perfmon.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850
  1. /*
  2. * This file implements the perfmon-2 subsystem which is used
  3. * to program the IA-64 Performance Monitoring Unit (PMU).
  4. *
  5. * The initial version of perfmon.c was written by
  6. * Ganesh Venkitachalam, IBM Corp.
  7. *
  8. * Then it was modified for perfmon-1.x by Stephane Eranian and
  9. * David Mosberger, Hewlett Packard Co.
  10. *
  11. * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12. * by Stephane Eranian, Hewlett Packard Co.
  13. *
  14. * Copyright (C) 1999-2005 Hewlett Packard Co
  15. * Stephane Eranian <eranian@hpl.hp.com>
  16. * David Mosberger-Tang <davidm@hpl.hp.com>
  17. *
  18. * More information about perfmon available at:
  19. * http://www.hpl.hp.com/research/linux/perfmon
  20. */
  21. #include <linux/config.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/sched.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/smp_lock.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/seq_file.h>
  29. #include <linux/init.h>
  30. #include <linux/vmalloc.h>
  31. #include <linux/mm.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/list.h>
  34. #include <linux/file.h>
  35. #include <linux/poll.h>
  36. #include <linux/vfs.h>
  37. #include <linux/pagemap.h>
  38. #include <linux/mount.h>
  39. #include <linux/bitops.h>
  40. #include <linux/capability.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/completion.h>
  43. #include <asm/errno.h>
  44. #include <asm/intrinsics.h>
  45. #include <asm/page.h>
  46. #include <asm/perfmon.h>
  47. #include <asm/processor.h>
  48. #include <asm/signal.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/delay.h>
  52. #ifdef CONFIG_PERFMON
  53. /*
  54. * perfmon context state
  55. */
  56. #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
  57. #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
  58. #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
  59. #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
  60. #define PFM_INVALID_ACTIVATION (~0UL)
  61. /*
  62. * depth of message queue
  63. */
  64. #define PFM_MAX_MSGS 32
  65. #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  66. /*
  67. * type of a PMU register (bitmask).
  68. * bitmask structure:
  69. * bit0 : register implemented
  70. * bit1 : end marker
  71. * bit2-3 : reserved
  72. * bit4 : pmc has pmc.pm
  73. * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
  74. * bit6-7 : register type
  75. * bit8-31: reserved
  76. */
  77. #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
  78. #define PFM_REG_IMPL 0x1 /* register implemented */
  79. #define PFM_REG_END 0x2 /* end marker */
  80. #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  81. #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  82. #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  83. #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
  84. #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  85. #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  86. #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  87. #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
  88. /* i assumed unsigned */
  89. #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
  90. #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
  91. /* XXX: these assume that register i is implemented */
  92. #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  93. #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  94. #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
  95. #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
  96. #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
  97. #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
  98. #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
  99. #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
  100. #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
  101. #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
  102. #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
  103. #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
  104. #define PFM_CTX_TASK(h) (h)->ctx_task
  105. #define PMU_PMC_OI 5 /* position of pmc.oi bit */
  106. /* XXX: does not support more than 64 PMDs */
  107. #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
  108. #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
  109. #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
  110. #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
  111. #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
  112. #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
  113. #define PFM_CODE_RR 0 /* requesting code range restriction */
  114. #define PFM_DATA_RR 1 /* requestion data range restriction */
  115. #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
  116. #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
  117. #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
  118. #define RDEP(x) (1UL<<(x))
  119. /*
  120. * context protection macros
  121. * in SMP:
  122. * - we need to protect against CPU concurrency (spin_lock)
  123. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  124. * in UP:
  125. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  126. *
  127. * spin_lock_irqsave()/spin_lock_irqrestore():
  128. * in SMP: local_irq_disable + spin_lock
  129. * in UP : local_irq_disable
  130. *
  131. * spin_lock()/spin_lock():
  132. * in UP : removed automatically
  133. * in SMP: protect against context accesses from other CPU. interrupts
  134. * are not masked. This is useful for the PMU interrupt handler
  135. * because we know we will not get PMU concurrency in that code.
  136. */
  137. #define PROTECT_CTX(c, f) \
  138. do { \
  139. DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
  140. spin_lock_irqsave(&(c)->ctx_lock, f); \
  141. DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
  142. } while(0)
  143. #define UNPROTECT_CTX(c, f) \
  144. do { \
  145. DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
  146. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  147. } while(0)
  148. #define PROTECT_CTX_NOPRINT(c, f) \
  149. do { \
  150. spin_lock_irqsave(&(c)->ctx_lock, f); \
  151. } while(0)
  152. #define UNPROTECT_CTX_NOPRINT(c, f) \
  153. do { \
  154. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  155. } while(0)
  156. #define PROTECT_CTX_NOIRQ(c) \
  157. do { \
  158. spin_lock(&(c)->ctx_lock); \
  159. } while(0)
  160. #define UNPROTECT_CTX_NOIRQ(c) \
  161. do { \
  162. spin_unlock(&(c)->ctx_lock); \
  163. } while(0)
  164. #ifdef CONFIG_SMP
  165. #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
  166. #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
  167. #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
  168. #else /* !CONFIG_SMP */
  169. #define SET_ACTIVATION(t) do {} while(0)
  170. #define GET_ACTIVATION(t) do {} while(0)
  171. #define INC_ACTIVATION(t) do {} while(0)
  172. #endif /* CONFIG_SMP */
  173. #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
  174. #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
  175. #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
  176. #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
  177. #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
  178. #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
  179. /*
  180. * cmp0 must be the value of pmc0
  181. */
  182. #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
  183. #define PFMFS_MAGIC 0xa0b4d889
  184. /*
  185. * debugging
  186. */
  187. #define PFM_DEBUGGING 1
  188. #ifdef PFM_DEBUGGING
  189. #define DPRINT(a) \
  190. do { \
  191. if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
  192. } while (0)
  193. #define DPRINT_ovfl(a) \
  194. do { \
  195. if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
  196. } while (0)
  197. #endif
  198. /*
  199. * 64-bit software counter structure
  200. *
  201. * the next_reset_type is applied to the next call to pfm_reset_regs()
  202. */
  203. typedef struct {
  204. unsigned long val; /* virtual 64bit counter value */
  205. unsigned long lval; /* last reset value */
  206. unsigned long long_reset; /* reset value on sampling overflow */
  207. unsigned long short_reset; /* reset value on overflow */
  208. unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
  209. unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
  210. unsigned long seed; /* seed for random-number generator */
  211. unsigned long mask; /* mask for random-number generator */
  212. unsigned int flags; /* notify/do not notify */
  213. unsigned long eventid; /* overflow event identifier */
  214. } pfm_counter_t;
  215. /*
  216. * context flags
  217. */
  218. typedef struct {
  219. unsigned int block:1; /* when 1, task will blocked on user notifications */
  220. unsigned int system:1; /* do system wide monitoring */
  221. unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
  222. unsigned int is_sampling:1; /* true if using a custom format */
  223. unsigned int excl_idle:1; /* exclude idle task in system wide session */
  224. unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
  225. unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
  226. unsigned int no_msg:1; /* no message sent on overflow */
  227. unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
  228. unsigned int reserved:22;
  229. } pfm_context_flags_t;
  230. #define PFM_TRAP_REASON_NONE 0x0 /* default value */
  231. #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
  232. #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
  233. /*
  234. * perfmon context: encapsulates all the state of a monitoring session
  235. */
  236. typedef struct pfm_context {
  237. spinlock_t ctx_lock; /* context protection */
  238. pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
  239. unsigned int ctx_state; /* state: active/inactive (no bitfield) */
  240. struct task_struct *ctx_task; /* task to which context is attached */
  241. unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
  242. struct completion ctx_restart_done; /* use for blocking notification mode */
  243. unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
  244. unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
  245. unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
  246. unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
  247. unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
  248. unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
  249. unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
  250. unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
  251. unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
  252. unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
  253. unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
  254. pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
  255. u64 ctx_saved_psr_up; /* only contains psr.up value */
  256. unsigned long ctx_last_activation; /* context last activation number for last_cpu */
  257. unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
  258. unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
  259. int ctx_fd; /* file descriptor used my this context */
  260. pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
  261. pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
  262. void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
  263. unsigned long ctx_smpl_size; /* size of sampling buffer */
  264. void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
  265. wait_queue_head_t ctx_msgq_wait;
  266. pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
  267. int ctx_msgq_head;
  268. int ctx_msgq_tail;
  269. struct fasync_struct *ctx_async_queue;
  270. wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
  271. } pfm_context_t;
  272. /*
  273. * magic number used to verify that structure is really
  274. * a perfmon context
  275. */
  276. #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
  277. #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
  278. #ifdef CONFIG_SMP
  279. #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
  280. #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
  281. #else
  282. #define SET_LAST_CPU(ctx, v) do {} while(0)
  283. #define GET_LAST_CPU(ctx) do {} while(0)
  284. #endif
  285. #define ctx_fl_block ctx_flags.block
  286. #define ctx_fl_system ctx_flags.system
  287. #define ctx_fl_using_dbreg ctx_flags.using_dbreg
  288. #define ctx_fl_is_sampling ctx_flags.is_sampling
  289. #define ctx_fl_excl_idle ctx_flags.excl_idle
  290. #define ctx_fl_going_zombie ctx_flags.going_zombie
  291. #define ctx_fl_trap_reason ctx_flags.trap_reason
  292. #define ctx_fl_no_msg ctx_flags.no_msg
  293. #define ctx_fl_can_restart ctx_flags.can_restart
  294. #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
  295. #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
  296. /*
  297. * global information about all sessions
  298. * mostly used to synchronize between system wide and per-process
  299. */
  300. typedef struct {
  301. spinlock_t pfs_lock; /* lock the structure */
  302. unsigned int pfs_task_sessions; /* number of per task sessions */
  303. unsigned int pfs_sys_sessions; /* number of per system wide sessions */
  304. unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
  305. unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
  306. struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
  307. } pfm_session_t;
  308. /*
  309. * information about a PMC or PMD.
  310. * dep_pmd[]: a bitmask of dependent PMD registers
  311. * dep_pmc[]: a bitmask of dependent PMC registers
  312. */
  313. typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
  314. typedef struct {
  315. unsigned int type;
  316. int pm_pos;
  317. unsigned long default_value; /* power-on default value */
  318. unsigned long reserved_mask; /* bitmask of reserved bits */
  319. pfm_reg_check_t read_check;
  320. pfm_reg_check_t write_check;
  321. unsigned long dep_pmd[4];
  322. unsigned long dep_pmc[4];
  323. } pfm_reg_desc_t;
  324. /* assume cnum is a valid monitor */
  325. #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
  326. /*
  327. * This structure is initialized at boot time and contains
  328. * a description of the PMU main characteristics.
  329. *
  330. * If the probe function is defined, detection is based
  331. * on its return value:
  332. * - 0 means recognized PMU
  333. * - anything else means not supported
  334. * When the probe function is not defined, then the pmu_family field
  335. * is used and it must match the host CPU family such that:
  336. * - cpu->family & config->pmu_family != 0
  337. */
  338. typedef struct {
  339. unsigned long ovfl_val; /* overflow value for counters */
  340. pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
  341. pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
  342. unsigned int num_pmcs; /* number of PMCS: computed at init time */
  343. unsigned int num_pmds; /* number of PMDS: computed at init time */
  344. unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
  345. unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
  346. char *pmu_name; /* PMU family name */
  347. unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
  348. unsigned int flags; /* pmu specific flags */
  349. unsigned int num_ibrs; /* number of IBRS: computed at init time */
  350. unsigned int num_dbrs; /* number of DBRS: computed at init time */
  351. unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
  352. int (*probe)(void); /* customized probe routine */
  353. unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
  354. } pmu_config_t;
  355. /*
  356. * PMU specific flags
  357. */
  358. #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
  359. /*
  360. * debug register related type definitions
  361. */
  362. typedef struct {
  363. unsigned long ibr_mask:56;
  364. unsigned long ibr_plm:4;
  365. unsigned long ibr_ig:3;
  366. unsigned long ibr_x:1;
  367. } ibr_mask_reg_t;
  368. typedef struct {
  369. unsigned long dbr_mask:56;
  370. unsigned long dbr_plm:4;
  371. unsigned long dbr_ig:2;
  372. unsigned long dbr_w:1;
  373. unsigned long dbr_r:1;
  374. } dbr_mask_reg_t;
  375. typedef union {
  376. unsigned long val;
  377. ibr_mask_reg_t ibr;
  378. dbr_mask_reg_t dbr;
  379. } dbreg_t;
  380. /*
  381. * perfmon command descriptions
  382. */
  383. typedef struct {
  384. int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  385. char *cmd_name;
  386. int cmd_flags;
  387. unsigned int cmd_narg;
  388. size_t cmd_argsize;
  389. int (*cmd_getsize)(void *arg, size_t *sz);
  390. } pfm_cmd_desc_t;
  391. #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
  392. #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
  393. #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
