123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750 |
- /*
- * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
- * Copyright (c) 2001 Intel Corp.
- * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
- * Copyright (c) 2002 NEC Corp.
- * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
- * Copyright (c) 2004 Silicon Graphics, Inc
- * Russ Anderson <rja@sgi.com>
- * Jesse Barnes <jbarnes@sgi.com>
- * Jack Steiner <steiner@sgi.com>
- */
- /*
- * Platform initialization for Discontig Memory
- */
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/bootmem.h>
- #include <linux/acpi.h>
- #include <linux/efi.h>
- #include <linux/nodemask.h>
- #include <asm/pgalloc.h>
- #include <asm/tlb.h>
- #include <asm/meminit.h>
- #include <asm/numa.h>
- #include <asm/sections.h>
- /*
- * Track per-node information needed to setup the boot memory allocator, the
- * per-node areas, and the real VM.
- */
- struct early_node_data {
- struct ia64_node_data *node_data;
- pg_data_t *pgdat;
- unsigned long pernode_addr;
- unsigned long pernode_size;
- struct bootmem_data bootmem_data;
- unsigned long num_physpages;
- unsigned long num_dma_physpages;
- unsigned long min_pfn;
- unsigned long max_pfn;
- };
- static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
- static nodemask_t memory_less_mask __initdata;
- /*
- * To prevent cache aliasing effects, align per-node structures so that they
- * start at addresses that are strided by node number.
- */
- #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
- #define NODEDATA_ALIGN(addr, node) \
- ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
- (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
- /**
- * build_node_maps - callback to setup bootmem structs for each node
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * We allocate a struct bootmem_data for each piece of memory that we wish to
- * treat as a virtually contiguous block (i.e. each node). Each such block
- * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
- * if necessary. Any non-existent pages will simply be part of the virtual
- * memmap. We also update min_low_pfn and max_low_pfn here as we receive
- * memory ranges from the caller.
- */
- static int __init build_node_maps(unsigned long start, unsigned long len,
- int node)
- {
- unsigned long cstart, epfn, end = start + len;
- struct bootmem_data *bdp = &mem_data[node].bootmem_data;
- epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
- cstart = GRANULEROUNDDOWN(start);
- if (!bdp->node_low_pfn) {
- bdp->node_boot_start = cstart;
- bdp->node_low_pfn = epfn;
- } else {
- bdp->node_boot_start = min(cstart, bdp->node_boot_start);
- bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
- }
- min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
- max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
- return 0;
- }
- /**
- * early_nr_cpus_node - return number of cpus on a given node
- * @node: node to check
- *
- * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
- * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
- * called yet. Note that node 0 will also count all non-existent cpus.
- */
- static int __init early_nr_cpus_node(int node)
- {
- int cpu, n = 0;
- for (cpu = 0; cpu < NR_CPUS; cpu++)
- if (node == node_cpuid[cpu].nid)
- n++;
- return n;
- }
- /**
- * compute_pernodesize - compute size of pernode data
- * @node: the node id.
- */
- static unsigned long __init compute_pernodesize(int node)
- {
- unsigned long pernodesize = 0, cpus;
- cpus = early_nr_cpus_node(node);
- pernodesize += PERCPU_PAGE_SIZE * cpus;
- pernodesize += node * L1_CACHE_BYTES;
- pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
- pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
- pernodesize = PAGE_ALIGN(pernodesize);
- return pernodesize;
- }
- /**
- * per_cpu_node_setup - setup per-cpu areas on each node
- * @cpu_data: per-cpu area on this node
- * @node: node to setup
- *
- * Copy the static per-cpu data into the region we just set aside and then
- * setup __per_cpu_offset for each CPU on this node. Return a pointer to
- * the end of the area.
- */
- static void *per_cpu_node_setup(void *cpu_data, int node)
- {
- #ifdef CONFIG_SMP
- int cpu;
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
- if (node == node_cpuid[cpu].nid) {
- memcpy(__va(cpu_data), __phys_per_cpu_start,
- __per_cpu_end - __per_cpu_start);
- __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
- __per_cpu_start;
- cpu_data += PERCPU_PAGE_SIZE;
- }
- }
- #endif
- return cpu_data;
- }
- /**
- * fill_pernode - initialize pernode data.
