
  96. return; /* not an executable page... */
  97. page = pte_page(pte);
  98. addr = (unsigned long) page_address(page);
  99. if (test_bit(PG_arch_1, &page->flags))
  100. return; /* i-cache is already coherent with d-cache */
  101. flush_icache_range(addr, addr + PAGE_SIZE);
  102. set_bit(PG_arch_1, &page->flags); /* mark page as clean */
  103. }
  104. inline void
  105. ia64_set_rbs_bot (void)
  106. {
  107. unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
  108. if (stack_size > MAX_USER_STACK_SIZE)
  109. stack_size = MAX_USER_STACK_SIZE;
  110. current->thread.rbs_bot = STACK_TOP - stack_size;
  111. }
  112. /*
  113. * This performs some platform-dependent address space initialization.
  114. * On IA-64, we want to setup the VM area for the register backing
  115. * store (which grows upwards) and install the gateway page which is
  116. * used for signal trampolines, etc.
  117. */
  118. void
  119. ia64_init_addr_space (void)
  120. {
  121. struct vm_area_struct *vma;
  122. ia64_set_rbs_bot();
  123. /*
  124. * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
  125. * the problem. When the process attempts to write to the register backing store
  126. * for the first time, it will get a SEGFAULT in this case.
  127. */
  128. vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  129. if (vma) {
  130. memset(vma, 0, sizeof(*vma));
  131. vma->vm_mm = current->mm;
  132. vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
  133. vma->vm_end = vma->vm_start + PAGE_SIZE;
  134. vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
  135. vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
  136. down_write(&current->mm->mmap_sem);
  137. if (insert_vm_struct(current->mm, vma)) {
  138. up_write(&current->mm->mmap_sem);
  139. kmem_cache_free(vm_area_cachep, vma);
  140. return;
  141. }
  142. up_write(&current->mm->mmap_sem);
  143. }
  144. /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
  145. if (!(current->personality & MMAP_PAGE_ZERO)) {
  146. vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  147. if (vma) {
  148. memset(vma, 0, sizeof(*vma));
  149. vma->vm_mm = current->mm;
  150. vma->vm_end = PAGE_SIZE;
  151. vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
  152. vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
  153. down_write(&current->mm->mmap_sem);
  154. if (insert_vm_struct(current->mm, vma)) {
  155. up_write(&current->mm->mmap_sem);
  156. kmem_cache_free(vm_area_cachep, vma);
  157. return;
  158. }
  159. up_write(&current->mm->mmap_sem);
  160. }
  161. }
  162. }
  163. void
  164. free_initmem (void)
  165. {
  166. unsigned long addr, eaddr;
  167. addr = (unsigned long) ia64_imva(__init_begin);
  168. eaddr = (unsigned long) ia64_imva(__init_end);
  169. while (addr < eaddr) {
  170. ClearPageReserved(virt_to_page(addr));
  171. set_page_count(virt_to_page(addr), 1);
  172. free_page(addr);
  173. ++totalram_pages;
  174. addr += PAGE_SIZE;
  175. }
  176. printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
  177. (__init_end - __init_begin) >> 10);
  178. }
  179. void
  180. free_initrd_mem (unsigned long start, unsigned long end)
  181. {
  182. struct page *page;
  183. /*
  184. * EFI uses 4KB pages while the kernel can use 4KB or bigger.
  185. * Thus EFI and the kernel may have different page sizes. It is
  186. * therefore possible to have the initrd share the same page as
  187. * the end of the kernel (given current setup).
  188. *
  189. * To avoid freeing/using the wrong page (kernel sized) we:
  190. * - align up the beginning of initrd
  191. * - align down the end of initrd
  192. *
  193. * | |
  194. * |=============| a000
  195. * | |
  196. * | |
  197. * | | 9000
  198. * |/////////////|
  199. * |/////////////|
  200. * |=============| 8000
  201. * |///INITRD////|
  202. * |/////////////|
  203. * |/////////////| 7000
  204. * | |
  205. * |KKKKKKKKKKKKK|
  206. * |=============| 6000
  207. * |KKKKKKKKKKKKK|
  208. * |KKKKKKKKKKKKK|
  209. * K=kernel using 8KB pages
  210. *
  211. * In this example, we must free page 8000 ONLY. So we must align up
  212. * initrd_start and keep initrd_end as is.