  394. #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
  395. #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
  396. #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
  397. #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
  398. #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
  399. #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
  400. #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
  401. typedef struct {
  402. unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
  403. unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
  404. unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
  405. unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
  406. unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
  407. unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
  408. unsigned long pfm_smpl_handler_calls;
  409. unsigned long pfm_smpl_handler_cycles;
  410. char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
  411. } pfm_stats_t;
  412. /*
  413. * perfmon internal variables
  414. */
  415. static pfm_stats_t pfm_stats[NR_CPUS];
  416. static pfm_session_t pfm_sessions; /* global sessions information */
  417. static DEFINE_SPINLOCK(pfm_alt_install_check);
  418. static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
  419. static struct proc_dir_entry *perfmon_dir;
  420. static pfm_uuid_t pfm_null_uuid = {0,};
  421. static spinlock_t pfm_buffer_fmt_lock;
  422. static LIST_HEAD(pfm_buffer_fmt_list);
  423. static pmu_config_t *pmu_conf;
  424. /* sysctl() controls */
  425. pfm_sysctl_t pfm_sysctl;
  426. EXPORT_SYMBOL(pfm_sysctl);
  427. static ctl_table pfm_ctl_table[]={
  428. {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
  429. {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
  430. {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
  431. {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
  432. { 0, },
  433. };
  434. static ctl_table pfm_sysctl_dir[] = {
  435. {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
  436. {0,},
  437. };
  438. static ctl_table pfm_sysctl_root[] = {
  439. {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
  440. {0,},
  441. };
  442. static struct ctl_table_header *pfm_sysctl_header;
  443. static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  444. static int pfm_flush(struct file *filp);
  445. #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
  446. #define pfm_get_cpu_data(a,b) per_cpu(a, b)
  447. static inline void
  448. pfm_put_task(struct task_struct *task)
  449. {
  450. if (task != current) put_task_struct(task);
  451. }
  452. static inline void
  453. pfm_set_task_notify(struct task_struct *task)
  454. {
  455. struct thread_info *info;
  456. info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
  457. set_bit(TIF_NOTIFY_RESUME, &info->flags);
  458. }
  459. static inline void
  460. pfm_clear_task_notify(void)
  461. {
  462. clear_thread_flag(TIF_NOTIFY_RESUME);
  463. }
  464. static inline void
  465. pfm_reserve_page(unsigned long a)
  466. {
  467. SetPageReserved(vmalloc_to_page((void *)a));
  468. }
  469. static inline void
  470. pfm_unreserve_page(unsigned long a)
  471. {
  472. ClearPageReserved(vmalloc_to_page((void*)a));
  473. }
  474. static inline unsigned long
  475. pfm_protect_ctx_ctxsw(pfm_context_t *x)
  476. {
  477. spin_lock(&(x)->ctx_lock);
  478. return 0UL;
  479. }
  480. static inline void
  481. pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
  482. {
  483. spin_unlock(&(x)->ctx_lock);
  484. }
  485. static inline unsigned int
  486. pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
  487. {
  488. return do_munmap(mm, addr, len);
  489. }
  490. static inline unsigned long
  491. pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
  492. {
  493. return get_unmapped_area(file, addr, len, pgoff, flags);
  494. }
  495. static struct super_block *
  496. pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
  497. {
  498. return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
  499. }
  500. static struct file_system_type pfm_fs_type = {
  501. .name = "pfmfs",
  502. .get_sb = pfmfs_get_sb,
  503. .kill_sb = kill_anon_super,
  504. };
  505. DEFINE_PER_CPU(unsigned long, pfm_syst_info);
  506. DEFINE_PER_CPU(struct task_struct *, pmu_owner);
  507. DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
  508. DEFINE_PER_CPU(unsigned long, pmu_activation_number);
  509. EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
  510. /* forward declaration */
  511. static struct file_operations pfm_file_ops;
  512. /*
  513. * forward declarations
  514. */
  515. #ifndef CONFIG_SMP
  516. static void pfm_lazy_save_regs (struct task_struct *ta);
  517. #endif
  518. void dump_pmu_state(const char *);
  519. static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  520. #include "perfmon_itanium.h"
  521. #include "perfmon_mckinley.h"
  522. #include "perfmon_montecito.h"
  523. #include "perfmon_generic.h"
  524. static pmu_config_t *pmu_confs[]={
  525. &pmu_conf_mont,
  526. &pmu_conf_mck,
  527. &pmu_conf_ita,
  528. &pmu_conf_gen, /* must be last */
  529. NULL
  530. };
  531. static int pfm_end_notify_user(pfm_context_t *ctx);
  532. static inline void
  533. pfm_clear_psr_pp(void)
  534. {
  535. ia64_rsm(IA64_PSR_PP);
  536. ia64_srlz_i();
  537. }
  538. static inline void
  539. pfm_set_psr_pp(void)
  540. {
  541. ia64_ssm(IA64_PSR_PP);
  542. ia64_srlz_i();
  543. }
  544. static inline void
  545. pfm_clear_psr_up(void)
  546. {
  547. ia64_rsm(IA64_PSR_UP);
  548. ia64_srlz_i();
  549. }
  550. static inline void
  551. pfm_set_psr_up(void)
  552. {
  553. ia64_ssm(IA64_PSR_UP);
  554. ia64_srlz_i();
  555. }
  556. static inline unsigned long
  557. pfm_get_psr(void)
  558. {
  559. unsigned long tmp;
  560. tmp = ia64_getreg(_IA64_REG_PSR);
  561. ia64_srlz_i();
  562. return tmp;
  563. }
  564. static inline void
  565. pfm_set_psr_l(unsigned long val)
  566. {
  567. ia64_setreg(_IA64_REG_PSR_L, val);
  568. ia64_srlz_i();
  569. }
  570. static inline void
  571. pfm_freeze_pmu(void)
  572. {
  573. ia64_set_pmc(0,1UL);
  574. ia64_srlz_d();
  575. }
  576. static inline void
  577. pfm_unfreeze_pmu(void)
  578. {
  579. ia64_set_pmc(0,0UL);
  580. ia64_srlz_d();
  581. }
  582. static inline void
  583. pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
  584. {
  585. int i;
  586. for (i=0; i < nibrs; i++) {
  587. ia64_set_ibr(i, ibrs[i]);
  588. ia64_dv_serialize_instruction();
  589. }
  590. ia64_srlz_i();
  591. }
  592. static inline void
  593. pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
  594. {
  595. int i;
  596. for (i=0; i < ndbrs; i++) {
  597. ia64_set_dbr(i, dbrs[i]);
  598. ia64_dv_serialize_data();
  599. }
  600. ia64_srlz_d();
  601. }
  602. /*
  603. * PMD[i] must be a counter. no check is made
  604. */
  605. static inline unsigned long
  606. pfm_read_soft_counter(pfm_context_t *ctx, int i)
  607. {
  608. return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
  609. }
  610. /*
  611. * PMD[i] must be a counter. no check is made
  612. */
  613. static inline void
  614. pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
  615. {
  616. unsigned long ovfl_val = pmu_conf->ovfl_val;
  617. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  618. /*
  619. * writing to unimplemented part is ignore, so we do not need to
  620. * mask off top part
  621. */
  622. ia64_set_pmd(i, val & ovfl_val);
  623. }
  624. static pfm_msg_t *
  625. pfm_get_new_msg(pfm_context_t *ctx)
  626. {
  627. int idx, next;
  628. next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
  629. DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  630. if (next == ctx->ctx_msgq_head) return NULL;
  631. idx = ctx->ctx_msgq_tail;
  632. ctx->ctx_msgq_tail = next;
  633. DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
  634. return ctx->ctx_msgq+idx;
  635. }
  636. static pfm_msg_t *
  637. pfm_get_next_msg(pfm_context_t *ctx)
  638. {
  639. pfm_msg_t *msg;
  640. DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  641. if (PFM_CTXQ_EMPTY(ctx)) return NULL;
  642. /*
  643. * get oldest message
  644. */
  645. msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
  646. /*
  647. * and move forward
  648. */
  649. ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
  650. DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
  651. return msg;
  652. }
  653. static void
  654. pfm_reset_msgq(pfm_context_t *ctx)
  655. {
  656. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  657. DPRINT(("ctx=%p msgq reset\n", ctx));
  658. }
  659. static void *
  660. pfm_rvmalloc(unsigned long size)
  661. {
  662. void *mem;
  663. unsigned long addr;
  664. size = PAGE_ALIGN(size);
  665. mem = vmalloc(size);
  666. if (mem) {
  667. //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
  668. memset(mem, 0, size);
  669. addr = (unsigned long)mem;
  670. while (size > 0) {
  671. pfm_reserve_page(addr);
  672. addr+=PAGE_SIZE;
  673. size-=PAGE_SIZE;
  674. }
  675. }
  676. return mem;
  677. }
  678. static void
  679. pfm_rvfree(void *mem, unsigned long size)
  680. {
  681. unsigned long addr;
  682. if (mem) {
  683. DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
  684. addr = (unsigned long) mem;
  685. while ((long) size > 0) {
  686. pfm_unreserve_page(addr);
  687. addr+=PAGE_SIZE;
  688. size-=PAGE_SIZE;
  689. }
  690. vfree(mem);
  691. }
  692. return;
  693. }
  694. static pfm_context_t *
  695. pfm_context_alloc(void)
  696. {
  697. pfm_context_t *ctx;
  698. /*
  699. * allocate context descriptor
  700. * must be able to free with interrupts disabled
  701. */
  702. ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
  703. if (ctx) {
  704. memset(ctx, 0, sizeof(pfm_context_t));
  705. DPRINT(("alloc ctx @%p\n", ctx));
  706. }
  707. return ctx;
  708. }
  709. static void
  710. pfm_context_free(pfm_context_t *ctx)
  711. {
  712. if (ctx) {
  713. DPRINT(("free ctx @%p\n", ctx));
  714. kfree(ctx);
  715. }
  716. }
  717. static void
  718. pfm_mask_monitoring(struct task_struct *task)
  719. {
  720. pfm_context_t *ctx = PFM_GET_CTX(task);
  721. struct thread_struct *th = &task->thread;
  722. unsigned long mask, val, ovfl_mask;
  723. int i;
  724. DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
  725. ovfl_mask = pmu_conf->ovfl_val;
  726. /*
  727. * monitoring can only be masked as a result of a valid
  728. * counter overflow. In UP, it means that the PMU still
  729. * has an owner. Note that the owner can be different
  730. * from the current task. However the PMU state belongs
  731. * to the owner.
  732. * In SMP, a valid overflow only happens when task is
  733. * current. Therefore if we come here, we know that
  734. * the PMU state belongs to the current task, therefore
  735. * we can access the live registers.
  736. *
  737. * So in both cases, the live register contains the owner's
  738. * state. We can ONLY touch the PMU registers and NOT the PSR.
  739. *
  740. * As a consequence to this call, the thread->pmds[] array
  741. * contains stale information which must be ignored
  742. * when context is reloaded AND monitoring is active (see
  743. * pfm_restart).
  744. */
  745. mask = ctx->ctx_used_pmds[0];
  746. for (i = 0; mask; i++, mask>>=1) {
  747. /* skip non used pmds */
  748. if ((mask & 0x1) == 0) continue;
  749. val = ia64_get_pmd(i);
  750. if (PMD_IS_COUNTING(i)) {
  751. /*
  752. * we rebuild the full 64 bit value of the counter
  753. */
  754. ctx->ctx_pmds[i].val += (val & ovfl_mask);
  755. } else {
  756. ctx->ctx_pmds[i].val = val;
  757. }
  758. DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  759. i,
  760. ctx->ctx_pmds[i].val,
  761. val & ovfl_mask));
  762. }
  763. /*
  764. * mask monitoring by setting the privilege level to 0
  765. * we cannot use psr.pp/psr.up for this, it is controlled by
  766. * the user
  767. *
  768. * if task is current, modify actual registers, otherwise modify
  769. * thread save state, i.e., what will be restored in pfm_load_regs()
  770. */
  771. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  772. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  773. if ((mask & 0x1) == 0UL) continue;
  774. ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
  775. th->pmcs[i] &= ~0xfUL;
  776. DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
  777. }
  778. /*
  779. * make all of this visible
  780. */
  781. ia64_srlz_d();
  782. }
  783. /*
  784. * must always be done with task == current
  785. *
  786. * context must be in MASKED state when calling
  787. */
  788. static void
  789. pfm_restore_monitoring(struct task_struct *task)
  790. {
  791. pfm_context_t *ctx = PFM_GET_CTX(task);
  792. struct thread_struct *th = &task->thread;
  793. unsigned long mask, ovfl_mask;
  794. unsigned long psr, val;
  795. int i, is_system;
  796. is_system = ctx->ctx_fl_system;
  797. ovfl_mask = pmu_conf->ovfl_val;
  798. if (task != current) {
  799. printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
  800. return;
  801. }
  802. if (ctx->ctx_state != PFM_CTX_MASKED) {
  803. printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
  804. task->pid, current->pid, ctx->ctx_state);
  805. return;
  806. }
  807. psr = pfm_get_psr();
  808. /*
  809. * monitoring is masked via the PMC.
  810. * As we restore their value, we do not want each counter to
  811. * restart right away. We stop monitoring using the PSR,
  812. * restore the PMC (and PMD) and then re-establish the psr
  813. * as it was. Note that there can be no pending overflow at
  814. * this point, because monitoring was MASKED.
  815. *
  816. * system-wide session are pinned and self-monitoring
  817. */
  818. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  819. /* disable dcr pp */
  820. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  821. pfm_clear_psr_pp();
  822. } else {
  823. pfm_clear_psr_up();
  824. }
  825. /*
  826. * first, we restore the PMD
  827. */
  828. mask = ctx->ctx_used_pmds[0];
  829. for (i = 0; mask; i++, mask>>=1) {
  830. /* skip non used pmds */
  831. if ((mask & 0x1) == 0) continue;
  832. if (PMD_IS_COUNTING(i)) {
  833. /*
  834. * we split the 64bit value according to
  835. * counter width
  836. */
  837. val = ctx->ctx_pmds[i].val & ovfl_mask;
  838. ctx->ctx_pmds[i].val &= ~ovfl_mask;
  839. } else {
  840. val = ctx->ctx_pmds[i].val;
  841. }
  842. ia64_set_pmd(i, val);
  843. DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  844. i,
  845. ctx->ctx_pmds[i].val,
  846. val));
  847. }
  848. /*
  849. * restore the PMCs
  850. */
  851. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  852. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  853. if ((mask & 0x1) == 0UL) continue;
  854. th->pmcs[i] = ctx->ctx_pmcs[i];
  855. ia64_set_pmc(i, th->pmcs[i]);
  856. DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
  857. }
  858. ia64_srlz_d();
  859. /*
  860. * must restore DBR/IBR because could be modified while masked
  861. * XXX: need to optimize
  862. */
  863. if (ctx->ctx_fl_using_dbreg) {
  864. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  865. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  866. }
  867. /*
  868. * now restore PSR
  869. */
  870. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  871. /* enable dcr pp */
  872. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  873. ia64_srlz_i();
  874. }
  875. pfm_set_psr_l(psr);
  876. }
  877. static inline void
  878. pfm_save_pmds(unsigned long *pmds, unsigned long mask)
  879. {
  880. int i;
  881. ia64_srlz_d();
  882. for (i=0; mask; i++, mask>>=1) {
  883. if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
  884. }
  885. }
  886. /*
  887. * reload from thread state (used for ctxw only)
  888. */
  889. static inline void
  890. pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
  891. {
  892. int i;
  893. unsigned long val, ovfl_val = pmu_conf->ovfl_val;
  894. for (i=0; mask; i++, mask>>=1) {
  895. if ((mask & 0x1) == 0) continue;
  896. val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
  897. ia64_set_pmd(i, val);
  898. }
  899. ia64_srlz_d();
  900. }
  901. /*
  902. * propagate PMD from context to thread-state
  903. */
  904. static inline void
  905. pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
  906. {
  907. struct thread_struct *thread = &task->thread;
  908. unsigned long ovfl_val = pmu_conf->ovfl_val;
  909. unsigned long mask = ctx->ctx_all_pmds[0];
  910. unsigned long val;
  911. int i;
  912. DPRINT(("mask=0x%lx\n", mask));
  913. for (i=0; mask; i++, mask>>=1) {
  914. val = ctx->ctx_pmds[i].val;
  915. /*
  916. * We break up the 64 bit value into 2 pieces
  917. * the lower bits go to the machine state in the
  918. * thread (will be reloaded on ctxsw in).
  919. * The upper part stays in the soft-counter.