- * @node: the node id.
- * @pernode: physical address of pernode data
- * @pernodesize: size of the pernode data
- */
- static void __init fill_pernode(int node, unsigned long pernode,
- unsigned long pernodesize)
- {
- void *cpu_data;
- int cpus = early_nr_cpus_node(node);
- struct bootmem_data *bdp = &mem_data[node].bootmem_data;
- mem_data[node].pernode_addr = pernode;
- mem_data[node].pernode_size = pernodesize;
- memset(__va(pernode), 0, pernodesize);
- cpu_data = (void *)pernode;
- pernode += PERCPU_PAGE_SIZE * cpus;
- pernode += node * L1_CACHE_BYTES;
- mem_data[node].pgdat = __va(pernode);
- pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
- mem_data[node].node_data = __va(pernode);
- pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
- mem_data[node].pgdat->bdata = bdp;
- pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
- cpu_data = per_cpu_node_setup(cpu_data, node);
- return;
- }
- /**
- * find_pernode_space - allocate memory for memory map and per-node structures
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * This routine reserves space for the per-cpu data struct, the list of
- * pg_data_ts and the per-node data struct. Each node will have something like
- * the following in the first chunk of addr. space large enough to hold it.
- *
- * ________________________
- * | |
- * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
- * | PERCPU_PAGE_SIZE * | start and length big enough
- * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
- * |------------------------|
- * | local pg_data_t * |
- * |------------------------|
- * | local ia64_node_data |
- * |------------------------|
- * | ??? |
- * |________________________|
- *
- * Once this space has been set aside, the bootmem maps are initialized. We
- * could probably move the allocation of the per-cpu and ia64_node_data space
- * outside of this function and use alloc_bootmem_node(), but doing it here
- * is straightforward and we get the alignments we want so...
- */
- static int __init find_pernode_space(unsigned long start, unsigned long len,
- int node)
- {
- unsigned long epfn;
- unsigned long pernodesize = 0, pernode, pages, mapsize;
- struct bootmem_data *bdp = &mem_data[node].bootmem_data;
- epfn = (start + len) >> PAGE_SHIFT;
- pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
- mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
- /*
- * Make sure this memory falls within this node's usable memory
- * since we may have thrown some away in build_maps().
- */
- if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
- return 0;
- /* Don't setup this node's local space twice... */
- if (mem_data[node].pernode_addr)
- return 0;
- /*
- * Calculate total size needed, incl. what's necessary
- * for good alignment and alias prevention.
- */
- pernodesize = compute_pernodesize(node);
- pernode = NODEDATA_ALIGN(start, node);
- /* Is this range big enough for what we want to store here? */
- if (start + len > (pernode + pernodesize + mapsize))
- fill_pernode(node, pernode, pernodesize);
- return 0;
- }
- /**
- * free_node_bootmem - free bootmem allocator memory for use
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * Simply calls the bootmem allocator to free the specified ranged from
- * the given pg_data_t's bdata struct. After this function has been called
- * for all the entries in the EFI memory map, the bootmem allocator will
- * be ready to service allocation requests.
- */
- static int __init free_node_bootmem(unsigned long start, unsigned long len,
- int node)
- {
- free_bootmem_node(mem_data[node].pgdat, start, len);
- return 0;
- }
- /**
- * reserve_pernode_space - reserve memory for per-node space
- *
- * Reserve the space used by the bootmem maps & per-node space in the boot
- * allocator so that when we actually create the real mem maps we don't
- * use their memory.
- */
- static void __init reserve_pernode_space(void)
- {
- unsigned long base, size, pages;
- struct bootmem_data *bdp;
- int node;
- for_each_online_node(node) {
- pg_data_t *pdp = mem_data[node].pgdat;
- if (node_isset(node, memory_less_mask))
- continue;
- bdp = pdp->bdata;
- /* First the bootmem_map itself */
- pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
- size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
- base = __pa(bdp->node_bootmem_map);
- reserve_bootmem_node(pdp, base, size);
- /* Now the per-node space */
- size = mem_data[node].pernode_size;
- base = __pa(mem_data[node].pernode_addr);
- reserve_bootmem_node(pdp, base, size);
- }
- }
- /**
- * initialize_pernode_data - fixup per-cpu & per-node pointers
- *
- * Each node's per-node area has a copy of the global pg_data_t list, so
- * we copy that to each node here, as well as setting the per-cpu pointer
- * to the local node data structure. The active_cpus field of the per-node
- * structure gets setup by the platform_cpu_init() function later.
