salinfo.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. /*
  2. * salinfo.c
  3. *
  4. * Creates entries in /proc/sal for various system features.
  5. *
  6. * Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved.
  7. * Copyright (c) 2003 Hewlett-Packard Co
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. *
  10. * 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
  11. * code to create this file
  12. * Oct 23 2003 kaos@sgi.com
  13. * Replace IPI with set_cpus_allowed() to read a record from the required cpu.
  14. * Redesign salinfo log processing to separate interrupt and user space
  15. * contexts.
  16. * Cache the record across multi-block reads from user space.
  17. * Support > 64 cpus.
  18. * Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
  19. *
  20. * Jan 28 2004 kaos@sgi.com
  21. * Periodically check for outstanding MCA or INIT records.
  22. *
  23. * Dec 5 2004 kaos@sgi.com
  24. * Standardize which records are cleared automatically.
  25. *
  26. * Aug 18 2005 kaos@sgi.com
  27. * mca.c may not pass a buffer, a NULL buffer just indicates that a new
  28. * record is available in SAL.
  29. * Replace some NR_CPUS by cpus_online, for hotplug cpu.
  30. *
  31. * Jan 5 2006 kaos@sgi.com
  32. * Handle hotplug cpus coming online.
  33. * Handle hotplug cpus going offline while they still have outstanding records.
  34. * Use the cpu_* macros consistently.
  35. * Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
  36. * Modify the locking to make the test for "work to do" an atomic operation.
  37. */
  38. #include <linux/capability.h>
  39. #include <linux/cpu.h>
  40. #include <linux/types.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/module.h>
  43. #include <linux/smp.h>
  44. #include <linux/smp_lock.h>
  45. #include <linux/timer.h>
  46. #include <linux/vmalloc.h>
  47. #include <asm/semaphore.h>
  48. #include <asm/sal.h>
  49. #include <asm/uaccess.h>
  50. MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
  51. MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
  52. MODULE_LICENSE("GPL");
  53. static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
  54. typedef struct {
  55. const char *name; /* name of the proc entry */
  56. unsigned long feature; /* feature bit */
  57. struct proc_dir_entry *entry; /* registered entry (removal) */
  58. } salinfo_entry_t;
  59. /*
  60. * List {name,feature} pairs for every entry in /proc/sal/<feature>
  61. * that this module exports
  62. */
  63. static salinfo_entry_t salinfo_entries[]={
  64. { "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
  65. { "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
  66. { "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
  67. { "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
  68. };
  69. #define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
  70. static char *salinfo_log_name[] = {
  71. "mca",
  72. "init",
  73. "cmc",
  74. "cpe",
  75. };
  76. static struct proc_dir_entry *salinfo_proc_entries[
  77. ARRAY_SIZE(salinfo_entries) + /* /proc/sal/bus_lock */
  78. ARRAY_SIZE(salinfo_log_name) + /* /proc/sal/{mca,...} */
  79. (2 * ARRAY_SIZE(salinfo_log_name)) + /* /proc/sal/mca/{event,data} */
  80. 1]; /* /proc/sal */
  81. /* Some records we get ourselves, some are accessed as saved data in buffers
  82. * that are owned by mca.c.
  83. */
  84. struct salinfo_data_saved {
  85. u8* buffer;
  86. u64 size;
  87. u64 id;
  88. int cpu;
  89. };
  90. /* State transitions. Actions are :-
  91. * Write "read <cpunum>" to the data file.
  92. * Write "clear <cpunum>" to the data file.
  93. * Write "oemdata <cpunum> <offset> to the data file.
  94. * Read from the data file.
  95. * Close the data file.
  96. *
  97. * Start state is NO_DATA.
  98. *
  99. * NO_DATA
  100. * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
  101. * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
  102. * write "oemdata <cpunum> <offset> -> return -EINVAL.
  103. * read data -> return EOF.
  104. * close -> unchanged. Free record areas.