  920. */
  921. if (PMD_IS_COUNTING(i)) {
  922. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  923. val &= ovfl_val;
  924. }
  925. thread->pmds[i] = val;
  926. DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
  927. i,
  928. thread->pmds[i],
  929. ctx->ctx_pmds[i].val));
  930. }
  931. }
  932. /*
  933. * propagate PMC from context to thread-state
  934. */
  935. static inline void
  936. pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
  937. {
  938. struct thread_struct *thread = &task->thread;
  939. unsigned long mask = ctx->ctx_all_pmcs[0];
  940. int i;
  941. DPRINT(("mask=0x%lx\n", mask));
  942. for (i=0; mask; i++, mask>>=1) {
  943. /* masking 0 with ovfl_val yields 0 */
  944. thread->pmcs[i] = ctx->ctx_pmcs[i];
  945. DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
  946. }
  947. }
  948. static inline void
  949. pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
  950. {
  951. int i;
  952. for (i=0; mask; i++, mask>>=1) {
  953. if ((mask & 0x1) == 0) continue;
  954. ia64_set_pmc(i, pmcs[i]);
  955. }
  956. ia64_srlz_d();
  957. }
  958. static inline int
  959. pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
  960. {
  961. return memcmp(a, b, sizeof(pfm_uuid_t));
  962. }
  963. static inline int
  964. pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
  965. {
  966. int ret = 0;
  967. if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
  968. return ret;
  969. }
  970. static inline int
  971. pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
  972. {
  973. int ret = 0;
  974. if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
  975. return ret;
  976. }
  977. static inline int
  978. pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
  979. int cpu, void *arg)
  980. {
  981. int ret = 0;
  982. if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
  983. return ret;
  984. }
  985. static inline int
  986. pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
  987. int cpu, void *arg)
  988. {
  989. int ret = 0;
  990. if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
  991. return ret;
  992. }
  993. static inline int
  994. pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  995. {
  996. int ret = 0;
  997. if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
  998. return ret;
  999. }
  1000. static inline int
  1001. pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1002. {
  1003. int ret = 0;
  1004. if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
  1005. return ret;
  1006. }
  1007. static pfm_buffer_fmt_t *
  1008. __pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1009. {
  1010. struct list_head * pos;
  1011. pfm_buffer_fmt_t * entry;
  1012. list_for_each(pos, &pfm_buffer_fmt_list) {
  1013. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  1014. if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
  1015. return entry;
  1016. }
  1017. return NULL;
  1018. }
  1019. /*
  1020. * find a buffer format based on its uuid
  1021. */
  1022. static pfm_buffer_fmt_t *
  1023. pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1024. {
  1025. pfm_buffer_fmt_t * fmt;
  1026. spin_lock(&pfm_buffer_fmt_lock);
  1027. fmt = __pfm_find_buffer_fmt(uuid);
  1028. spin_unlock(&pfm_buffer_fmt_lock);
  1029. return fmt;
  1030. }
  1031. int
  1032. pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
  1033. {
  1034. int ret = 0;
  1035. /* some sanity checks */
  1036. if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
  1037. /* we need at least a handler */
  1038. if (fmt->fmt_handler == NULL) return -EINVAL;
  1039. /*
  1040. * XXX: need check validity of fmt_arg_size
  1041. */
  1042. spin_lock(&pfm_buffer_fmt_lock);
  1043. if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
  1044. printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
  1045. ret = -EBUSY;
  1046. goto out;
  1047. }
  1048. list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
  1049. printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
  1050. out:
  1051. spin_unlock(&pfm_buffer_fmt_lock);
  1052. return ret;
  1053. }
  1054. EXPORT_SYMBOL(pfm_register_buffer_fmt);
  1055. int
  1056. pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
  1057. {
  1058. pfm_buffer_fmt_t *fmt;
  1059. int ret = 0;
  1060. spin_lock(&pfm_buffer_fmt_lock);
  1061. fmt = __pfm_find_buffer_fmt(uuid);
  1062. if (!fmt) {
  1063. printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
  1064. ret = -EINVAL;
  1065. goto out;
  1066. }
  1067. list_del_init(&fmt->fmt_list);
  1068. printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
  1069. out:
  1070. spin_unlock(&pfm_buffer_fmt_lock);
  1071. return ret;
  1072. }
  1073. EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
  1074. extern void update_pal_halt_status(int);
  1075. static int
  1076. pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
  1077. {
  1078. unsigned long flags;
  1079. /*
  1080. * validy checks on cpu_mask have been done upstream
  1081. */
  1082. LOCK_PFS(flags);
  1083. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1084. pfm_sessions.pfs_sys_sessions,
  1085. pfm_sessions.pfs_task_sessions,
  1086. pfm_sessions.pfs_sys_use_dbregs,
  1087. is_syswide,
  1088. cpu));
  1089. if (is_syswide) {
  1090. /*
  1091. * cannot mix system wide and per-task sessions
  1092. */
  1093. if (pfm_sessions.pfs_task_sessions > 0UL) {
  1094. DPRINT(("system wide not possible, %u conflicting task_sessions\n",
  1095. pfm_sessions.pfs_task_sessions));
  1096. goto abort;
  1097. }
  1098. if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
  1099. DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
  1100. pfm_sessions.pfs_sys_session[cpu] = task;
  1101. pfm_sessions.pfs_sys_sessions++ ;
  1102. } else {
  1103. if (pfm_sessions.pfs_sys_sessions) goto abort;
  1104. pfm_sessions.pfs_task_sessions++;
  1105. }
  1106. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1107. pfm_sessions.pfs_sys_sessions,
  1108. pfm_sessions.pfs_task_sessions,
  1109. pfm_sessions.pfs_sys_use_dbregs,
  1110. is_syswide,
  1111. cpu));
  1112. /*
  1113. * disable default_idle() to go to PAL_HALT
  1114. */
  1115. update_pal_halt_status(0);
  1116. UNLOCK_PFS(flags);
  1117. return 0;
  1118. error_conflict:
  1119. DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
  1120. pfm_sessions.pfs_sys_session[cpu]->pid,
  1121. cpu));
  1122. abort:
  1123. UNLOCK_PFS(flags);
  1124. return -EBUSY;
  1125. }
  1126. static int
  1127. pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
  1128. {
  1129. unsigned long flags;
  1130. /*
  1131. * validy checks on cpu_mask have been done upstream
  1132. */
  1133. LOCK_PFS(flags);
  1134. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1135. pfm_sessions.pfs_sys_sessions,
  1136. pfm_sessions.pfs_task_sessions,
  1137. pfm_sessions.pfs_sys_use_dbregs,
  1138. is_syswide,
  1139. cpu));
  1140. if (is_syswide) {
  1141. pfm_sessions.pfs_sys_session[cpu] = NULL;
  1142. /*
  1143. * would not work with perfmon+more than one bit in cpu_mask
  1144. */
  1145. if (ctx && ctx->ctx_fl_using_dbreg) {
  1146. if (pfm_sessions.pfs_sys_use_dbregs == 0) {
  1147. printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
  1148. } else {
  1149. pfm_sessions.pfs_sys_use_dbregs--;
  1150. }
  1151. }
  1152. pfm_sessions.pfs_sys_sessions--;
  1153. } else {
  1154. pfm_sessions.pfs_task_sessions--;
  1155. }
  1156. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1157. pfm_sessions.pfs_sys_sessions,
  1158. pfm_sessions.pfs_task_sessions,
  1159. pfm_sessions.pfs_sys_use_dbregs,
  1160. is_syswide,
  1161. cpu));
  1162. /*
  1163. * if possible, enable default_idle() to go into PAL_HALT
  1164. */
  1165. if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
  1166. update_pal_halt_status(1);
  1167. UNLOCK_PFS(flags);
  1168. return 0;
  1169. }
  1170. /*
  1171. * removes virtual mapping of the sampling buffer.
  1172. * IMPORTANT: cannot be called with interrupts disable, e.g. inside
  1173. * a PROTECT_CTX() section.
  1174. */
  1175. static int
  1176. pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
  1177. {
  1178. int r;
  1179. /* sanity checks */
  1180. if (task->mm == NULL || size == 0UL || vaddr == NULL) {
  1181. printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
  1182. return -EINVAL;
  1183. }
  1184. DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
  1185. /*
  1186. * does the actual unmapping
  1187. */
  1188. down_write(&task->mm->mmap_sem);
  1189. DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
  1190. r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
  1191. up_write(&task->mm->mmap_sem);
  1192. if (r !=0) {
  1193. printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
  1194. }
  1195. DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
  1196. return 0;
  1197. }
  1198. /*
  1199. * free actual physical storage used by sampling buffer
  1200. */
  1201. #if 0
  1202. static int
  1203. pfm_free_smpl_buffer(pfm_context_t *ctx)
  1204. {
  1205. pfm_buffer_fmt_t *fmt;
  1206. if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
  1207. /*
  1208. * we won't use the buffer format anymore
  1209. */
  1210. fmt = ctx->ctx_buf_fmt;
  1211. DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
  1212. ctx->ctx_smpl_hdr,
  1213. ctx->ctx_smpl_size,
  1214. ctx->ctx_smpl_vaddr));
  1215. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1216. /*
  1217. * free the buffer
  1218. */
  1219. pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
  1220. ctx->ctx_smpl_hdr = NULL;
  1221. ctx->ctx_smpl_size = 0UL;
  1222. return 0;
  1223. invalid_free:
  1224. printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
  1225. return -EINVAL;
  1226. }
  1227. #endif
  1228. static inline void
  1229. pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
  1230. {
  1231. if (fmt == NULL) return;
  1232. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1233. }
  1234. /*
  1235. * pfmfs should _never_ be mounted by userland - too much of security hassle,
  1236. * no real gain from having the whole whorehouse mounted. So we don't need
  1237. * any operations on the root directory. However, we need a non-trivial
  1238. * d_name - pfm: will go nicely and kill the special-casing in procfs.
  1239. */
  1240. static struct vfsmount *pfmfs_mnt;
  1241. static int __init
  1242. init_pfm_fs(void)
  1243. {
  1244. int err = register_filesystem(&pfm_fs_type);
  1245. if (!err) {
  1246. pfmfs_mnt = kern_mount(&pfm_fs_type);
  1247. err = PTR_ERR(pfmfs_mnt);
  1248. if (IS_ERR(pfmfs_mnt))
  1249. unregister_filesystem(&pfm_fs_type);
  1250. else
  1251. err = 0;
  1252. }
  1253. return err;
  1254. }
  1255. static void __exit
  1256. exit_pfm_fs(void)
  1257. {
  1258. unregister_filesystem(&pfm_fs_type);
  1259. mntput(pfmfs_mnt);
  1260. }
  1261. static ssize_t
  1262. pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
  1263. {
  1264. pfm_context_t *ctx;
  1265. pfm_msg_t *msg;
  1266. ssize_t ret;
  1267. unsigned long flags;
  1268. DECLARE_WAITQUEUE(wait, current);
  1269. if (PFM_IS_FILE(filp) == 0) {
  1270. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
  1271. return -EINVAL;
  1272. }
  1273. ctx = (pfm_context_t *)filp->private_data;
  1274. if (ctx == NULL) {
  1275. printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
  1276. return -EINVAL;
  1277. }
  1278. /*
  1279. * check even when there is no message
  1280. */
  1281. if (size < sizeof(pfm_msg_t)) {
  1282. DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
  1283. return -EINVAL;
  1284. }
  1285. PROTECT_CTX(ctx, flags);
  1286. /*
  1287. * put ourselves on the wait queue
  1288. */
  1289. add_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1290. for(;;) {
  1291. /*
  1292. * check wait queue
  1293. */
  1294. set_current_state(TASK_INTERRUPTIBLE);
  1295. DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  1296. ret = 0;
  1297. if(PFM_CTXQ_EMPTY(ctx) == 0) break;
  1298. UNPROTECT_CTX(ctx, flags);
  1299. /*
  1300. * check non-blocking read
  1301. */
  1302. ret = -EAGAIN;
  1303. if(filp->f_flags & O_NONBLOCK) break;
  1304. /*
  1305. * check pending signals
  1306. */
  1307. if(signal_pending(current)) {
  1308. ret = -EINTR;
  1309. break;
  1310. }
  1311. /*
  1312. * no message, so wait
  1313. */
  1314. schedule();
  1315. PROTECT_CTX(ctx, flags);
  1316. }
  1317. DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
  1318. set_current_state(TASK_RUNNING);
  1319. remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1320. if (ret < 0) goto abort;
  1321. ret = -EINVAL;
  1322. msg = pfm_get_next_msg(ctx);
  1323. if (msg == NULL) {
  1324. printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
  1325. goto abort_locked;
  1326. }
  1327. DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
  1328. ret = -EFAULT;
  1329. if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
  1330. abort_locked:
  1331. UNPROTECT_CTX(ctx, flags);
  1332. abort:
  1333. return ret;
  1334. }
  1335. static ssize_t
  1336. pfm_write(struct file *file, const char __user *ubuf,
  1337. size_t size, loff_t *ppos)
  1338. {
  1339. DPRINT(("pfm_write called\n"));
  1340. return -EINVAL;
  1341. }
  1342. static unsigned int
  1343. pfm_poll(struct file *filp, poll_table * wait)
  1344. {
  1345. pfm_context_t *ctx;
  1346. unsigned long flags;
  1347. unsigned int mask = 0;
  1348. if (PFM_IS_FILE(filp) == 0) {
  1349. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
  1350. return 0;
  1351. }
  1352. ctx = (pfm_context_t *)filp->private_data;
  1353. if (ctx == NULL) {
  1354. printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
  1355. return 0;
  1356. }
  1357. DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
  1358. poll_wait(filp, &ctx->ctx_msgq_wait, wait);
  1359. PROTECT_CTX(ctx, flags);
  1360. if (PFM_CTXQ_EMPTY(ctx) == 0)
  1361. mask = POLLIN | POLLRDNORM;
  1362. UNPROTECT_CTX(ctx, flags);
  1363. DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
  1364. return mask;
  1365. }
  1366. static int
  1367. pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1368. {
  1369. DPRINT(("pfm_ioctl called\n"));
  1370. return -EINVAL;
  1371. }
  1372. /*
  1373. * interrupt cannot be masked when coming here
  1374. */
  1375. static inline int
  1376. pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
  1377. {
  1378. int ret;
  1379. ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
  1380. DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1381. current->pid,
  1382. fd,
  1383. on,
  1384. ctx->ctx_async_queue, ret));
  1385. return ret;
  1386. }
  1387. static int
  1388. pfm_fasync(int fd, struct file *filp, int on)
  1389. {
  1390. pfm_context_t *ctx;
  1391. int ret;
  1392. if (PFM_IS_FILE(filp) == 0) {
  1393. printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
  1394. return -EBADF;
  1395. }
  1396. ctx = (pfm_context_t *)filp->private_data;
  1397. if (ctx == NULL) {
  1398. printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
  1399. return -EBADF;
  1400. }
  1401. /*
  1402. * we cannot mask interrupts during this call because this may
  1403. * may go to sleep if memory is not readily avalaible.
  1404. *
  1405. * We are protected from the conetxt disappearing by the get_fd()/put_fd()
  1406. * done in caller. Serialization of this function is ensured by caller.
  1407. */
  1408. ret = pfm_do_fasync(fd, filp, ctx, on);
  1409. DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1410. fd,
  1411. on,
  1412. ctx->ctx_async_queue, ret));
  1413. return ret;
  1414. }
  1415. #ifdef CONFIG_SMP
  1416. /*
  1417. * this function is exclusively called from pfm_close().
  1418. * The context is not protected at that time, nor are interrupts
  1419. * on the remote CPU. That's necessary to avoid deadlocks.
  1420. */
  1421. static void
  1422. pfm_syswide_force_stop(void *info)
  1423. {
  1424. pfm_context_t *ctx = (pfm_context_t *)info;
  1425. struct pt_regs *regs = task_pt_regs(current);
  1426. struct task_struct *owner;
  1427. unsigned long flags;
  1428. int ret;
  1429. if (ctx->ctx_cpu != smp_processor_id()) {
  1430. printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
  1431. ctx->ctx_cpu,
  1432. smp_processor_id());
  1433. return;
  1434. }
  1435. owner = GET_PMU_OWNER();
  1436. if (owner != ctx->ctx_task) {
  1437. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
  1438. smp_processor_id(),
  1439. owner->pid, ctx->ctx_task->pid);
  1440. return;
  1441. }
  1442. if (GET_PMU_CTX() != ctx) {
  1443. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
  1444. smp_processor_id(),
  1445. GET_PMU_CTX(), ctx);
  1446. return;
  1447. }
  1448. DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
  1449. /*
  1450. * the context is already protected in pfm_close(), we simply
  1451. * need to mask interrupts to avoid a PMU interrupt race on
  1452. * this CPU
  1453. */
  1454. local_irq_save(flags);
  1455. ret = pfm_context_unload(ctx, NULL, 0, regs);
  1456. if (ret) {
  1457. DPRINT(("context_unload returned %d\n", ret));
  1458. }
  1459. /*
  1460. * unmask interrupts, PMU interrupts are now spurious here
  1461. */
  1462. local_irq_restore(flags);
  1463. }
  1464. static void
  1465. pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
  1466. {
  1467. int ret;
  1468. DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
  1469. ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
  1470. DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
  1471. }
  1472. #endif /* CONFIG_SMP */
  1473. /*
  1474. * called for each close(). Partially free resources.