  213. */
  214. start = PAGE_ALIGN(start);
  215. end = end & PAGE_MASK;
  216. if (start < end)
  217. printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
  218. for (; start < end; start += PAGE_SIZE) {
  219. if (!virt_addr_valid(start))
  220. continue;
  221. page = virt_to_page(start);
  222. ClearPageReserved(page);
  223. set_page_count(page, 1);
  224. free_page(start);
  225. ++totalram_pages;
  226. }
  227. }
  228. /*
  229. * This installs a clean page in the kernel's page table.
  230. */
  231. struct page *
  232. put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
  233. {
  234. pgd_t *pgd;
  235. pud_t *pud;
  236. pmd_t *pmd;
  237. pte_t *pte;
  238. if (!PageReserved(page))
  239. printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
  240. page_address(page));
  241. pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
  242. {
  243. pud = pud_alloc(&init_mm, pgd, address);
  244. if (!pud)
  245. goto out;
  246. pmd = pmd_alloc(&init_mm, pud, address);
  247. if (!pmd)
  248. goto out;
  249. pte = pte_alloc_kernel(pmd, address);
  250. if (!pte)
  251. goto out;
  252. if (!pte_none(*pte))
  253. goto out;
  254. set_pte(pte, mk_pte(page, pgprot));
  255. }
  256. out:
  257. /* no need for flush_tlb */
  258. return page;
  259. }
  260. static void
  261. setup_gate (void)
  262. {
  263. struct page *page;
  264. /*
  265. * Map the gate page twice: once read-only to export the ELF
  266. * headers etc. and once execute-only page to enable
  267. * privilege-promotion via "epc":
  268. */
  269. page = virt_to_page(ia64_imva(__start_gate_section));
  270. put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
  271. #ifdef HAVE_BUGGY_SEGREL
  272. page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
  273. put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
  274. #else
  275. put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
  276. /* Fill in the holes (if any) with read-only zero pages: */
  277. {
  278. unsigned long addr;
  279. for (addr = GATE_ADDR + PAGE_SIZE;
  280. addr < GATE_ADDR + PERCPU_PAGE_SIZE;
  281. addr += PAGE_SIZE)
  282. {
  283. put_kernel_page(ZERO_PAGE(0), addr,
  284. PAGE_READONLY);
  285. put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
  286. PAGE_READONLY);
  287. }
  288. }
  289. #endif
  290. ia64_patch_gate();
  291. }
  292. void __devinit
  293. ia64_mmu_init (void *my_cpu_data)
  294. {
  295. unsigned long psr, pta, impl_va_bits;
  296. extern void __devinit tlb_init (void);
  297. #ifdef CONFIG_DISABLE_VHPT
  298. # define VHPT_ENABLE_BIT 0
  299. #else
  300. # define VHPT_ENABLE_BIT 1
  301. #endif
  302. /* Pin mapping for percpu area into TLB */
  303. psr = ia64_clear_ic();
  304. ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
  305. pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
  306. PERCPU_PAGE_SHIFT);
  307. ia64_set_psr(psr);
  308. ia64_srlz_i();
  309. /*
  310. * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
  311. * address space. The IA-64 architecture guarantees that at least 50 bits of
  312. * virtual address space are implemented but if we pick a large enough page size
  313. * (e.g., 64KB), the mapped address space is big enough that it will overlap with
  314. * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
  315. * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
  316. * problem in practice. Alternatively, we could truncate the top of the mapped
  317. * address space to not permit mappings that would overlap with the VMLPT.
  318. * --davidm 00/12/06
  319. */
  320. # define pte_bits 3
  321. # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
  322. /*
  323. * The virtual page table has to cover the entire implemented address space within
  324. * a region even though not all of this space may be mappable. The reason for
  325. * this is that the Access bit and Dirty bit fault handlers perform
  326. * non-speculative accesses to the virtual page table, so the address range of the
  327. * virtual page table itself needs to be covered by virtual page table.
  328. */
  329. # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
  330. # define POW2(n) (1ULL << (n))
  331. impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
  332. if (impl_va_bits < 51 || impl_va_bits > 61)
  333. panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
  334. /*
  335. * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
  336. * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
  337. * the test makes sure that our mapped space doesn't overlap the
  338. * unimplemented hole in the middle of the region.