  105. *
  106. * LOG_RECORD
  107. * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
  108. * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
  109. * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
  110. * read data -> return the INIT/MCA/CMC/CPE record.
  111. * close -> unchanged. Keep record areas.
  112. *
  113. * OEMDATA
  114. * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
  115. * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
  116. * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
  117. * read data -> return the formatted oemdata.
  118. * close -> unchanged. Keep record areas.
  119. *
  120. * Closing the data file does not change the state. This allows shell scripts
  121. * to manipulate salinfo data, each shell redirection opens the file, does one
  122. * action then closes it again. The record areas are only freed at close when
  123. * the state is NO_DATA.
  124. */
  125. enum salinfo_state {
  126. STATE_NO_DATA,
  127. STATE_LOG_RECORD,
  128. STATE_OEMDATA,
  129. };
  130. struct salinfo_data {
  131. cpumask_t cpu_event; /* which cpus have outstanding events */
  132. struct semaphore mutex;
  133. u8 *log_buffer;
  134. u64 log_size;
  135. u8 *oemdata; /* decoded oem data */
  136. u64 oemdata_size;
  137. int open; /* single-open to prevent races */
  138. u8 type;
  139. u8 saved_num; /* using a saved record? */
  140. enum salinfo_state state :8; /* processing state */
  141. u8 padding;
  142. int cpu_check; /* next CPU to check */
  143. struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
  144. };
  145. static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
  146. static DEFINE_SPINLOCK(data_lock);
  147. static DEFINE_SPINLOCK(data_saved_lock);
  148. /** salinfo_platform_oemdata - optional callback to decode oemdata from an error
  149. * record.
  150. * @sect_header: pointer to the start of the section to decode.
  151. * @oemdata: returns vmalloc area containing the decded output.
  152. * @oemdata_size: returns length of decoded output (strlen).
  153. *
  154. * Description: If user space asks for oem data to be decoded by the kernel
  155. * and/or prom and the platform has set salinfo_platform_oemdata to the address
  156. * of a platform specific routine then call that routine. salinfo_platform_oemdata
  157. * vmalloc's and formats its output area, returning the address of the text
  158. * and its strlen. Returns 0 for success, -ve for error. The callback is
  159. * invoked on the cpu that generated the error record.
  160. */
  161. int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
  162. struct salinfo_platform_oemdata_parms {
  163. const u8 *efi_guid;
  164. u8 **oemdata;
  165. u64 *oemdata_size;
  166. int ret;
  167. };
  168. /* Kick the mutex that tells user space that there is work to do. Instead of
  169. * trying to track the state of the mutex across multiple cpus, in user
  170. * context, interrupt context, non-maskable interrupt context and hotplug cpu,
  171. * it is far easier just to grab the mutex if it is free then release it.
  172. *
  173. * This routine must be called with data_saved_lock held, to make the down/up
  174. * operation atomic.
  175. */
  176. static void
  177. salinfo_work_to_do(struct salinfo_data *data)
  178. {
  179. down_trylock(&data->mutex);
  180. up(&data->mutex);
  181. }
  182. static void
  183. salinfo_platform_oemdata_cpu(void *context)
  184. {
  185. struct salinfo_platform_oemdata_parms *parms = context;
  186. parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
  187. }
  188. static void
  189. shift1_data_saved (struct salinfo_data *data, int shift)
  190. {
  191. memcpy(data->data_saved+shift, data->data_saved+shift+1,
  192. (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
  193. memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
  194. sizeof(data->data_saved[0]));
  195. }
  196. /* This routine is invoked in interrupt context. Note: mca.c enables
  197. * interrupts before calling this code for CMC/CPE. MCA and INIT events are
  198. * not irq safe, do not call any routines that use spinlocks, they may deadlock.
  199. * MCA and INIT records are recorded, a timer event will look for any
  200. * outstanding events and wake up the user space code.
  201. *
  202. * The buffer passed from mca.c points to the output from ia64_log_get. This is
  203. * a persistent buffer but its contents can change between the interrupt and
  204. * when user space processes the record. Save the record id to identify
  205. * changes. If the buffer is NULL then just update the bitmap.