- */
- static void __init initialize_pernode_data(void)
- {
- pg_data_t *pgdat_list[MAX_NUMNODES];
- int cpu, node;
- for_each_online_node(node)
- pgdat_list[node] = mem_data[node].pgdat;
- /* Copy the pg_data_t list to each node and init the node field */
- for_each_online_node(node) {
- memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
- sizeof(pgdat_list));
- }
- #ifdef CONFIG_SMP
- /* Set the node_data pointer for each per-cpu struct */
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
- node = node_cpuid[cpu].nid;
- per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
- }
- #else
- {
- struct cpuinfo_ia64 *cpu0_cpu_info;
- cpu = 0;
- node = node_cpuid[cpu].nid;
- cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
- ((char *)&per_cpu__cpu_info - __per_cpu_start));
- cpu0_cpu_info->node_data = mem_data[node].node_data;
- }
- #endif /* CONFIG_SMP */
- }
- /**
- * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
- * node but fall back to any other node when __alloc_bootmem_node fails
- * for best.
- * @nid: node id
- * @pernodesize: size of this node's pernode data
- */
- static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
- {
- void *ptr = NULL;
- u8 best = 0xff;
- int bestnode = -1, node, anynode = 0;
- for_each_online_node(node) {
- if (node_isset(node, memory_less_mask))
- continue;
- else if (node_distance(nid, node) < best) {
- best = node_distance(nid, node);
- bestnode = node;
- }
- anynode = node;
- }
- if (bestnode == -1)
- bestnode = anynode;
- ptr = __alloc_bootmem_node(mem_data[bestnode].pgdat, pernodesize,
- PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
- return ptr;
- }
- /**
- * pgdat_insert - insert the pgdat into global pgdat_list
- * @pgdat: the pgdat for a node.
- */
- static void __init pgdat_insert(pg_data_t *pgdat)
- {
- pg_data_t *prev = NULL, *next;
- for_each_pgdat(next)
- if (pgdat->node_id < next->node_id)
- break;
- else
- prev = next;
- if (prev) {
- prev->pgdat_next = pgdat;
- pgdat->pgdat_next = next;
- } else {
- pgdat->pgdat_next = pgdat_list;
- pgdat_list = pgdat;
- }
- return;
- }
- /**
- * memory_less_nodes - allocate and initialize CPU only nodes pernode
- * information.
- */
- static void __init memory_less_nodes(void)
- {
- unsigned long pernodesize;
- void *pernode;
- int node;
- for_each_node_mask(node, memory_less_mask) {
- pernodesize = compute_pernodesize(node);
- pernode = memory_less_node_alloc(node, pernodesize);
- fill_pernode(node, __pa(pernode), pernodesize);
- }
- return;
- }
- #ifdef CONFIG_SPARSEMEM
- /**
- * register_sparse_mem - notify SPARSEMEM that this memory range exists.
- * @start: physical start of range
- * @end: physical end of range
- * @arg: unused
- *
- * Simply calls SPARSEMEM to register memory section(s).
- */
- static int __init register_sparse_mem(unsigned long start, unsigned long end,
- void *arg)
- {
- int nid;
- start = __pa(start) >> PAGE_SHIFT;
- end = __pa(end) >> PAGE_SHIFT;
- nid = early_pfn_to_nid(start);
- memory_present(nid, start, end);
- return 0;
- }
- static void __init arch_sparse_init(void)
- {
- efi_memmap_walk(register_sparse_mem, NULL);
- sparse_init();
- }
- #else
- #define arch_sparse_init() do {} while (0)
- #endif
- /**
- * find_memory - walk the EFI memory map and setup the bootmem allocator
- *
- * Called early in boot to setup the bootmem allocator, and to
- * allocate the per-cpu and per-node structures.