  1475. * When caller is self-monitoring, the context is unloaded.
  1476. */
  1477. static int
  1478. pfm_flush(struct file *filp)
  1479. {
  1480. pfm_context_t *ctx;
  1481. struct task_struct *task;
  1482. struct pt_regs *regs;
  1483. unsigned long flags;
  1484. unsigned long smpl_buf_size = 0UL;
  1485. void *smpl_buf_vaddr = NULL;
  1486. int state, is_system;
  1487. if (PFM_IS_FILE(filp) == 0) {
  1488. DPRINT(("bad magic for\n"));
  1489. return -EBADF;
  1490. }
  1491. ctx = (pfm_context_t *)filp->private_data;
  1492. if (ctx == NULL) {
  1493. printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
  1494. return -EBADF;
  1495. }
  1496. /*
  1497. * remove our file from the async queue, if we use this mode.
  1498. * This can be done without the context being protected. We come
  1499. * here when the context has become unreacheable by other tasks.
  1500. *
  1501. * We may still have active monitoring at this point and we may
  1502. * end up in pfm_overflow_handler(). However, fasync_helper()
  1503. * operates with interrupts disabled and it cleans up the
  1504. * queue. If the PMU handler is called prior to entering
  1505. * fasync_helper() then it will send a signal. If it is
  1506. * invoked after, it will find an empty queue and no
  1507. * signal will be sent. In both case, we are safe
  1508. */
  1509. if (filp->f_flags & FASYNC) {
  1510. DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
  1511. pfm_do_fasync (-1, filp, ctx, 0);
  1512. }
  1513. PROTECT_CTX(ctx, flags);
  1514. state = ctx->ctx_state;
  1515. is_system = ctx->ctx_fl_system;
  1516. task = PFM_CTX_TASK(ctx);
  1517. regs = task_pt_regs(task);
  1518. DPRINT(("ctx_state=%d is_current=%d\n",
  1519. state,
  1520. task == current ? 1 : 0));
  1521. /*
  1522. * if state == UNLOADED, then task is NULL
  1523. */
  1524. /*
  1525. * we must stop and unload because we are losing access to the context.
  1526. */
  1527. if (task == current) {
  1528. #ifdef CONFIG_SMP
  1529. /*
  1530. * the task IS the owner but it migrated to another CPU: that's bad
  1531. * but we must handle this cleanly. Unfortunately, the kernel does
  1532. * not provide a mechanism to block migration (while the context is loaded).
  1533. *
  1534. * We need to release the resource on the ORIGINAL cpu.
  1535. */
  1536. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  1537. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  1538. /*
  1539. * keep context protected but unmask interrupt for IPI
  1540. */
  1541. local_irq_restore(flags);
  1542. pfm_syswide_cleanup_other_cpu(ctx);
  1543. /*
  1544. * restore interrupt masking
  1545. */
  1546. local_irq_save(flags);
  1547. /*
  1548. * context is unloaded at this point
  1549. */
  1550. } else
  1551. #endif /* CONFIG_SMP */
  1552. {
  1553. DPRINT(("forcing unload\n"));
  1554. /*
  1555. * stop and unload, returning with state UNLOADED
  1556. * and session unreserved.
  1557. */
  1558. pfm_context_unload(ctx, NULL, 0, regs);
  1559. DPRINT(("ctx_state=%d\n", ctx->ctx_state));
  1560. }
  1561. }
  1562. /*
  1563. * remove virtual mapping, if any, for the calling task.
  1564. * cannot reset ctx field until last user is calling close().
  1565. *
  1566. * ctx_smpl_vaddr must never be cleared because it is needed
  1567. * by every task with access to the context
  1568. *
  1569. * When called from do_exit(), the mm context is gone already, therefore
  1570. * mm is NULL, i.e., the VMA is already gone and we do not have to
  1571. * do anything here
  1572. */
  1573. if (ctx->ctx_smpl_vaddr && current->mm) {
  1574. smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
  1575. smpl_buf_size = ctx->ctx_smpl_size;
  1576. }
  1577. UNPROTECT_CTX(ctx, flags);
  1578. /*
  1579. * if there was a mapping, then we systematically remove it
  1580. * at this point. Cannot be done inside critical section
  1581. * because some VM function reenables interrupts.
  1582. *
  1583. */
  1584. if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
  1585. return 0;
  1586. }
  1587. /*
  1588. * called either on explicit close() or from exit_files().
  1589. * Only the LAST user of the file gets to this point, i.e., it is
  1590. * called only ONCE.
  1591. *
  1592. * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
  1593. * (fput()),i.e, last task to access the file. Nobody else can access the
  1594. * file at this point.
  1595. *
  1596. * When called from exit_files(), the VMA has been freed because exit_mm()
  1597. * is executed before exit_files().
  1598. *
  1599. * When called from exit_files(), the current task is not yet ZOMBIE but we
  1600. * flush the PMU state to the context.
  1601. */
  1602. static int
  1603. pfm_close(struct inode *inode, struct file *filp)
  1604. {
  1605. pfm_context_t *ctx;
  1606. struct task_struct *task;
  1607. struct pt_regs *regs;
  1608. DECLARE_WAITQUEUE(wait, current);
  1609. unsigned long flags;
  1610. unsigned long smpl_buf_size = 0UL;
  1611. void *smpl_buf_addr = NULL;
  1612. int free_possible = 1;
  1613. int state, is_system;
  1614. DPRINT(("pfm_close called private=%p\n", filp->private_data));
  1615. if (PFM_IS_FILE(filp) == 0) {
  1616. DPRINT(("bad magic\n"));
  1617. return -EBADF;
  1618. }
  1619. ctx = (pfm_context_t *)filp->private_data;
  1620. if (ctx == NULL) {
  1621. printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
  1622. return -EBADF;
  1623. }
  1624. PROTECT_CTX(ctx, flags);
  1625. state = ctx->ctx_state;
  1626. is_system = ctx->ctx_fl_system;
  1627. task = PFM_CTX_TASK(ctx);
  1628. regs = task_pt_regs(task);
  1629. DPRINT(("ctx_state=%d is_current=%d\n",
  1630. state,
  1631. task == current ? 1 : 0));
  1632. /*
  1633. * if task == current, then pfm_flush() unloaded the context
  1634. */
  1635. if (state == PFM_CTX_UNLOADED) goto doit;
  1636. /*
  1637. * context is loaded/masked and task != current, we need to
  1638. * either force an unload or go zombie
  1639. */
  1640. /*
  1641. * The task is currently blocked or will block after an overflow.
  1642. * we must force it to wakeup to get out of the
  1643. * MASKED state and transition to the unloaded state by itself.
  1644. *
  1645. * This situation is only possible for per-task mode
  1646. */
  1647. if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
  1648. /*
  1649. * set a "partial" zombie state to be checked
  1650. * upon return from down() in pfm_handle_work().
  1651. *
  1652. * We cannot use the ZOMBIE state, because it is checked
  1653. * by pfm_load_regs() which is called upon wakeup from down().
  1654. * In such case, it would free the context and then we would
  1655. * return to pfm_handle_work() which would access the
  1656. * stale context. Instead, we set a flag invisible to pfm_load_regs()
  1657. * but visible to pfm_handle_work().
  1658. *
  1659. * For some window of time, we have a zombie context with
  1660. * ctx_state = MASKED and not ZOMBIE
  1661. */
  1662. ctx->ctx_fl_going_zombie = 1;
  1663. /*
  1664. * force task to wake up from MASKED state
  1665. */
  1666. complete(&ctx->ctx_restart_done);
  1667. DPRINT(("waking up ctx_state=%d\n", state));
  1668. /*
  1669. * put ourself to sleep waiting for the other
  1670. * task to report completion
  1671. *
  1672. * the context is protected by mutex, therefore there
  1673. * is no risk of being notified of completion before
  1674. * begin actually on the waitq.
  1675. */
  1676. set_current_state(TASK_INTERRUPTIBLE);
  1677. add_wait_queue(&ctx->ctx_zombieq, &wait);
  1678. UNPROTECT_CTX(ctx, flags);
  1679. /*
  1680. * XXX: check for signals :
  1681. * - ok for explicit close
  1682. * - not ok when coming from exit_files()
  1683. */
  1684. schedule();
  1685. PROTECT_CTX(ctx, flags);
  1686. remove_wait_queue(&ctx->ctx_zombieq, &wait);
  1687. set_current_state(TASK_RUNNING);
  1688. /*
  1689. * context is unloaded at this point
  1690. */
  1691. DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
  1692. }
  1693. else if (task != current) {
  1694. #ifdef CONFIG_SMP
  1695. /*
  1696. * switch context to zombie state
  1697. */
  1698. ctx->ctx_state = PFM_CTX_ZOMBIE;
  1699. DPRINT(("zombie ctx for [%d]\n", task->pid));
  1700. /*
  1701. * cannot free the context on the spot. deferred until
  1702. * the task notices the ZOMBIE state
  1703. */
  1704. free_possible = 0;
  1705. #else
  1706. pfm_context_unload(ctx, NULL, 0, regs);
  1707. #endif
  1708. }
  1709. doit:
  1710. /* reload state, may have changed during opening of critical section */
  1711. state = ctx->ctx_state;
  1712. /*
  1713. * the context is still attached to a task (possibly current)
  1714. * we cannot destroy it right now
  1715. */
  1716. /*
  1717. * we must free the sampling buffer right here because
  1718. * we cannot rely on it being cleaned up later by the
  1719. * monitored task. It is not possible to free vmalloc'ed
  1720. * memory in pfm_load_regs(). Instead, we remove the buffer
  1721. * now. should there be subsequent PMU overflow originally
  1722. * meant for sampling, the will be converted to spurious
  1723. * and that's fine because the monitoring tools is gone anyway.
  1724. */
  1725. if (ctx->ctx_smpl_hdr) {
  1726. smpl_buf_addr = ctx->ctx_smpl_hdr;
  1727. smpl_buf_size = ctx->ctx_smpl_size;
  1728. /* no more sampling */
  1729. ctx->ctx_smpl_hdr = NULL;
  1730. ctx->ctx_fl_is_sampling = 0;
  1731. }
  1732. DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
  1733. state,
  1734. free_possible,
  1735. smpl_buf_addr,
  1736. smpl_buf_size));
  1737. if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
  1738. /*
  1739. * UNLOADED that the session has already been unreserved.
  1740. */
  1741. if (state == PFM_CTX_ZOMBIE) {
  1742. pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
  1743. }
  1744. /*
  1745. * disconnect file descriptor from context must be done
  1746. * before we unlock.
  1747. */
  1748. filp->private_data = NULL;
  1749. /*
  1750. * if we free on the spot, the context is now completely unreacheable
  1751. * from the callers side. The monitored task side is also cut, so we
  1752. * can freely cut.
  1753. *
  1754. * If we have a deferred free, only the caller side is disconnected.
  1755. */
  1756. UNPROTECT_CTX(ctx, flags);
  1757. /*
  1758. * All memory free operations (especially for vmalloc'ed memory)
  1759. * MUST be done with interrupts ENABLED.
  1760. */
  1761. if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
  1762. /*
  1763. * return the memory used by the context
  1764. */
  1765. if (free_possible) pfm_context_free(ctx);
  1766. return 0;
  1767. }
  1768. static int
  1769. pfm_no_open(struct inode *irrelevant, struct file *dontcare)
  1770. {
  1771. DPRINT(("pfm_no_open called\n"));
  1772. return -ENXIO;
  1773. }
  1774. static struct file_operations pfm_file_ops = {
  1775. .llseek = no_llseek,
  1776. .read = pfm_read,
  1777. .write = pfm_write,
  1778. .poll = pfm_poll,
  1779. .ioctl = pfm_ioctl,
  1780. .open = pfm_no_open, /* special open code to disallow open via /proc */
  1781. .fasync = pfm_fasync,
  1782. .release = pfm_close,
  1783. .flush = pfm_flush
  1784. };
  1785. static int
  1786. pfmfs_delete_dentry(struct dentry *dentry)
  1787. {
  1788. return 1;
  1789. }
  1790. static struct dentry_operations pfmfs_dentry_operations = {
  1791. .d_delete = pfmfs_delete_dentry,
  1792. };
  1793. static int
  1794. pfm_alloc_fd(struct file **cfile)
  1795. {
  1796. int fd, ret = 0;
  1797. struct file *file = NULL;
  1798. struct inode * inode;
  1799. char name[32];
  1800. struct qstr this;
  1801. fd = get_unused_fd();
  1802. if (fd < 0) return -ENFILE;
  1803. ret = -ENFILE;
  1804. file = get_empty_filp();
  1805. if (!file) goto out;
  1806. /*
  1807. * allocate a new inode
  1808. */
  1809. inode = new_inode(pfmfs_mnt->mnt_sb);
  1810. if (!inode) goto out;
  1811. DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
  1812. inode->i_mode = S_IFCHR|S_IRUGO;
  1813. inode->i_uid = current->fsuid;
  1814. inode->i_gid = current->fsgid;
  1815. sprintf(name, "[%lu]", inode->i_ino);
  1816. this.name = name;
  1817. this.len = strlen(name);
  1818. this.hash = inode->i_ino;
  1819. ret = -ENOMEM;
  1820. /*
  1821. * allocate a new dcache entry
  1822. */
  1823. file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
  1824. if (!file->f_dentry) goto out;
  1825. file->f_dentry->d_op = &pfmfs_dentry_operations;
  1826. d_add(file->f_dentry, inode);
  1827. file->f_vfsmnt = mntget(pfmfs_mnt);
  1828. file->f_mapping = inode->i_mapping;
  1829. file->f_op = &pfm_file_ops;
  1830. file->f_mode = FMODE_READ;
  1831. file->f_flags = O_RDONLY;
  1832. file->f_pos = 0;
  1833. /*
  1834. * may have to delay until context is attached?
  1835. */
  1836. fd_install(fd, file);
  1837. /*
  1838. * the file structure we will use
  1839. */
  1840. *cfile = file;
  1841. return fd;
  1842. out:
  1843. if (file) put_filp(file);
  1844. put_unused_fd(fd);
  1845. return ret;
  1846. }
  1847. static void
  1848. pfm_free_fd(int fd, struct file *file)
  1849. {
  1850. struct files_struct *files = current->files;
  1851. struct fdtable *fdt;
  1852. /*
  1853. * there ie no fd_uninstall(), so we do it here
  1854. */
  1855. spin_lock(&files->file_lock);
  1856. fdt = files_fdtable(files);
  1857. rcu_assign_pointer(fdt->fd[fd], NULL);
  1858. spin_unlock(&files->file_lock);
  1859. if (file)
  1860. put_filp(file);
  1861. put_unused_fd(fd);
  1862. }
  1863. static int
  1864. pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
  1865. {
  1866. DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
  1867. while (size > 0) {
  1868. unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
  1869. if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
  1870. return -ENOMEM;
  1871. addr += PAGE_SIZE;
  1872. buf += PAGE_SIZE;
  1873. size -= PAGE_SIZE;
  1874. }
  1875. return 0;
  1876. }
  1877. /*
  1878. * allocate a sampling buffer and remaps it into the user address space of the task
  1879. */
  1880. static int
  1881. pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
  1882. {
  1883. struct mm_struct *mm = task->mm;
  1884. struct vm_area_struct *vma = NULL;
  1885. unsigned long size;
  1886. void *smpl_buf;
  1887. /*
  1888. * the fixed header + requested size and align to page boundary
  1889. */
  1890. size = PAGE_ALIGN(rsize);
  1891. DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
  1892. /*
  1893. * check requested size to avoid Denial-of-service attacks
  1894. * XXX: may have to refine this test
  1895. * Check against address space limit.