  206. */
  207. void
  208. salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
  209. {
  210. struct salinfo_data *data = salinfo_data + type;
  211. struct salinfo_data_saved *data_saved;
  212. unsigned long flags = 0;
  213. int i;
  214. int saved_size = ARRAY_SIZE(data->data_saved);
  215. BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
  216. if (irqsafe)
  217. spin_lock_irqsave(&data_saved_lock, flags);
  218. if (buffer) {
  219. for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
  220. if (!data_saved->buffer)
  221. break;
  222. }
  223. if (i == saved_size) {
  224. if (!data->saved_num) {
  225. shift1_data_saved(data, 0);
  226. data_saved = data->data_saved + saved_size - 1;
  227. } else
  228. data_saved = NULL;
  229. }
  230. if (data_saved) {
  231. data_saved->cpu = smp_processor_id();
  232. data_saved->id = ((sal_log_record_header_t *)buffer)->id;
  233. data_saved->size = size;
  234. data_saved->buffer = buffer;
  235. }
  236. }
  237. cpu_set(smp_processor_id(), data->cpu_event);
  238. if (irqsafe) {
  239. salinfo_work_to_do(data);
  240. spin_unlock_irqrestore(&data_saved_lock, flags);
  241. }
  242. }
  243. /* Check for outstanding MCA/INIT records every minute (arbitrary) */
  244. #define SALINFO_TIMER_DELAY (60*HZ)
  245. static struct timer_list salinfo_timer;
  246. static void
  247. salinfo_timeout_check(struct salinfo_data *data)
  248. {
  249. unsigned long flags;
  250. if (!data->open)
  251. return;
  252. if (!cpus_empty(data->cpu_event)) {
  253. spin_lock_irqsave(&data_saved_lock, flags);
  254. salinfo_work_to_do(data);
  255. spin_unlock_irqrestore(&data_saved_lock, flags);
  256. }
  257. }
  258. static void
  259. salinfo_timeout (unsigned long arg)
  260. {
  261. salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
  262. salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
  263. salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
  264. add_timer(&salinfo_timer);
  265. }
  266. static int
  267. salinfo_event_open(struct inode *inode, struct file *file)
  268. {
  269. if (!capable(CAP_SYS_ADMIN))
  270. return -EPERM;
  271. return 0;
  272. }
  273. static ssize_t
  274. salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
  275. {
  276. struct inode *inode = file->f_dentry->d_inode;
  277. struct proc_dir_entry *entry = PDE(inode);
  278. struct salinfo_data *data = entry->data;
  279. char cmd[32];
  280. size_t size;
  281. int i, n, cpu = -1;
  282. retry:
  283. if (cpus_empty(data->cpu_event) && down_trylock(&data->mutex)) {
  284. if (file->f_flags & O_NONBLOCK)
  285. return -EAGAIN;
  286. if (down_interruptible(&data->mutex))
  287. return -EINTR;
  288. }
  289. n = data->cpu_check;
  290. for (i = 0; i < NR_CPUS; i++) {
  291. if (cpu_isset(n, data->cpu_event)) {
  292. if (!cpu_online(n)) {
  293. cpu_clear(n, data->cpu_event);
  294. continue;
  295. }
  296. cpu = n;
  297. break;
  298. }
  299. if (++n == NR_CPUS)
  300. n = 0;
  301. }
  302. if (cpu == -1)
  303. goto retry;
  304. /* for next read, start checking at next CPU */
  305. data->cpu_check = cpu;
  306. if (++data->cpu_check == NR_CPUS)
  307. data->cpu_check = 0;
  308. snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
  309. size = strlen(cmd);
  310. if (size > count)
  311. size = count;
  312. if (copy_to_user(buffer, cmd, size))
  313. return -EFAULT;
  314. return size;
  315. }
  316. static struct file_operations salinfo_event_fops = {