- */
- void __init find_memory(void)
- {
- int node;
- reserve_memory();
- if (num_online_nodes() == 0) {
- printk(KERN_ERR "node info missing!\n");
- node_set_online(0);
- }
- nodes_or(memory_less_mask, memory_less_mask, node_online_map);
- min_low_pfn = -1;
- max_low_pfn = 0;
- /* These actually end up getting called by call_pernode_memory() */
- efi_memmap_walk(filter_rsvd_memory, build_node_maps);
- efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
- for_each_online_node(node)
- if (mem_data[node].bootmem_data.node_low_pfn) {
- node_clear(node, memory_less_mask);
- mem_data[node].min_pfn = ~0UL;
- }
- /*
- * Initialize the boot memory maps in reverse order since that's
- * what the bootmem allocator expects
- */
- for (node = MAX_NUMNODES - 1; node >= 0; node--) {
- unsigned long pernode, pernodesize, map;
- struct bootmem_data *bdp;
- if (!node_online(node))
- continue;
- else if (node_isset(node, memory_less_mask))
- continue;
- bdp = &mem_data[node].bootmem_data;
- pernode = mem_data[node].pernode_addr;
- pernodesize = mem_data[node].pernode_size;
- map = pernode + pernodesize;
- init_bootmem_node(mem_data[node].pgdat,
- map>>PAGE_SHIFT,
- bdp->node_boot_start>>PAGE_SHIFT,
- bdp->node_low_pfn);
- }
- efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
- reserve_pernode_space();
- memory_less_nodes();
- initialize_pernode_data();
- max_pfn = max_low_pfn;
- find_initrd();
- }
- #ifdef CONFIG_SMP
- /**
- * per_cpu_init - setup per-cpu variables
- *
- * find_pernode_space() does most of this already, we just need to set
- * local_per_cpu_offset
- */
- void *per_cpu_init(void)
- {
- int cpu;
- if (smp_processor_id() != 0)
- return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
- for (cpu = 0; cpu < NR_CPUS; cpu++)
- per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
- return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
- }
- #endif /* CONFIG_SMP */
- /**
- * show_mem - give short summary of memory stats
- *
- * Shows a simple page count of reserved and used pages in the system.
- * For discontig machines, it does this on a per-pgdat basis.
- */
- void show_mem(void)
- {
- int i, total_reserved = 0;
- int total_shared = 0, total_cached = 0;
- unsigned long total_present = 0;
- pg_data_t *pgdat;
- printk("Mem-info:\n");
- show_free_areas();
- printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
- for_each_pgdat(pgdat) {
- unsigned long present;
- unsigned long flags;
- int shared = 0, cached = 0, reserved = 0;
- printk("Node ID: %d\n", pgdat->node_id);
- pgdat_resize_lock(pgdat, &flags);
- present = pgdat->node_present_pages;
- for(i = 0; i < pgdat->node_spanned_pages; i++) {
- struct page *page;
- if (pfn_valid(pgdat->node_start_pfn + i))
- page = pfn_to_page(pgdat->node_start_pfn + i);
- else
- continue;
- if (PageReserved(page))
- reserved++;
- else if (PageSwapCache(page))
- cached++;
- else if (page_count(page))
- shared += page_count(page)-1;
- }
- pgdat_resize_unlock(pgdat, &flags);
- total_present += present;
- total_reserved += reserved;
- total_cached += cached;
- total_shared += shared;
- printk("\t%ld pages of RAM\n", present);
- printk("\t%d reserved pages\n", reserved);
- printk("\t%d pages shared\n", shared);
- printk("\t%d pages swap cached\n", cached);
- }
- printk("%ld pages of RAM\n", total_present);
- printk("%d reserved pages\n", total_reserved);
- printk("%d pages shared\n", total_shared);
- printk("%d pages swap cached\n", total_cached);
- printk("Total of %ld pages in page table cache\n",
- pgtable_quicklist_total_size());
- printk("%d free buffer pages\n", nr_free_buffer_pages());
- }
- /**
- * call_pernode_memory - use SRAT to call callback functions with node info
- * @start: physical start of range
- * @len: length of range
- * @arg: function to call for each range
- *
- * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
- * out to which node a block of memory belongs. Ignore memory that we cannot
- * identify, and split blocks that run across multiple nodes.