  339. */
  340. if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
  341. (mapped_space_bits > impl_va_bits - 1))
  342. panic("Cannot build a big enough virtual-linear page table"
  343. " to cover mapped address space.\n"
  344. " Try using a smaller page size.\n");
  345. /* place the VMLPT at the end of each page-table mapped region: */
  346. pta = POW2(61) - POW2(vmlpt_bits);
  347. /*
  348. * Set the (virtually mapped linear) page table address. Bit
  349. * 8 selects between the short and long format, bits 2-7 the
  350. * size of the table, and bit 0 whether the VHPT walker is
  351. * enabled.
  352. */
  353. ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
  354. ia64_tlb_init();
  355. #ifdef CONFIG_HUGETLB_PAGE
  356. ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
  357. ia64_srlz_d();
  358. #endif
  359. }
  360. #ifdef CONFIG_VIRTUAL_MEM_MAP
  361. int
  362. create_mem_map_page_table (u64 start, u64 end, void *arg)
  363. {
  364. unsigned long address, start_page, end_page;
  365. struct page *map_start, *map_end;
  366. int node;
  367. pgd_t *pgd;
  368. pud_t *pud;
  369. pmd_t *pmd;
  370. pte_t *pte;
  371. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  372. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  373. start_page = (unsigned long) map_start & PAGE_MASK;
  374. end_page = PAGE_ALIGN((unsigned long) map_end);
  375. node = paddr_to_nid(__pa(start));
  376. for (address = start_page; address < end_page; address += PAGE_SIZE) {
  377. pgd = pgd_offset_k(address);
  378. if (pgd_none(*pgd))
  379. pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  380. pud = pud_offset(pgd, address);
  381. if (pud_none(*pud))
  382. pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  383. pmd = pmd_offset(pud, address);
  384. if (pmd_none(*pmd))
  385. pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  386. pte = pte_offset_kernel(pmd, address);
  387. if (pte_none(*pte))
  388. set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
  389. PAGE_KERNEL));
  390. }
  391. return 0;
  392. }
  393. struct memmap_init_callback_data {
  394. struct page *start;
  395. struct page *end;
  396. int nid;
  397. unsigned long zone;
  398. };
  399. static int
  400. virtual_memmap_init (u64 start, u64 end, void *arg)
  401. {
  402. struct memmap_init_callback_data *args;
  403. struct page *map_start, *map_end;
  404. args = (struct memmap_init_callback_data *) arg;
  405. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  406. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  407. if (map_start < args->start)
  408. map_start = args->start;
  409. if (map_end > args->end)
  410. map_end = args->end;
  411. /*
  412. * We have to initialize "out of bounds" struct page elements that fit completely
  413. * on the same pages that were allocated for the "in bounds" elements because they
  414. * may be referenced later (and found to be "reserved").
  415. */
  416. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
  417. map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
  418. / sizeof(struct page));
  419. if (map_start < map_end)
  420. memmap_init_zone((unsigned long)(map_end - map_start),
  421. args->nid, args->zone, page_to_pfn(map_start));
  422. return 0;
  423. }
  424. void
  425. memmap_init (unsigned long size, int nid, unsigned long zone,
  426. unsigned long start_pfn)
  427. {
  428. if (!vmem_map)
  429. memmap_init_zone(size, nid, zone, start_pfn);
  430. else {
  431. struct page *start;
  432. struct memmap_init_callback_data args;
  433. start = pfn_to_page(start_pfn);
  434. args.start = start;
  435. args.end = start + size;
  436. args.nid = nid;
  437. args.zone = zone;
  438. efi_memmap_walk(virtual_memmap_init, &args);
  439. }
  440. }
  441. int
  442. ia64_pfn_valid (unsigned long pfn)
  443. {
  444. char byte;
  445. struct page *pg = pfn_to_page(pfn);
  446. return (__get_user(byte, (char __user *) pg) == 0)
  447. && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
  448. || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
  449. }
  450. EXPORT_SYMBOL(ia64_pfn_valid);
  451. int
  452. find_largest_hole (u64 start, u64 end, void *arg)
  453. {
  454. u64 *max_gap = arg;
  455. static u64 last_end = PAGE_OFFSET;
  456. /* NOTE: this algorithm assumes efi memmap table is ordered */
  457. if (*max_gap < (start - last_end))
  458. *max_gap = start - last_end;
  459. last_end = end;
  460. return 0;
  461. }
  462. #endif /* CONFIG_VIRTUAL_MEM_MAP */
  463. static int
  464. count_reserved_pages (u64 start, u64 end, void *arg)
  465. {
  466. unsigned long num_reserved = 0;
  467. unsigned long *count = arg;
  468. for (; start < end; start += PAGE_SIZE)
  469. if (PageReserved(virt_to_page(start)))
  470. ++num_reserved;
  471. *count += num_reserved;
  472. return 0;
  473. }
  474. /*
  475. * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
  476. * system call handler. When this option is in effect, all fsyscalls will end up bubbling
  477. * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
  478. * useful for performance testing, but conceivably could also come in handy for debugging
  479. * purposes.