  317. .open = salinfo_event_open,
  318. .read = salinfo_event_read,
  319. };
  320. static int
  321. salinfo_log_open(struct inode *inode, struct file *file)
  322. {
  323. struct proc_dir_entry *entry = PDE(inode);
  324. struct salinfo_data *data = entry->data;
  325. if (!capable(CAP_SYS_ADMIN))
  326. return -EPERM;
  327. spin_lock(&data_lock);
  328. if (data->open) {
  329. spin_unlock(&data_lock);
  330. return -EBUSY;
  331. }
  332. data->open = 1;
  333. spin_unlock(&data_lock);
  334. if (data->state == STATE_NO_DATA &&
  335. !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
  336. data->open = 0;
  337. return -ENOMEM;
  338. }
  339. return 0;
  340. }
  341. static int
  342. salinfo_log_release(struct inode *inode, struct file *file)
  343. {
  344. struct proc_dir_entry *entry = PDE(inode);
  345. struct salinfo_data *data = entry->data;
  346. if (data->state == STATE_NO_DATA) {
  347. vfree(data->log_buffer);
  348. vfree(data->oemdata);
  349. data->log_buffer = NULL;
  350. data->oemdata = NULL;
  351. }
  352. spin_lock(&data_lock);
  353. data->open = 0;
  354. spin_unlock(&data_lock);
  355. return 0;
  356. }
  357. static void
  358. call_on_cpu(int cpu, void (*fn)(void *), void *arg)
  359. {
  360. cpumask_t save_cpus_allowed = current->cpus_allowed;
  361. cpumask_t new_cpus_allowed = cpumask_of_cpu(cpu);
  362. set_cpus_allowed(current, new_cpus_allowed);
  363. (*fn)(arg);
  364. set_cpus_allowed(current, save_cpus_allowed);
  365. }
  366. static void
  367. salinfo_log_read_cpu(void *context)
  368. {
  369. struct salinfo_data *data = context;
  370. sal_log_record_header_t *rh;
  371. data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
  372. rh = (sal_log_record_header_t *)(data->log_buffer);
  373. /* Clear corrected errors as they are read from SAL */
  374. if (rh->severity == sal_log_severity_corrected)
  375. ia64_sal_clear_state_info(data->type);
  376. }
  377. static void
  378. salinfo_log_new_read(int cpu, struct salinfo_data *data)
  379. {
  380. struct salinfo_data_saved *data_saved;
  381. unsigned long flags;
  382. int i;
  383. int saved_size = ARRAY_SIZE(data->data_saved);
  384. data->saved_num = 0;
  385. spin_lock_irqsave(&data_saved_lock, flags);
  386. retry:
  387. for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
  388. if (data_saved->buffer && data_saved->cpu == cpu) {
  389. sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
  390. data->log_size = data_saved->size;
  391. memcpy(data->log_buffer, rh, data->log_size);
  392. barrier(); /* id check must not be moved */
  393. if (rh->id == data_saved->id) {
  394. data->saved_num = i+1;
  395. break;
  396. }
  397. /* saved record changed by mca.c since interrupt, discard it */
  398. shift1_data_saved(data, i);
  399. goto retry;
  400. }
  401. }
  402. spin_unlock_irqrestore(&data_saved_lock, flags);
  403. if (!data->saved_num)
  404. call_on_cpu(cpu, salinfo_log_read_cpu, data);
  405. if (!data->log_size) {
  406. data->state = STATE_NO_DATA;
  407. cpu_clear(cpu, data->cpu_event);
  408. } else {
  409. data->state = STATE_LOG_RECORD;
  410. }
  411. }
  412. static ssize_t
  413. salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
  414. {
  415. struct inode *inode = file->f_dentry->d_inode;
  416. struct proc_dir_entry *entry = PDE(inode);
  417. struct salinfo_data *data = entry->data;
  418. u8 *buf;
  419. u64 bufsize;
  420. if (data->state == STATE_LOG_RECORD) {