- *
- * Take this opportunity to round the start address up and the end address
- * down to page boundaries.
- */
- void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
- {
- unsigned long rs, re, end = start + len;
- void (*func)(unsigned long, unsigned long, int);
- int i;
- start = PAGE_ALIGN(start);
- end &= PAGE_MASK;
- if (start >= end)
- return;
- func = arg;
- if (!num_node_memblks) {
- /* No SRAT table, so assume one node (node 0) */
- if (start < end)
- (*func)(start, end - start, 0);
- return;
- }
- for (i = 0; i < num_node_memblks; i++) {
- rs = max(start, node_memblk[i].start_paddr);
- re = min(end, node_memblk[i].start_paddr +
- node_memblk[i].size);
- if (rs < re)
- (*func)(rs, re - rs, node_memblk[i].nid);
- if (re == end)
- break;
- }
- }
- /**
- * count_node_pages - callback to build per-node memory info structures
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * Each node has it's own number of physical pages, DMAable pages, start, and
- * end page frame number. This routine will be called by call_pernode_memory()
- * for each piece of usable memory and will setup these values for each node.
- * Very similar to build_maps().
- */
- static __init int count_node_pages(unsigned long start, unsigned long len, int node)
- {
- unsigned long end = start + len;
- mem_data[node].num_physpages += len >> PAGE_SHIFT;
- if (start <= __pa(MAX_DMA_ADDRESS))
- mem_data[node].num_dma_physpages +=
- (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
- start = GRANULEROUNDDOWN(start);
- start = ORDERROUNDDOWN(start);
- end = GRANULEROUNDUP(end);
- mem_data[node].max_pfn = max(mem_data[node].max_pfn,
- end >> PAGE_SHIFT);
- mem_data[node].min_pfn = min(mem_data[node].min_pfn,
- start >> PAGE_SHIFT);
- return 0;
- }
- /**
- * paging_init - setup page tables
- *
- * paging_init() sets up the page tables for each node of the system and frees
- * the bootmem allocator memory for general use.
- */
- void __init paging_init(void)
- {
- unsigned long max_dma;
- unsigned long zones_size[MAX_NR_ZONES];
- unsigned long zholes_size[MAX_NR_ZONES];
- unsigned long pfn_offset = 0;
- int node;
- max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
- arch_sparse_init();
- efi_memmap_walk(filter_rsvd_memory, count_node_pages);
- #ifdef CONFIG_VIRTUAL_MEM_MAP
- vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page));
- vmem_map = (struct page *) vmalloc_end;
- efi_memmap_walk(create_mem_map_page_table, NULL);
- printk("Virtual mem_map starts at 0x%p\n", vmem_map);
- #endif
- for_each_online_node(node) {
- memset(zones_size, 0, sizeof(zones_size));
- memset(zholes_size, 0, sizeof(zholes_size));
- num_physpages += mem_data[node].num_physpages;
- if (mem_data[node].min_pfn >= max_dma) {
- /* All of this node's memory is above ZONE_DMA */
- zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
- mem_data[node].min_pfn;
- zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
- mem_data[node].min_pfn -
- mem_data[node].num_physpages;
- } else if (mem_data[node].max_pfn < max_dma) {
- /* All of this node's memory is in ZONE_DMA */
- zones_size[ZONE_DMA] = mem_data[node].max_pfn -
- mem_data[node].min_pfn;
- zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
- mem_data[node].min_pfn -
- mem_data[node].num_dma_physpages;
- } else {
- /* This node has memory in both zones */
- zones_size[ZONE_DMA] = max_dma -
- mem_data[node].min_pfn;
- zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
- mem_data[node].num_dma_physpages;
- zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
- max_dma;
- zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
- (mem_data[node].num_physpages -
- mem_data[node].num_dma_physpages);
- }
- pfn_offset = mem_data[node].min_pfn;
- #ifdef CONFIG_VIRTUAL_MEM_MAP
- NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
- #endif
- free_area_init_node(node, NODE_DATA(node), zones_size,
- pfn_offset, zholes_size);
- }
- /*
- * Make memory less nodes become a member of the known nodes.
- */
- for_each_node_mask(node, memory_less_mask)
- pgdat_insert(mem_data[node].pgdat);
- zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
- }
|