  480. */
  481. static int nolwsys;
  482. static int __init
  483. nolwsys_setup (char *s)
  484. {
  485. nolwsys = 1;
  486. return 1;
  487. }
  488. __setup("nolwsys", nolwsys_setup);
  489. void
  490. mem_init (void)
  491. {
  492. long reserved_pages, codesize, datasize, initsize;
  493. pg_data_t *pgdat;
  494. int i;
  495. static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
  496. BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
  497. BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
  498. BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
  499. #ifdef CONFIG_PCI
  500. /*
  501. * This needs to be called _after_ the command line has been parsed but _before_
  502. * any drivers that may need the PCI DMA interface are initialized or bootmem has
  503. * been freed.
  504. */
  505. platform_dma_init();
  506. #endif
  507. #ifdef CONFIG_FLATMEM
  508. if (!mem_map)
  509. BUG();
  510. max_mapnr = max_low_pfn;
  511. #endif
  512. high_memory = __va(max_low_pfn * PAGE_SIZE);
  513. kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
  514. kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
  515. kclist_add(&kcore_kernel, _stext, _end - _stext);
  516. for_each_pgdat(pgdat)
  517. if (pgdat->bdata->node_bootmem_map)
  518. totalram_pages += free_all_bootmem_node(pgdat);
  519. reserved_pages = 0;
  520. efi_memmap_walk(count_reserved_pages, &reserved_pages);
  521. codesize = (unsigned long) _etext - (unsigned long) _stext;
  522. datasize = (unsigned long) _edata - (unsigned long) _etext;
  523. initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
  524. printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
  525. "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
  526. num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
  527. reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
  528. /*
  529. * For fsyscall entrpoints with no light-weight handler, use the ordinary
  530. * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
  531. * code can tell them apart.
  532. */
  533. for (i = 0; i < NR_syscalls; ++i) {
  534. extern unsigned long fsyscall_table[NR_syscalls];
  535. extern unsigned long sys_call_table[NR_syscalls];
  536. if (!fsyscall_table[i] || nolwsys)
  537. fsyscall_table[i] = sys_call_table[i] | 1;
  538. }
  539. setup_gate();
  540. #ifdef CONFIG_IA32_SUPPORT
  541. ia32_mem_init();
  542. #endif
  543. }
  544. #ifdef CONFIG_MEMORY_HOTPLUG
  545. void online_page(struct page *page)
  546. {
  547. ClearPageReserved(page);
  548. set_page_count(page, 1);
  549. __free_page(page);
  550. totalram_pages++;
  551. num_physpages++;
  552. }
  553. int add_memory(u64 start, u64 size)
  554. {
  555. pg_data_t *pgdat;
  556. struct zone *zone;
  557. unsigned long start_pfn = start >> PAGE_SHIFT;
  558. unsigned long nr_pages = size >> PAGE_SHIFT;
  559. int ret;
  560. pgdat = NODE_DATA(0);
  561. zone = pgdat->node_zones + ZONE_NORMAL;
  562. ret = __add_pages(zone, start_pfn, nr_pages);
  563. if (ret)
  564. printk("%s: Problem encountered in __add_pages() as ret=%d\n",
  565. __FUNCTION__, ret);
  566. return ret;
  567. }
  568. int remove_memory(u64 start, u64 size)
  569. {
  570. return -EINVAL;
  571. }
  572. #endif