  421. buf = data->log_buffer;
  422. bufsize = data->log_size;
  423. } else if (data->state == STATE_OEMDATA) {
  424. buf = data->oemdata;
  425. bufsize = data->oemdata_size;
  426. } else {
  427. buf = NULL;
  428. bufsize = 0;
  429. }
  430. return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
  431. }
  432. static void
  433. salinfo_log_clear_cpu(void *context)
  434. {
  435. struct salinfo_data *data = context;
  436. ia64_sal_clear_state_info(data->type);
  437. }
  438. static int
  439. salinfo_log_clear(struct salinfo_data *data, int cpu)
  440. {
  441. sal_log_record_header_t *rh;
  442. unsigned long flags;
  443. spin_lock_irqsave(&data_saved_lock, flags);
  444. data->state = STATE_NO_DATA;
  445. if (!cpu_isset(cpu, data->cpu_event)) {
  446. spin_unlock_irqrestore(&data_saved_lock, flags);
  447. return 0;
  448. }
  449. cpu_clear(cpu, data->cpu_event);
  450. if (data->saved_num) {
  451. shift1_data_saved(data, data->saved_num - 1);
  452. data->saved_num = 0;
  453. }
  454. spin_unlock_irqrestore(&data_saved_lock, flags);
  455. rh = (sal_log_record_header_t *)(data->log_buffer);
  456. /* Corrected errors have already been cleared from SAL */
  457. if (rh->severity != sal_log_severity_corrected)
  458. call_on_cpu(cpu, salinfo_log_clear_cpu, data);
  459. /* clearing a record may make a new record visible */
  460. salinfo_log_new_read(cpu, data);
  461. if (data->state == STATE_LOG_RECORD) {
  462. spin_lock_irqsave(&data_saved_lock, flags);
  463. cpu_set(cpu, data->cpu_event);
  464. salinfo_work_to_do(data);
  465. spin_unlock_irqrestore(&data_saved_lock, flags);
  466. }
  467. return 0;
  468. }
  469. static ssize_t
  470. salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
  471. {
  472. struct inode *inode = file->f_dentry->d_inode;
  473. struct proc_dir_entry *entry = PDE(inode);
  474. struct salinfo_data *data = entry->data;
  475. char cmd[32];
  476. size_t size;
  477. u32 offset;
  478. int cpu;
  479. size = sizeof(cmd);
  480. if (count < size)
  481. size = count;
  482. if (copy_from_user(cmd, buffer, size))
  483. return -EFAULT;
  484. if (sscanf(cmd, "read %d", &cpu) == 1) {
  485. salinfo_log_new_read(cpu, data);
  486. } else if (sscanf(cmd, "clear %d", &cpu) == 1) {
  487. int ret;
  488. if ((ret = salinfo_log_clear(data, cpu)))
  489. count = ret;
  490. } else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
  491. if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
  492. return -EINVAL;
  493. if (offset > data->log_size - sizeof(efi_guid_t))
  494. return -EINVAL;
  495. data->state = STATE_OEMDATA;
  496. if (salinfo_platform_oemdata) {
  497. struct salinfo_platform_oemdata_parms parms = {
  498. .efi_guid = data->log_buffer + offset,
  499. .oemdata = &data->oemdata,
  500. .oemdata_size = &data->oemdata_size
  501. };
  502. call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
  503. if (parms.ret)
  504. count = parms.ret;
  505. } else
  506. data->oemdata_size = 0;
  507. } else
  508. return -EINVAL;
  509. return count;
  510. }
  511. static struct file_operations salinfo_data_fops = {
  512. .open = salinfo_log_open,
  513. .release = salinfo_log_release,
  514. .read = salinfo_log_read,
  515. .write = salinfo_log_write,
  516. };
  517. #ifdef CONFIG_HOTPLUG_CPU
  518. static int __devinit
  519. salinfo_cpu_callback(struct notifier_block *nb, unsigned long action, void *hcpu)
  520. {