  1896. *
  1897. * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
  1898. * return -ENOMEM;
  1899. */
  1900. if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
  1901. return -ENOMEM;
  1902. /*
  1903. * We do the easy to undo allocations first.
  1904. *
  1905. * pfm_rvmalloc(), clears the buffer, so there is no leak
  1906. */
  1907. smpl_buf = pfm_rvmalloc(size);
  1908. if (smpl_buf == NULL) {
  1909. DPRINT(("Can't allocate sampling buffer\n"));
  1910. return -ENOMEM;
  1911. }
  1912. DPRINT(("smpl_buf @%p\n", smpl_buf));
  1913. /* allocate vma */
  1914. vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  1915. if (!vma) {
  1916. DPRINT(("Cannot allocate vma\n"));
  1917. goto error_kmem;
  1918. }
  1919. memset(vma, 0, sizeof(*vma));
  1920. /*
  1921. * partially initialize the vma for the sampling buffer
  1922. */
  1923. vma->vm_mm = mm;
  1924. vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
  1925. vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
  1926. /*
  1927. * Now we have everything we need and we can initialize
  1928. * and connect all the data structures
  1929. */
  1930. ctx->ctx_smpl_hdr = smpl_buf;
  1931. ctx->ctx_smpl_size = size; /* aligned size */
  1932. /*
  1933. * Let's do the difficult operations next.
  1934. *
  1935. * now we atomically find some area in the address space and
  1936. * remap the buffer in it.
  1937. */
  1938. down_write(&task->mm->mmap_sem);
  1939. /* find some free area in address space, must have mmap sem held */
  1940. vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
  1941. if (vma->vm_start == 0UL) {
  1942. DPRINT(("Cannot find unmapped area for size %ld\n", size));
  1943. up_write(&task->mm->mmap_sem);
  1944. goto error;
  1945. }
  1946. vma->vm_end = vma->vm_start + size;
  1947. vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
  1948. DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
  1949. /* can only be applied to current task, need to have the mm semaphore held when called */
  1950. if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
  1951. DPRINT(("Can't remap buffer\n"));
  1952. up_write(&task->mm->mmap_sem);
  1953. goto error;
  1954. }
  1955. /*
  1956. * now insert the vma in the vm list for the process, must be
  1957. * done with mmap lock held
  1958. */
  1959. insert_vm_struct(mm, vma);
  1960. mm->total_vm += size >> PAGE_SHIFT;
  1961. vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
  1962. vma_pages(vma));
  1963. up_write(&task->mm->mmap_sem);
  1964. /*
  1965. * keep track of user level virtual address
  1966. */
  1967. ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
  1968. *(unsigned long *)user_vaddr = vma->vm_start;
  1969. return 0;
  1970. error:
  1971. kmem_cache_free(vm_area_cachep, vma);
  1972. error_kmem:
  1973. pfm_rvfree(smpl_buf, size);
  1974. return -ENOMEM;
  1975. }
  1976. /*
  1977. * XXX: do something better here
  1978. */
  1979. static int
  1980. pfm_bad_permissions(struct task_struct *task)
  1981. {
  1982. /* inspired by ptrace_attach() */
  1983. DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
  1984. current->uid,
  1985. current->gid,
  1986. task->euid,
  1987. task->suid,
  1988. task->uid,
  1989. task->egid,
  1990. task->sgid));
  1991. return ((current->uid != task->euid)
  1992. || (current->uid != task->suid)
  1993. || (current->uid != task->uid)
  1994. || (current->gid != task->egid)
  1995. || (current->gid != task->sgid)
  1996. || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
  1997. }
  1998. static int
  1999. pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
  2000. {
  2001. int ctx_flags;
  2002. /* valid signal */
  2003. ctx_flags = pfx->ctx_flags;
  2004. if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
  2005. /*
  2006. * cannot block in this mode
  2007. */
  2008. if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
  2009. DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
  2010. return -EINVAL;
  2011. }
  2012. } else {
  2013. }
  2014. /* probably more to add here */
  2015. return 0;
  2016. }
  2017. static int
  2018. pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
  2019. unsigned int cpu, pfarg_context_t *arg)
  2020. {
  2021. pfm_buffer_fmt_t *fmt = NULL;
  2022. unsigned long size = 0UL;
  2023. void *uaddr = NULL;
  2024. void *fmt_arg = NULL;
  2025. int ret = 0;
  2026. #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
  2027. /* invoke and lock buffer format, if found */
  2028. fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
  2029. if (fmt == NULL) {
  2030. DPRINT(("[%d] cannot find buffer format\n", task->pid));
  2031. return -EINVAL;
  2032. }
  2033. /*
  2034. * buffer argument MUST be contiguous to pfarg_context_t
  2035. */
  2036. if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
  2037. ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
  2038. DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
  2039. if (ret) goto error;
  2040. /* link buffer format and context */
  2041. ctx->ctx_buf_fmt = fmt;
  2042. /*
  2043. * check if buffer format wants to use perfmon buffer allocation/mapping service
  2044. */
  2045. ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
  2046. if (ret) goto error;
  2047. if (size) {
  2048. /*
  2049. * buffer is always remapped into the caller's address space
  2050. */
  2051. ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
  2052. if (ret) goto error;
  2053. /* keep track of user address of buffer */
  2054. arg->ctx_smpl_vaddr = uaddr;
  2055. }
  2056. ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
  2057. error:
  2058. return ret;
  2059. }
  2060. static void
  2061. pfm_reset_pmu_state(pfm_context_t *ctx)
  2062. {
  2063. int i;
  2064. /*
  2065. * install reset values for PMC.
  2066. */
  2067. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  2068. if (PMC_IS_IMPL(i) == 0) continue;
  2069. ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
  2070. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
  2071. }
  2072. /*
  2073. * PMD registers are set to 0UL when the context in memset()
  2074. */
  2075. /*
  2076. * On context switched restore, we must restore ALL pmc and ALL pmd even
  2077. * when they are not actively used by the task. In UP, the incoming process
  2078. * may otherwise pick up left over PMC, PMD state from the previous process.
  2079. * As opposed to PMD, stale PMC can cause harm to the incoming
  2080. * process because they may change what is being measured.
  2081. * Therefore, we must systematically reinstall the entire
  2082. * PMC state. In SMP, the same thing is possible on the
  2083. * same CPU but also on between 2 CPUs.
  2084. *
  2085. * The problem with PMD is information leaking especially
  2086. * to user level when psr.sp=0
  2087. *
  2088. * There is unfortunately no easy way to avoid this problem
  2089. * on either UP or SMP. This definitively slows down the
  2090. * pfm_load_regs() function.
  2091. */
  2092. /*
  2093. * bitmask of all PMCs accessible to this context
  2094. *
  2095. * PMC0 is treated differently.
  2096. */
  2097. ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
  2098. /*
  2099. * bitmask of all PMDs that are accesible to this context
  2100. */
  2101. ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
  2102. DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
  2103. /*
  2104. * useful in case of re-enable after disable
  2105. */
  2106. ctx->ctx_used_ibrs[0] = 0UL;
  2107. ctx->ctx_used_dbrs[0] = 0UL;
  2108. }
  2109. static int
  2110. pfm_ctx_getsize(void *arg, size_t *sz)
  2111. {
  2112. pfarg_context_t *req = (pfarg_context_t *)arg;
  2113. pfm_buffer_fmt_t *fmt;
  2114. *sz = 0;
  2115. if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
  2116. fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
  2117. if (fmt == NULL) {
  2118. DPRINT(("cannot find buffer format\n"));
  2119. return -EINVAL;
  2120. }
  2121. /* get just enough to copy in user parameters */
  2122. *sz = fmt->fmt_arg_size;
  2123. DPRINT(("arg_size=%lu\n", *sz));
  2124. return 0;
  2125. }
  2126. /*
  2127. * cannot attach if :
  2128. * - kernel task
  2129. * - task not owned by caller
  2130. * - task incompatible with context mode
  2131. */
  2132. static int
  2133. pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
  2134. {
  2135. /*
  2136. * no kernel task or task not owner by caller
  2137. */
  2138. if (task->mm == NULL) {
  2139. DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
  2140. return -EPERM;
  2141. }
  2142. if (pfm_bad_permissions(task)) {
  2143. DPRINT(("no permission to attach to [%d]\n", task->pid));
  2144. return -EPERM;
  2145. }
  2146. /*
  2147. * cannot block in self-monitoring mode
  2148. */
  2149. if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
  2150. DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
  2151. return -EINVAL;
  2152. }
  2153. if (task->exit_state == EXIT_ZOMBIE) {
  2154. DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
  2155. return -EBUSY;
  2156. }
  2157. /*
  2158. * always ok for self
  2159. */
  2160. if (task == current) return 0;
  2161. if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
  2162. DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
  2163. return -EBUSY;
  2164. }
  2165. /*
  2166. * make sure the task is off any CPU
  2167. */
  2168. wait_task_inactive(task);
  2169. /* more to come... */
  2170. return 0;
  2171. }
  2172. static int
  2173. pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
  2174. {
  2175. struct task_struct *p = current;
  2176. int ret;
  2177. /* XXX: need to add more checks here */
  2178. if (pid < 2) return -EPERM;
  2179. if (pid != current->pid) {
  2180. read_lock(&tasklist_lock);
  2181. p = find_task_by_pid(pid);
  2182. /* make sure task cannot go away while we operate on it */
  2183. if (p) get_task_struct(p);
  2184. read_unlock(&tasklist_lock);
  2185. if (p == NULL) return -ESRCH;
  2186. }
  2187. ret = pfm_task_incompatible(ctx, p);
  2188. if (ret == 0) {
  2189. *task = p;
  2190. } else if (p != current) {
  2191. pfm_put_task(p);
  2192. }
  2193. return ret;
  2194. }
  2195. static int
  2196. pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2197. {
  2198. pfarg_context_t *req = (pfarg_context_t *)arg;
  2199. struct file *filp;
  2200. int ctx_flags;
  2201. int ret;
  2202. /* let's check the arguments first */
  2203. ret = pfarg_is_sane(current, req);
  2204. if (ret < 0) return ret;
  2205. ctx_flags = req->ctx_flags;
  2206. ret = -ENOMEM;
  2207. ctx = pfm_context_alloc();
  2208. if (!ctx) goto error;
  2209. ret = pfm_alloc_fd(&filp);
  2210. if (ret < 0) goto error_file;
  2211. req->ctx_fd = ctx->ctx_fd = ret;
  2212. /*
  2213. * attach context to file
  2214. */
  2215. filp->private_data = ctx;
  2216. /*
  2217. * does the user want to sample?
  2218. */
  2219. if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
  2220. ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
  2221. if (ret) goto buffer_error;
  2222. }
  2223. /*
  2224. * init context protection lock
  2225. */
  2226. spin_lock_init(&ctx->ctx_lock);
  2227. /*
  2228. * context is unloaded
  2229. */
  2230. ctx->ctx_state = PFM_CTX_UNLOADED;
  2231. /*
  2232. * initialization of context's flags
  2233. */
  2234. ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
  2235. ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
  2236. ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
  2237. ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
  2238. /*
  2239. * will move to set properties
  2240. * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
  2241. */
  2242. /*
  2243. * init restart semaphore to locked
  2244. */
  2245. init_completion(&ctx->ctx_restart_done);
  2246. /*
  2247. * activation is used in SMP only
  2248. */
  2249. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  2250. SET_LAST_CPU(ctx, -1);
  2251. /*
  2252. * initialize notification message queue
  2253. */
  2254. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  2255. init_waitqueue_head(&ctx->ctx_msgq_wait);
  2256. init_waitqueue_head(&ctx->ctx_zombieq);
  2257. DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
  2258. ctx,
  2259. ctx_flags,
  2260. ctx->ctx_fl_system,
  2261. ctx->ctx_fl_block,
  2262. ctx->ctx_fl_excl_idle,
  2263. ctx->ctx_fl_no_msg,
  2264. ctx->ctx_fd));
  2265. /*
  2266. * initialize soft PMU state
  2267. */
  2268. pfm_reset_pmu_state(ctx);
  2269. return 0;
  2270. buffer_error:
  2271. pfm_free_fd(ctx->ctx_fd, filp);
  2272. if (ctx->ctx_buf_fmt) {
  2273. pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
  2274. }
  2275. error_file:
  2276. pfm_context_free(ctx);
  2277. error:
  2278. return ret;
  2279. }
  2280. static inline unsigned long
  2281. pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
  2282. {
  2283. unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
  2284. unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
  2285. extern unsigned long carta_random32 (unsigned long seed);
  2286. if (reg->flags & PFM_REGFL_RANDOM) {
  2287. new_seed = carta_random32(old_seed);
  2288. val -= (old_seed & mask); /* counter values are negative numbers! */
  2289. if ((mask >> 32) != 0)
  2290. /* construct a full 64-bit random value: */
  2291. new_seed |= carta_random32(old_seed >> 32) << 32;
  2292. reg->seed = new_seed;
  2293. }
  2294. reg->lval = val;
  2295. return val;
  2296. }
  2297. static void
  2298. pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2299. {
  2300. unsigned long mask = ovfl_regs[0];
  2301. unsigned long reset_others = 0UL;
  2302. unsigned long val;
  2303. int i;
  2304. /*
  2305. * now restore reset value on sampling overflowed counters
  2306. */
  2307. mask >>= PMU_FIRST_COUNTER;
  2308. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2309. if ((mask & 0x1UL) == 0UL) continue;
  2310. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2311. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2312. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2313. }
  2314. /*
  2315. * Now take care of resetting the other registers
  2316. */
  2317. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2318. if ((reset_others & 0x1) == 0) continue;
  2319. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2320. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2321. is_long_reset ? "long" : "short", i, val));
  2322. }
  2323. }
  2324. static void
  2325. pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2326. {
  2327. unsigned long mask = ovfl_regs[0];
  2328. unsigned long reset_others = 0UL;
  2329. unsigned long val;
  2330. int i;
  2331. DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
  2332. if (ctx->ctx_state == PFM_CTX_MASKED) {
  2333. pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
  2334. return;
  2335. }
  2336. /*
  2337. * now restore reset value on sampling overflowed counters
  2338. */
  2339. mask >>= PMU_FIRST_COUNTER;
  2340. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2341. if ((mask & 0x1UL) == 0UL) continue;
  2342. val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2343. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2344. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2345. pfm_write_soft_counter(ctx, i, val);
  2346. }
  2347. /*
  2348. * Now take care of resetting the other registers
  2349. */
  2350. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2351. if ((reset_others & 0x1) == 0) continue;
  2352. val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2353. if (PMD_IS_COUNTING(i)) {
  2354. pfm_write_soft_counter(ctx, i, val);
  2355. } else {
  2356. ia64_set_pmd(i, val);
  2357. }
  2358. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2359. is_long_reset ? "long" : "short", i, val));
  2360. }
  2361. ia64_srlz_d();
  2362. }
  2363. static int
  2364. pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2365. {
  2366. struct thread_struct *thread = NULL;
  2367. struct task_struct *task;
  2368. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2369. unsigned long value, pmc_pm;
  2370. unsigned long smpl_pmds, reset_pmds, impl_pmds;
  2371. unsigned int cnum, reg_flags, flags, pmc_type;
  2372. int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
  2373. int is_monitor, is_counting, state;
  2374. int ret = -EINVAL;
  2375. pfm_reg_check_t wr_func;
  2376. #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
  2377. state = ctx->ctx_state;
  2378. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2379. is_system = ctx->ctx_fl_system;
  2380. task = ctx->ctx_task;
  2381. impl_pmds = pmu_conf->impl_pmds[0];
  2382. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2383. if (is_loaded) {
  2384. thread = &task->thread;
  2385. /*
  2386. * In system wide and when the context is loaded, access can only happen
  2387. * when the caller is running on the CPU being monitored by the session.
  2388. * It does not have to be the owner (ctx_task) of the context per se.
  2389. */
  2390. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2391. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2392. return -EBUSY;
  2393. }
  2394. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2395. }
  2396. expert_mode = pfm_sysctl.expert_mode;
  2397. for (i = 0; i < count; i++, req++) {
  2398. cnum = req->reg_num;
  2399. reg_flags = req->reg_flags;
  2400. value = req->reg_value;
  2401. smpl_pmds = req->reg_smpl_pmds[0];
  2402. reset_pmds = req->reg_reset_pmds[0];
  2403. flags = 0;
  2404. if (cnum >= PMU_MAX_PMCS) {
  2405. DPRINT(("pmc%u is invalid\n", cnum));
  2406. goto error;
  2407. }
  2408. pmc_type = pmu_conf->pmc_desc[cnum].type;
  2409. pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
  2410. is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
  2411. is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
  2412. /*
  2413. * we reject all non implemented PMC as well
  2414. * as attempts to modify PMC[0-3] which are used
  2415. * as status registers by the PMU
  2416. */
  2417. if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
  2418. DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
  2419. goto error;
  2420. }
  2421. wr_func = pmu_conf->pmc_desc[cnum].write_check;
  2422. /*
  2423. * If the PMC is a monitor, then if the value is not the default:
  2424. * - system-wide session: PMCx.pm=1 (privileged monitor)
  2425. * - per-task : PMCx.pm=0 (user monitor)
  2426. */
  2427. if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
  2428. DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
  2429. cnum,
  2430. pmc_pm,
  2431. is_system));
  2432. goto error;
  2433. }
  2434. if (is_counting) {
  2435. /*
  2436. * enforce generation of overflow interrupt. Necessary on all
  2437. * CPUs.
  2438. */
  2439. value |= 1 << PMU_PMC_OI;
  2440. if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
  2441. flags |= PFM_REGFL_OVFL_NOTIFY;
  2442. }
  2443. if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
  2444. /* verify validity of smpl_pmds */
  2445. if ((smpl_pmds & impl_pmds) != smpl_pmds) {
  2446. DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
  2447. goto error;
  2448. }
  2449. /* verify validity of reset_pmds */
  2450. if ((reset_pmds & impl_pmds) != reset_pmds) {
  2451. DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
  2452. goto error;
  2453. }
  2454. } else {
  2455. if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
  2456. DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
  2457. goto error;
  2458. }
  2459. /* eventid on non-counting monitors are ignored */
  2460. }
  2461. /*
  2462. * execute write checker, if any
  2463. */
  2464. if (likely(expert_mode == 0 && wr_func)) {
  2465. ret = (*wr_func)(task, ctx, cnum, &value, regs);
  2466. if (ret) goto error;
  2467. ret = -EINVAL;
  2468. }
  2469. /*
  2470. * no error on this register
  2471. */
  2472. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2473. /*
  2474. * Now we commit the changes to the software state
  2475. */
  2476. /*
  2477. * update overflow information
  2478. */
  2479. if (is_counting) {
  2480. /*
  2481. * full flag update each time a register is programmed
  2482. */
  2483. ctx->ctx_pmds[cnum].flags = flags;
  2484. ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
  2485. ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
  2486. ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
  2487. /*
  2488. * Mark all PMDS to be accessed as used.
  2489. *
  2490. * We do not keep track of PMC because we have to
  2491. * systematically restore ALL of them.
  2492. *
  2493. * We do not update the used_monitors mask, because
  2494. * if we have not programmed them, then will be in
  2495. * a quiescent state, therefore we will not need to
  2496. * mask/restore then when context is MASKED.
  2497. */
  2498. CTX_USED_PMD(ctx, reset_pmds);
  2499. CTX_USED_PMD(ctx, smpl_pmds);
  2500. /*
  2501. * make sure we do not try to reset on
  2502. * restart because we have established new values
  2503. */
  2504. if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2505. }
  2506. /*
  2507. * Needed in case the user does not initialize the equivalent
  2508. * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
  2509. * possible leak here.
  2510. */
  2511. CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
  2512. /*
  2513. * keep track of the monitor PMC that we are using.
  2514. * we save the value of the pmc in ctx_pmcs[] and if
  2515. * the monitoring is not stopped for the context we also
  2516. * place it in the saved state area so that it will be
  2517. * picked up later by the context switch code.
  2518. *
  2519. * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
  2520. *
  2521. * The value in thread->pmcs[] may be modified on overflow, i.e., when
  2522. * monitoring needs to be stopped.
  2523. */
  2524. if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
  2525. /*
  2526. * update context state
  2527. */
  2528. ctx->ctx_pmcs[cnum] = value;
  2529. if (is_loaded) {
  2530. /*
  2531. * write thread state
  2532. */
  2533. if (is_system == 0) thread->pmcs[cnum] = value;
  2534. /*
  2535. * write hardware register if we can
  2536. */
  2537. if (can_access_pmu) {
  2538. ia64_set_pmc(cnum, value);
  2539. }
  2540. #ifdef CONFIG_SMP
  2541. else {
  2542. /*
  2543. * per-task SMP only here
  2544. *
  2545. * we are guaranteed that the task is not running on the other CPU,
  2546. * we indicate that this PMD will need to be reloaded if the task
  2547. * is rescheduled on the CPU it ran last on.
  2548. */
  2549. ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
  2550. }
  2551. #endif
  2552. }
  2553. DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
  2554. cnum,
  2555. value,
  2556. is_loaded,
  2557. can_access_pmu,
  2558. flags,
  2559. ctx->ctx_all_pmcs[0],
  2560. ctx->ctx_used_pmds[0],
  2561. ctx->ctx_pmds[cnum].eventid,
  2562. smpl_pmds,
  2563. reset_pmds,
  2564. ctx->ctx_reload_pmcs[0],
  2565. ctx->ctx_used_monitors[0],
  2566. ctx->ctx_ovfl_regs[0]));
  2567. }
  2568. /*
  2569. * make sure the changes are visible
  2570. */
  2571. if (can_access_pmu) ia64_srlz_d();
  2572. return 0;
  2573. error:
  2574. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2575. return ret;
  2576. }
  2577. static int
  2578. pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2579. {
  2580. struct thread_struct *thread = NULL;
  2581. struct task_struct *task;
  2582. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2583. unsigned long value, hw_value, ovfl_mask;
  2584. unsigned int cnum;
  2585. int i, can_access_pmu = 0, state;
  2586. int is_counting, is_loaded, is_system, expert_mode;
  2587. int ret = -EINVAL;
  2588. pfm_reg_check_t wr_func;
  2589. state = ctx->ctx_state;
  2590. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2591. is_system = ctx->ctx_fl_system;
  2592. ovfl_mask = pmu_conf->ovfl_val;
  2593. task = ctx->ctx_task;
  2594. if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
  2595. /*
  2596. * on both UP and SMP, we can only write to the PMC when the task is
  2597. * the owner of the local PMU.
  2598. */
  2599. if (likely(is_loaded)) {
  2600. thread = &task->thread;
  2601. /*
  2602. * In system wide and when the context is loaded, access can only happen
  2603. * when the caller is running on the CPU being monitored by the session.
  2604. * It does not have to be the owner (ctx_task) of the context per se.
  2605. */
  2606. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2607. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2608. return -EBUSY;
  2609. }
  2610. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2611. }
  2612. expert_mode = pfm_sysctl.expert_mode;
  2613. for (i = 0; i < count; i++, req++) {
  2614. cnum = req->reg_num;
  2615. value = req->reg_value;
  2616. if (!PMD_IS_IMPL(cnum)) {
  2617. DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
  2618. goto abort_mission;
  2619. }
  2620. is_counting = PMD_IS_COUNTING(cnum);
  2621. wr_func = pmu_conf->pmd_desc[cnum].write_check;
  2622. /*
  2623. * execute write checker, if any
  2624. */
  2625. if (unlikely(expert_mode == 0 && wr_func)) {
  2626. unsigned long v = value;
  2627. ret = (*wr_func)(task, ctx, cnum, &v, regs);
  2628. if (ret) goto abort_mission;
  2629. value = v;
  2630. ret = -EINVAL;
  2631. }
  2632. /*
  2633. * no error on this register
  2634. */
  2635. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2636. /*
  2637. * now commit changes to software state
  2638. */
  2639. hw_value = value;
  2640. /*
  2641. * update virtualized (64bits) counter
  2642. */
  2643. if (is_counting) {
  2644. /*
  2645. * write context state
  2646. */
  2647. ctx->ctx_pmds[cnum].lval = value;
  2648. /*
  2649. * when context is load we use the split value
  2650. */
  2651. if (is_loaded) {
  2652. hw_value = value & ovfl_mask;
  2653. value = value & ~ovfl_mask;
  2654. }
  2655. }
  2656. /*
  2657. * update reset values (not just for counters)
  2658. */
  2659. ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
  2660. ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
  2661. /*
  2662. * update randomization parameters (not just for counters)
  2663. */
  2664. ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
  2665. ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
  2666. /*
  2667. * update context value
  2668. */
  2669. ctx->ctx_pmds[cnum].val = value;
  2670. /*
  2671. * Keep track of what we use
  2672. *
  2673. * We do not keep track of PMC because we have to
  2674. * systematically restore ALL of them.
  2675. */
  2676. CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
  2677. /*
  2678. * mark this PMD register used as well
  2679. */
  2680. CTX_USED_PMD(ctx, RDEP(cnum));
  2681. /*
  2682. * make sure we do not try to reset on
  2683. * restart because we have established new values
  2684. */
  2685. if (is_counting && state == PFM_CTX_MASKED) {
  2686. ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2687. }
  2688. if (is_loaded) {
  2689. /*
  2690. * write thread state
  2691. */
  2692. if (is_system == 0) thread->pmds[cnum] = hw_value;
  2693. /*
  2694. * write hardware register if we can
  2695. */
  2696. if (can_access_pmu) {
  2697. ia64_set_pmd(cnum, hw_value);
  2698. } else {
  2699. #ifdef CONFIG_SMP
  2700. /*
  2701. * we are guaranteed that the task is not running on the other CPU,
  2702. * we indicate that this PMD will need to be reloaded if the task
  2703. * is rescheduled on the CPU it ran last on.
  2704. */
  2705. ctx->ctx_reload_pmds[0] |= 1UL << cnum;
  2706. #endif
  2707. }
  2708. }
  2709. DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
  2710. "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
  2711. cnum,
  2712. value,
  2713. is_loaded,
  2714. can_access_pmu,
  2715. hw_value,
  2716. ctx->ctx_pmds[cnum].val,
  2717. ctx->ctx_pmds[cnum].short_reset,
  2718. ctx->ctx_pmds[cnum].long_reset,
  2719. PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
  2720. ctx->ctx_pmds[cnum].seed,
  2721. ctx->ctx_pmds[cnum].mask,
  2722. ctx->ctx_used_pmds[0],
  2723. ctx->ctx_pmds[cnum].reset_pmds[0],
  2724. ctx->ctx_reload_pmds[0],
  2725. ctx->ctx_all_pmds[0],
  2726. ctx->ctx_ovfl_regs[0]));
  2727. }
  2728. /*
  2729. * make changes visible
  2730. */
  2731. if (can_access_pmu) ia64_srlz_d();
  2732. return 0;
  2733. abort_mission:
  2734. /*
  2735. * for now, we have only one possibility for error
  2736. */
  2737. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2738. return ret;
  2739. }
  2740. /*
  2741. * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
  2742. * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
  2743. * interrupt is delivered during the call, it will be kept pending until we leave, making
  2744. * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
  2745. * guaranteed to return consistent data to the user, it may simply be old. It is not
  2746. * trivial to treat the overflow while inside the call because you may end up in
  2747. * some module sampling buffer code causing deadlocks.
  2748. */
  2749. static int
  2750. pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2751. {
  2752. struct thread_struct *thread = NULL;
  2753. struct task_struct *task;
  2754. unsigned long val = 0UL, lval, ovfl_mask, sval;
  2755. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2756. unsigned int cnum, reg_flags = 0;
  2757. int i, can_access_pmu = 0, state;
  2758. int is_loaded, is_system, is_counting, expert_mode;
  2759. int ret = -EINVAL;
  2760. pfm_reg_check_t rd_func;
  2761. /*
  2762. * access is possible when loaded only for
  2763. * self-monitoring tasks or in UP mode
  2764. */
  2765. state = ctx->ctx_state;
  2766. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2767. is_system = ctx->ctx_fl_system;
  2768. ovfl_mask = pmu_conf->ovfl_val;
  2769. task = ctx->ctx_task;
  2770. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2771. if (likely(is_loaded)) {
  2772. thread = &task->thread;
  2773. /*
  2774. * In system wide and when the context is loaded, access can only happen
  2775. * when the caller is running on the CPU being monitored by the session.
  2776. * It does not have to be the owner (ctx_task) of the context per se.
  2777. */
  2778. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2779. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2780. return -EBUSY;
  2781. }
  2782. /*
  2783. * this can be true when not self-monitoring only in UP
  2784. */
  2785. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2786. if (can_access_pmu) ia64_srlz_d();
  2787. }
  2788. expert_mode = pfm_sysctl.expert_mode;
  2789. DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
  2790. is_loaded,
  2791. can_access_pmu,
  2792. state));
  2793. /*
  2794. * on both UP and SMP, we can only read the PMD from the hardware register when
  2795. * the task is the owner of the local PMU.
  2796. */
  2797. for (i = 0; i < count; i++, req++) {
  2798. cnum = req->reg_num;
  2799. reg_flags = req->reg_flags;
  2800. if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
  2801. /*
  2802. * we can only read the register that we use. That includes
  2803. * the one we explicitely initialize AND the one we want included
  2804. * in the sampling buffer (smpl_regs).
  2805. *
  2806. * Having this restriction allows optimization in the ctxsw routine
  2807. * without compromising security (leaks)
  2808. */
  2809. if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
  2810. sval = ctx->ctx_pmds[cnum].val;
  2811. lval = ctx->ctx_pmds[cnum].lval;
  2812. is_counting = PMD_IS_COUNTING(cnum);
  2813. /*
  2814. * If the task is not the current one, then we check if the
  2815. * PMU state is still in the local live register due to lazy ctxsw.
  2816. * If true, then we read directly from the registers.
  2817. */
  2818. if (can_access_pmu){
  2819. val = ia64_get_pmd(cnum);
  2820. } else {
  2821. /*
  2822. * context has been saved
  2823. * if context is zombie, then task does not exist anymore.
  2824. * In this case, we use the full value saved in the context (pfm_flush_regs()).
  2825. */
  2826. val = is_loaded ? thread->pmds[cnum] : 0UL;
  2827. }
  2828. rd_func = pmu_conf->pmd_desc[cnum].read_check;
  2829. if (is_counting) {
  2830. /*
  2831. * XXX: need to check for overflow when loaded
  2832. */
  2833. val &= ovfl_mask;
  2834. val += sval;
  2835. }
  2836. /*
  2837. * execute read checker, if any
  2838. */
  2839. if (unlikely(expert_mode == 0 && rd_func)) {
  2840. unsigned long v = val;
  2841. ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
  2842. if (ret) goto error;
  2843. val = v;
  2844. ret = -EINVAL;
  2845. }
  2846. PFM_REG_RETFLAG_SET(reg_flags, 0);
  2847. DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
  2848. /*
  2849. * update register return value, abort all if problem during copy.