  521. unsigned int i, cpu = (unsigned long)hcpu;
  522. unsigned long flags;
  523. struct salinfo_data *data;
  524. switch (action) {
  525. case CPU_ONLINE:
  526. spin_lock_irqsave(&data_saved_lock, flags);
  527. for (i = 0, data = salinfo_data;
  528. i < ARRAY_SIZE(salinfo_data);
  529. ++i, ++data) {
  530. cpu_set(cpu, data->cpu_event);
  531. salinfo_work_to_do(data);
  532. }
  533. spin_unlock_irqrestore(&data_saved_lock, flags);
  534. break;
  535. case CPU_DEAD:
  536. spin_lock_irqsave(&data_saved_lock, flags);
  537. for (i = 0, data = salinfo_data;
  538. i < ARRAY_SIZE(salinfo_data);
  539. ++i, ++data) {
  540. struct salinfo_data_saved *data_saved;
  541. int j;
  542. for (j = ARRAY_SIZE(data->data_saved) - 1, data_saved = data->data_saved + j;
  543. j >= 0;
  544. --j, --data_saved) {
  545. if (data_saved->buffer && data_saved->cpu == cpu) {
  546. shift1_data_saved(data, j);
  547. }
  548. }
  549. cpu_clear(cpu, data->cpu_event);
  550. }
  551. spin_unlock_irqrestore(&data_saved_lock, flags);
  552. break;
  553. }
  554. return NOTIFY_OK;
  555. }
  556. static struct notifier_block salinfo_cpu_notifier =
  557. {
  558. .notifier_call = salinfo_cpu_callback,
  559. .priority = 0,
  560. };
  561. #endif /* CONFIG_HOTPLUG_CPU */
  562. static int __init
  563. salinfo_init(void)
  564. {
  565. struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
  566. struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
  567. struct proc_dir_entry *dir, *entry;
  568. struct salinfo_data *data;
  569. int i, j;
  570. salinfo_dir = proc_mkdir("sal", NULL);
  571. if (!salinfo_dir)
  572. return 0;
  573. for (i=0; i < NR_SALINFO_ENTRIES; i++) {
  574. /* pass the feature bit in question as misc data */
  575. *sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
  576. salinfo_read, (void *)salinfo_entries[i].feature);
  577. }
  578. for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
  579. data = salinfo_data + i;
  580. data->type = i;
  581. init_MUTEX(&data->mutex);
  582. dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
  583. if (!dir)
  584. continue;
  585. entry = create_proc_entry("event", S_IRUSR, dir);
  586. if (!entry)
  587. continue;
  588. entry->data = data;
  589. entry->proc_fops = &salinfo_event_fops;
  590. *sdir++ = entry;
  591. entry = create_proc_entry("data", S_IRUSR | S_IWUSR, dir);
  592. if (!entry)
  593. continue;
  594. entry->data = data;
  595. entry->proc_fops = &salinfo_data_fops;
  596. *sdir++ = entry;
  597. /* we missed any events before now */
  598. for_each_online_cpu(j)
  599. cpu_set(j, data->cpu_event);
  600. *sdir++ = dir;
  601. }
  602. *sdir++ = salinfo_dir;
  603. init_timer(&salinfo_timer);
  604. salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
  605. salinfo_timer.function = &salinfo_timeout;
  606. add_timer(&salinfo_timer);
  607. #ifdef CONFIG_HOTPLUG_CPU
  608. register_cpu_notifier(&salinfo_cpu_notifier);
  609. #endif
  610. return 0;
  611. }
  612. /*
  613. * 'data' contains an integer that corresponds to the feature we're
  614. * testing
  615. */
  616. static int
  617. salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
  618. {
  619. int len = 0;
  620. len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
  621. if (len <= off+count) *eof = 1;
  622. *start = page + off;
  623. len -= off;
  624. if (len>count) len = count;
  625. if (len<0) len = 0;
  626. return len;
  627. }
  628. module_init(salinfo_init);