  2850. * we only modify the reg_flags field. no check mode is fine because
  2851. * access has been verified upfront in sys_perfmonctl().
  2852. */
  2853. req->reg_value = val;
  2854. req->reg_flags = reg_flags;
  2855. req->reg_last_reset_val = lval;
  2856. }
  2857. return 0;
  2858. error:
  2859. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2860. return ret;
  2861. }
  2862. int
  2863. pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2864. {
  2865. pfm_context_t *ctx;
  2866. if (req == NULL) return -EINVAL;
  2867. ctx = GET_PMU_CTX();
  2868. if (ctx == NULL) return -EINVAL;
  2869. /*
  2870. * for now limit to current task, which is enough when calling
  2871. * from overflow handler
  2872. */
  2873. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2874. return pfm_write_pmcs(ctx, req, nreq, regs);
  2875. }
  2876. EXPORT_SYMBOL(pfm_mod_write_pmcs);
  2877. int
  2878. pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2879. {
  2880. pfm_context_t *ctx;
  2881. if (req == NULL) return -EINVAL;
  2882. ctx = GET_PMU_CTX();
  2883. if (ctx == NULL) return -EINVAL;
  2884. /*
  2885. * for now limit to current task, which is enough when calling
  2886. * from overflow handler
  2887. */
  2888. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2889. return pfm_read_pmds(ctx, req, nreq, regs);
  2890. }
  2891. EXPORT_SYMBOL(pfm_mod_read_pmds);
  2892. /*
  2893. * Only call this function when a process it trying to
  2894. * write the debug registers (reading is always allowed)
  2895. */
  2896. int
  2897. pfm_use_debug_registers(struct task_struct *task)
  2898. {
  2899. pfm_context_t *ctx = task->thread.pfm_context;
  2900. unsigned long flags;
  2901. int ret = 0;
  2902. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2903. DPRINT(("called for [%d]\n", task->pid));
  2904. /*
  2905. * do it only once
  2906. */
  2907. if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
  2908. /*
  2909. * Even on SMP, we do not need to use an atomic here because
  2910. * the only way in is via ptrace() and this is possible only when the
  2911. * process is stopped. Even in the case where the ctxsw out is not totally
  2912. * completed by the time we come here, there is no way the 'stopped' process
  2913. * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
  2914. * So this is always safe.
  2915. */
  2916. if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
  2917. LOCK_PFS(flags);
  2918. /*
  2919. * We cannot allow setting breakpoints when system wide monitoring
  2920. * sessions are using the debug registers.
  2921. */
  2922. if (pfm_sessions.pfs_sys_use_dbregs> 0)
  2923. ret = -1;
  2924. else
  2925. pfm_sessions.pfs_ptrace_use_dbregs++;
  2926. DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
  2927. pfm_sessions.pfs_ptrace_use_dbregs,
  2928. pfm_sessions.pfs_sys_use_dbregs,
  2929. task->pid, ret));
  2930. UNLOCK_PFS(flags);
  2931. return ret;
  2932. }
  2933. /*
  2934. * This function is called for every task that exits with the
  2935. * IA64_THREAD_DBG_VALID set. This indicates a task which was
  2936. * able to use the debug registers for debugging purposes via
  2937. * ptrace(). Therefore we know it was not using them for
  2938. * perfmormance monitoring, so we only decrement the number
  2939. * of "ptraced" debug register users to keep the count up to date
  2940. */
  2941. int
  2942. pfm_release_debug_registers(struct task_struct *task)
  2943. {
  2944. unsigned long flags;
  2945. int ret;
  2946. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2947. LOCK_PFS(flags);
  2948. if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
  2949. printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
  2950. ret = -1;
  2951. } else {
  2952. pfm_sessions.pfs_ptrace_use_dbregs--;
  2953. ret = 0;
  2954. }
  2955. UNLOCK_PFS(flags);
  2956. return ret;
  2957. }
  2958. static int
  2959. pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2960. {
  2961. struct task_struct *task;
  2962. pfm_buffer_fmt_t *fmt;
  2963. pfm_ovfl_ctrl_t rst_ctrl;
  2964. int state, is_system;
  2965. int ret = 0;
  2966. state = ctx->ctx_state;
  2967. fmt = ctx->ctx_buf_fmt;
  2968. is_system = ctx->ctx_fl_system;
  2969. task = PFM_CTX_TASK(ctx);
  2970. switch(state) {
  2971. case PFM_CTX_MASKED:
  2972. break;
  2973. case PFM_CTX_LOADED:
  2974. if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
  2975. /* fall through */
  2976. case PFM_CTX_UNLOADED:
  2977. case PFM_CTX_ZOMBIE:
  2978. DPRINT(("invalid state=%d\n", state));
  2979. return -EBUSY;
  2980. default:
  2981. DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
  2982. return -EINVAL;
  2983. }
  2984. /*
  2985. * In system wide and when the context is loaded, access can only happen
  2986. * when the caller is running on the CPU being monitored by the session.
  2987. * It does not have to be the owner (ctx_task) of the context per se.
  2988. */
  2989. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2990. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2991. return -EBUSY;
  2992. }
  2993. /* sanity check */
  2994. if (unlikely(task == NULL)) {
  2995. printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
  2996. return -EINVAL;
  2997. }
  2998. if (task == current || is_system) {
  2999. fmt = ctx->ctx_buf_fmt;
  3000. DPRINT(("restarting self %d ovfl=0x%lx\n",
  3001. task->pid,
  3002. ctx->ctx_ovfl_regs[0]));
  3003. if (CTX_HAS_SMPL(ctx)) {
  3004. prefetch(ctx->ctx_smpl_hdr);
  3005. rst_ctrl.bits.mask_monitoring = 0;
  3006. rst_ctrl.bits.reset_ovfl_pmds = 0;
  3007. if (state == PFM_CTX_LOADED)
  3008. ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3009. else
  3010. ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3011. } else {
  3012. rst_ctrl.bits.mask_monitoring = 0;
  3013. rst_ctrl.bits.reset_ovfl_pmds = 1;
  3014. }
  3015. if (ret == 0) {
  3016. if (rst_ctrl.bits.reset_ovfl_pmds)
  3017. pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
  3018. if (rst_ctrl.bits.mask_monitoring == 0) {
  3019. DPRINT(("resuming monitoring for [%d]\n", task->pid));
  3020. if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
  3021. } else {
  3022. DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
  3023. // cannot use pfm_stop_monitoring(task, regs);
  3024. }
  3025. }
  3026. /*
  3027. * clear overflowed PMD mask to remove any stale information
  3028. */
  3029. ctx->ctx_ovfl_regs[0] = 0UL;
  3030. /*
  3031. * back to LOADED state
  3032. */
  3033. ctx->ctx_state = PFM_CTX_LOADED;
  3034. /*
  3035. * XXX: not really useful for self monitoring
  3036. */
  3037. ctx->ctx_fl_can_restart = 0;
  3038. return 0;
  3039. }
  3040. /*
  3041. * restart another task
  3042. */
  3043. /*
  3044. * When PFM_CTX_MASKED, we cannot issue a restart before the previous
  3045. * one is seen by the task.
  3046. */
  3047. if (state == PFM_CTX_MASKED) {
  3048. if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
  3049. /*
  3050. * will prevent subsequent restart before this one is
  3051. * seen by other task
  3052. */
  3053. ctx->ctx_fl_can_restart = 0;
  3054. }
  3055. /*
  3056. * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
  3057. * the task is blocked or on its way to block. That's the normal
  3058. * restart path. If the monitoring is not masked, then the task
  3059. * can be actively monitoring and we cannot directly intervene.
  3060. * Therefore we use the trap mechanism to catch the task and
  3061. * force it to reset the buffer/reset PMDs.
  3062. *
  3063. * if non-blocking, then we ensure that the task will go into
  3064. * pfm_handle_work() before returning to user mode.
  3065. *
  3066. * We cannot explicitely reset another task, it MUST always
  3067. * be done by the task itself. This works for system wide because
  3068. * the tool that is controlling the session is logically doing
  3069. * "self-monitoring".
  3070. */
  3071. if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
  3072. DPRINT(("unblocking [%d] \n", task->pid));
  3073. complete(&ctx->ctx_restart_done);
  3074. } else {
  3075. DPRINT(("[%d] armed exit trap\n", task->pid));
  3076. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
  3077. PFM_SET_WORK_PENDING(task, 1);
  3078. pfm_set_task_notify(task);
  3079. /*
  3080. * XXX: send reschedule if task runs on another CPU
  3081. */
  3082. }
  3083. return 0;
  3084. }
  3085. static int
  3086. pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3087. {
  3088. unsigned int m = *(unsigned int *)arg;
  3089. pfm_sysctl.debug = m == 0 ? 0 : 1;
  3090. printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
  3091. if (m == 0) {
  3092. memset(pfm_stats, 0, sizeof(pfm_stats));
  3093. for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
  3094. }
  3095. return 0;
  3096. }
  3097. /*
  3098. * arg can be NULL and count can be zero for this function
  3099. */
  3100. static int
  3101. pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3102. {
  3103. struct thread_struct *thread = NULL;
  3104. struct task_struct *task;
  3105. pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
  3106. unsigned long flags;
  3107. dbreg_t dbreg;
  3108. unsigned int rnum;
  3109. int first_time;
  3110. int ret = 0, state;
  3111. int i, can_access_pmu = 0;
  3112. int is_system, is_loaded;
  3113. if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
  3114. state = ctx->ctx_state;
  3115. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  3116. is_system = ctx->ctx_fl_system;
  3117. task = ctx->ctx_task;
  3118. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  3119. /*
  3120. * on both UP and SMP, we can only write to the PMC when the task is
  3121. * the owner of the local PMU.
  3122. */
  3123. if (is_loaded) {
  3124. thread = &task->thread;
  3125. /*
  3126. * In system wide and when the context is loaded, access can only happen
  3127. * when the caller is running on the CPU being monitored by the session.
  3128. * It does not have to be the owner (ctx_task) of the context per se.
  3129. */
  3130. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  3131. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3132. return -EBUSY;
  3133. }
  3134. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  3135. }
  3136. /*
  3137. * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
  3138. * ensuring that no real breakpoint can be installed via this call.
  3139. *
  3140. * IMPORTANT: regs can be NULL in this function
  3141. */
  3142. first_time = ctx->ctx_fl_using_dbreg == 0;
  3143. /*
  3144. * don't bother if we are loaded and task is being debugged
  3145. */
  3146. if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
  3147. DPRINT(("debug registers already in use for [%d]\n", task->pid));
  3148. return -EBUSY;
  3149. }
  3150. /*
  3151. * check for debug registers in system wide mode
  3152. *
  3153. * If though a check is done in pfm_context_load(),
  3154. * we must repeat it here, in case the registers are
  3155. * written after the context is loaded
  3156. */
  3157. if (is_loaded) {
  3158. LOCK_PFS(flags);
  3159. if (first_time && is_system) {
  3160. if (pfm_sessions.pfs_ptrace_use_dbregs)
  3161. ret = -EBUSY;
  3162. else
  3163. pfm_sessions.pfs_sys_use_dbregs++;
  3164. }
  3165. UNLOCK_PFS(flags);
  3166. }
  3167. if (ret != 0) return ret;
  3168. /*
  3169. * mark ourself as user of the debug registers for
  3170. * perfmon purposes.
  3171. */
  3172. ctx->ctx_fl_using_dbreg = 1;
  3173. /*
  3174. * clear hardware registers to make sure we don't
  3175. * pick up stale state.
  3176. *
  3177. * for a system wide session, we do not use
  3178. * thread.dbr, thread.ibr because this process
  3179. * never leaves the current CPU and the state
  3180. * is shared by all processes running on it
  3181. */
  3182. if (first_time && can_access_pmu) {
  3183. DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
  3184. for (i=0; i < pmu_conf->num_ibrs; i++) {
  3185. ia64_set_ibr(i, 0UL);
  3186. ia64_dv_serialize_instruction();
  3187. }
  3188. ia64_srlz_i();
  3189. for (i=0; i < pmu_conf->num_dbrs; i++) {
  3190. ia64_set_dbr(i, 0UL);
  3191. ia64_dv_serialize_data();
  3192. }
  3193. ia64_srlz_d();
  3194. }
  3195. /*
  3196. * Now install the values into the registers
  3197. */
  3198. for (i = 0; i < count; i++, req++) {
  3199. rnum = req->dbreg_num;
  3200. dbreg.val = req->dbreg_value;
  3201. ret = -EINVAL;
  3202. if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
  3203. DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
  3204. rnum, dbreg.val, mode, i, count));
  3205. goto abort_mission;
  3206. }
  3207. /*
  3208. * make sure we do not install enabled breakpoint
  3209. */
  3210. if (rnum & 0x1) {
  3211. if (mode == PFM_CODE_RR)
  3212. dbreg.ibr.ibr_x = 0;
  3213. else
  3214. dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
  3215. }
  3216. PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
  3217. /*
  3218. * Debug registers, just like PMC, can only be modified
  3219. * by a kernel call. Moreover, perfmon() access to those
  3220. * registers are centralized in this routine. The hardware
  3221. * does not modify the value of these registers, therefore,
  3222. * if we save them as they are written, we can avoid having
  3223. * to save them on context switch out. This is made possible
  3224. * by the fact that when perfmon uses debug registers, ptrace()
  3225. * won't be able to modify them concurrently.
  3226. */
  3227. if (mode == PFM_CODE_RR) {
  3228. CTX_USED_IBR(ctx, rnum);
  3229. if (can_access_pmu) {
  3230. ia64_set_ibr(rnum, dbreg.val);
  3231. ia64_dv_serialize_instruction();
  3232. }
  3233. ctx->ctx_ibrs[rnum] = dbreg.val;
  3234. DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
  3235. rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
  3236. } else {
  3237. CTX_USED_DBR(ctx, rnum);
  3238. if (can_access_pmu) {
  3239. ia64_set_dbr(rnum, dbreg.val);
  3240. ia64_dv_serialize_data();
  3241. }
  3242. ctx->ctx_dbrs[rnum] = dbreg.val;
  3243. DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
  3244. rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
  3245. }
  3246. }
  3247. return 0;
  3248. abort_mission:
  3249. /*
  3250. * in case it was our first attempt, we undo the global modifications
  3251. */
  3252. if (first_time) {
  3253. LOCK_PFS(flags);
  3254. if (ctx->ctx_fl_system) {
  3255. pfm_sessions.pfs_sys_use_dbregs--;
  3256. }
  3257. UNLOCK_PFS(flags);
  3258. ctx->ctx_fl_using_dbreg = 0;
  3259. }
  3260. /*
  3261. * install error return flag
  3262. */
  3263. PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
  3264. return ret;
  3265. }
  3266. static int
  3267. pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3268. {
  3269. return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
  3270. }
  3271. static int
  3272. pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3273. {
  3274. return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
  3275. }
  3276. int
  3277. pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3278. {
  3279. pfm_context_t *ctx;
  3280. if (req == NULL) return -EINVAL;
  3281. ctx = GET_PMU_CTX();
  3282. if (ctx == NULL) return -EINVAL;
  3283. /*
  3284. * for now limit to current task, which is enough when calling
  3285. * from overflow handler
  3286. */
  3287. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3288. return pfm_write_ibrs(ctx, req, nreq, regs);
  3289. }
  3290. EXPORT_SYMBOL(pfm_mod_write_ibrs);
  3291. int
  3292. pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3293. {
  3294. pfm_context_t *ctx;
  3295. if (req == NULL) return -EINVAL;
  3296. ctx = GET_PMU_CTX();
  3297. if (ctx == NULL) return -EINVAL;
  3298. /*
  3299. * for now limit to current task, which is enough when calling
  3300. * from overflow handler
  3301. */
  3302. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3303. return pfm_write_dbrs(ctx, req, nreq, regs);
  3304. }
  3305. EXPORT_SYMBOL(pfm_mod_write_dbrs);
  3306. static int
  3307. pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3308. {
  3309. pfarg_features_t *req = (pfarg_features_t *)arg;
  3310. req->ft_version = PFM_VERSION;
  3311. return 0;
  3312. }
  3313. static int
  3314. pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3315. {
  3316. struct pt_regs *tregs;
  3317. struct task_struct *task = PFM_CTX_TASK(ctx);
  3318. int state, is_system;
  3319. state = ctx->ctx_state;
  3320. is_system = ctx->ctx_fl_system;
  3321. /*
  3322. * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
  3323. */
  3324. if (state == PFM_CTX_UNLOADED) return -EINVAL;
  3325. /*
  3326. * In system wide and when the context is loaded, access can only happen
  3327. * when the caller is running on the CPU being monitored by the session.
  3328. * It does not have to be the owner (ctx_task) of the context per se.
  3329. */
  3330. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3331. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3332. return -EBUSY;
  3333. }
  3334. DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
  3335. PFM_CTX_TASK(ctx)->pid,
  3336. state,
  3337. is_system));
  3338. /*
  3339. * in system mode, we need to update the PMU directly
  3340. * and the user level state of the caller, which may not
  3341. * necessarily be the creator of the context.
  3342. */
  3343. if (is_system) {
  3344. /*
  3345. * Update local PMU first
  3346. *
  3347. * disable dcr pp
  3348. */
  3349. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  3350. ia64_srlz_i();
  3351. /*
  3352. * update local cpuinfo
  3353. */
  3354. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3355. /*
  3356. * stop monitoring, does srlz.i
  3357. */
  3358. pfm_clear_psr_pp();
  3359. /*
  3360. * stop monitoring in the caller
  3361. */
  3362. ia64_psr(regs)->pp = 0;
  3363. return 0;
  3364. }
  3365. /*
  3366. * per-task mode
  3367. */
  3368. if (task == current) {
  3369. /* stop monitoring at kernel level */
  3370. pfm_clear_psr_up();
  3371. /*
  3372. * stop monitoring at the user level
  3373. */
  3374. ia64_psr(regs)->up = 0;
  3375. } else {
  3376. tregs = task_pt_regs(task);
  3377. /*
  3378. * stop monitoring at the user level
  3379. */
  3380. ia64_psr(tregs)->up = 0;
  3381. /*
  3382. * monitoring disabled in kernel at next reschedule
  3383. */
  3384. ctx->ctx_saved_psr_up = 0;
  3385. DPRINT(("task=[%d]\n", task->pid));
  3386. }
  3387. return 0;
  3388. }
  3389. static int
  3390. pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3391. {
  3392. struct pt_regs *tregs;
  3393. int state, is_system;
  3394. state = ctx->ctx_state;
  3395. is_system = ctx->ctx_fl_system;
  3396. if (state != PFM_CTX_LOADED) return -EINVAL;
  3397. /*
  3398. * In system wide and when the context is loaded, access can only happen
  3399. * when the caller is running on the CPU being monitored by the session.
  3400. * It does not have to be the owner (ctx_task) of the context per se.
  3401. */
  3402. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3403. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3404. return -EBUSY;
  3405. }
  3406. /*
  3407. * in system mode, we need to update the PMU directly
  3408. * and the user level state of the caller, which may not
  3409. * necessarily be the creator of the context.
  3410. */
  3411. if (is_system) {
  3412. /*
  3413. * set user level psr.pp for the caller
  3414. */
  3415. ia64_psr(regs)->pp = 1;
  3416. /*
  3417. * now update the local PMU and cpuinfo
  3418. */
  3419. PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
  3420. /*
  3421. * start monitoring at kernel level
  3422. */
  3423. pfm_set_psr_pp();
  3424. /* enable dcr pp */
  3425. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  3426. ia64_srlz_i();
  3427. return 0;
  3428. }
  3429. /*
  3430. * per-process mode
  3431. */
  3432. if (ctx->ctx_task == current) {
  3433. /* start monitoring at kernel level */
  3434. pfm_set_psr_up();
  3435. /*
  3436. * activate monitoring at user level
  3437. */
  3438. ia64_psr(regs)->up = 1;
  3439. } else {
  3440. tregs = task_pt_regs(ctx->ctx_task);
  3441. /*
  3442. * start monitoring at the kernel level the next
  3443. * time the task is scheduled
  3444. */
  3445. ctx->ctx_saved_psr_up = IA64_PSR_UP;
  3446. /*
  3447. * activate monitoring at user level
  3448. */
  3449. ia64_psr(tregs)->up = 1;
  3450. }
  3451. return 0;
  3452. }
  3453. static int
  3454. pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3455. {
  3456. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  3457. unsigned int cnum;
  3458. int i;
  3459. int ret = -EINVAL;
  3460. for (i = 0; i < count; i++, req++) {
  3461. cnum = req->reg_num;
  3462. if (!PMC_IS_IMPL(cnum)) goto abort_mission;
  3463. req->reg_value = PMC_DFL_VAL(cnum);
  3464. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  3465. DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
  3466. }
  3467. return 0;
  3468. abort_mission:
  3469. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  3470. return ret;
  3471. }
  3472. static int
  3473. pfm_check_task_exist(pfm_context_t *ctx)
  3474. {
  3475. struct task_struct *g, *t;
  3476. int ret = -ESRCH;
  3477. read_lock(&tasklist_lock);
  3478. do_each_thread (g, t) {
  3479. if (t->thread.pfm_context == ctx) {
  3480. ret = 0;
  3481. break;
  3482. }
  3483. } while_each_thread (g, t);
  3484. read_unlock(&tasklist_lock);
  3485. DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
  3486. return ret;
  3487. }
  3488. static int
  3489. pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3490. {
  3491. struct task_struct *task;
  3492. struct thread_struct *thread;
  3493. struct pfm_context_t *old;
  3494. unsigned long flags;
  3495. #ifndef CONFIG_SMP
  3496. struct task_struct *owner_task = NULL;
  3497. #endif
  3498. pfarg_load_t *req = (pfarg_load_t *)arg;
  3499. unsigned long *pmcs_source, *pmds_source;
  3500. int the_cpu;
  3501. int ret = 0;
  3502. int state, is_system, set_dbregs = 0;
  3503. state = ctx->ctx_state;
  3504. is_system = ctx->ctx_fl_system;
  3505. /*
  3506. * can only load from unloaded or terminated state
  3507. */
  3508. if (state != PFM_CTX_UNLOADED) {
  3509. DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
  3510. req->load_pid,
  3511. ctx->ctx_state));
  3512. return -EBUSY;
  3513. }
  3514. DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
  3515. if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
  3516. DPRINT(("cannot use blocking mode on self\n"));
  3517. return -EINVAL;
  3518. }
  3519. ret = pfm_get_task(ctx, req->load_pid, &task);
  3520. if (ret) {
  3521. DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
  3522. return ret;
  3523. }
  3524. ret = -EINVAL;
  3525. /*
  3526. * system wide is self monitoring only
  3527. */
  3528. if (is_system && task != current) {
  3529. DPRINT(("system wide is self monitoring only load_pid=%d\n",
  3530. req->load_pid));
  3531. goto error;
  3532. }
  3533. thread = &task->thread;
  3534. ret = 0;
  3535. /*
  3536. * cannot load a context which is using range restrictions,
  3537. * into a task that is being debugged.
  3538. */
  3539. if (ctx->ctx_fl_using_dbreg) {
  3540. if (thread->flags & IA64_THREAD_DBG_VALID) {
  3541. ret = -EBUSY;
  3542. DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
  3543. goto error;
  3544. }
  3545. LOCK_PFS(flags);
  3546. if (is_system) {
  3547. if (pfm_sessions.pfs_ptrace_use_dbregs) {
  3548. DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
  3549. ret = -EBUSY;
  3550. } else {
  3551. pfm_sessions.pfs_sys_use_dbregs++;
  3552. DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
  3553. set_dbregs = 1;
  3554. }
  3555. }
  3556. UNLOCK_PFS(flags);
  3557. if (ret) goto error;
  3558. }
  3559. /*
  3560. * SMP system-wide monitoring implies self-monitoring.
  3561. *
  3562. * The programming model expects the task to
  3563. * be pinned on a CPU throughout the session.
  3564. * Here we take note of the current CPU at the
  3565. * time the context is loaded. No call from
  3566. * another CPU will be allowed.
  3567. *
  3568. * The pinning via shed_setaffinity()
  3569. * must be done by the calling task prior
  3570. * to this call.
  3571. *
  3572. * systemwide: keep track of CPU this session is supposed to run on
  3573. */
  3574. the_cpu = ctx->ctx_cpu = smp_processor_id();
  3575. ret = -EBUSY;
  3576. /*
  3577. * now reserve the session
  3578. */
  3579. ret = pfm_reserve_session(current, is_system, the_cpu);
  3580. if (ret) goto error;
  3581. /*
  3582. * task is necessarily stopped at this point.
  3583. *
  3584. * If the previous context was zombie, then it got removed in
  3585. * pfm_save_regs(). Therefore we should not see it here.
  3586. * If we see a context, then this is an active context
  3587. *
  3588. * XXX: needs to be atomic
  3589. */
  3590. DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
  3591. thread->pfm_context, ctx));
  3592. ret = -EBUSY;
  3593. old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
  3594. if (old != NULL) {
  3595. DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
  3596. goto error_unres;
  3597. }
  3598. pfm_reset_msgq(ctx);
  3599. ctx->ctx_state = PFM_CTX_LOADED;
  3600. /*
  3601. * link context to task
  3602. */
  3603. ctx->ctx_task = task;
  3604. if (is_system) {
  3605. /*
  3606. * we load as stopped
  3607. */
  3608. PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
  3609. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3610. if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
  3611. } else {
  3612. thread->flags |= IA64_THREAD_PM_VALID;
  3613. }
  3614. /*
  3615. * propagate into thread-state
  3616. */
  3617. pfm_copy_pmds(task, ctx);
  3618. pfm_copy_pmcs(task, ctx);
  3619. pmcs_source = thread->pmcs;
  3620. pmds_source = thread->pmds;
  3621. /*
  3622. * always the case for system-wide
  3623. */
  3624. if (task == current) {
  3625. if (is_system == 0) {
  3626. /* allow user level control */
  3627. ia64_psr(regs)->sp = 0;
  3628. DPRINT(("clearing psr.sp for [%d]\n", task->pid));
  3629. SET_LAST_CPU(ctx, smp_processor_id());
  3630. INC_ACTIVATION();
  3631. SET_ACTIVATION(ctx);
  3632. #ifndef CONFIG_SMP
  3633. /*
  3634. * push the other task out, if any
  3635. */
  3636. owner_task = GET_PMU_OWNER();
  3637. if (owner_task) pfm_lazy_save_regs(owner_task);
  3638. #endif
  3639. }
  3640. /*
  3641. * load all PMD from ctx to PMU (as opposed to thread state)
  3642. * restore all PMC from ctx to PMU
  3643. */
  3644. pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
  3645. pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
  3646. ctx->ctx_reload_pmcs[0] = 0UL;
  3647. ctx->ctx_reload_pmds[0] = 0UL;
  3648. /*
  3649. * guaranteed safe by earlier check against DBG_VALID
  3650. */
  3651. if (ctx->ctx_fl_using_dbreg) {
  3652. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  3653. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  3654. }
  3655. /*
  3656. * set new ownership
  3657. */
  3658. SET_PMU_OWNER(task, ctx);
  3659. DPRINT(("context loaded on PMU for [%d]\n", task->pid));
  3660. } else {
  3661. /*
  3662. * when not current, task MUST be stopped, so this is safe
  3663. */
  3664. regs = task_pt_regs(task);
  3665. /* force a full reload */
  3666. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3667. SET_LAST_CPU(ctx, -1);
  3668. /* initial saved psr (stopped) */
  3669. ctx->ctx_saved_psr_up = 0UL;
  3670. ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
  3671. }
  3672. ret = 0;
  3673. error_unres:
  3674. if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
  3675. error:
  3676. /*
  3677. * we must undo the dbregs setting (for system-wide)
  3678. */
  3679. if (ret && set_dbregs) {
  3680. LOCK_PFS(flags);
  3681. pfm_sessions.pfs_sys_use_dbregs--;
  3682. UNLOCK_PFS(flags);
  3683. }
  3684. /*
  3685. * release task, there is now a link with the context
  3686. */
  3687. if (is_system == 0 && task != current) {
  3688. pfm_put_task(task);
  3689. if (ret == 0) {
  3690. ret = pfm_check_task_exist(ctx);
  3691. if (ret) {
  3692. ctx->ctx_state = PFM_CTX_UNLOADED;
  3693. ctx->ctx_task = NULL;
  3694. }
  3695. }
  3696. }
  3697. return ret;
  3698. }
  3699. /*
  3700. * in this function, we do not need to increase the use count
  3701. * for the task via get_task_struct(), because we hold the
  3702. * context lock. If the task were to disappear while having
  3703. * a context attached, it would go through pfm_exit_thread()
  3704. * which also grabs the context lock and would therefore be blocked
  3705. * until we are here.
  3706. */
  3707. static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
  3708. static int
  3709. pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3710. {
  3711. struct task_struct *task = PFM_CTX_TASK(ctx);
  3712. struct pt_regs *tregs;
  3713. int prev_state, is_system;
  3714. int ret;
  3715. DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
  3716. prev_state = ctx->ctx_state;
  3717. is_system = ctx->ctx_fl_system;
  3718. /*
  3719. * unload only when necessary
  3720. */
  3721. if (prev_state == PFM_CTX_UNLOADED) {
  3722. DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
  3723. return 0;
  3724. }
  3725. /*
  3726. * clear psr and dcr bits
  3727. */
  3728. ret = pfm_stop(ctx, NULL, 0, regs);
  3729. if (ret) return ret;
  3730. ctx->ctx_state = PFM_CTX_UNLOADED;
  3731. /*
  3732. * in system mode, we need to update the PMU directly
  3733. * and the user level state of the caller, which may not
  3734. * necessarily be the creator of the context.
  3735. */
  3736. if (is_system) {
  3737. /*
  3738. * Update cpuinfo
  3739. *
  3740. * local PMU is taken care of in pfm_stop()
  3741. */
  3742. PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
  3743. PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
  3744. /*
  3745. * save PMDs in context
  3746. * release ownership
  3747. */
  3748. pfm_flush_pmds(current, ctx);
  3749. /*
  3750. * at this point we are done with the PMU
  3751. * so we can unreserve the resource.
  3752. */
  3753. if (prev_state != PFM_CTX_ZOMBIE)
  3754. pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
  3755. /*
  3756. * disconnect context from task
  3757. */
  3758. task->thread.pfm_context = NULL;
  3759. /*
  3760. * disconnect task from context
  3761. */
  3762. ctx->ctx_task = NULL;
  3763. /*
  3764. * There is nothing more to cleanup here.
  3765. */
  3766. return 0;
  3767. }
  3768. /*
  3769. * per-task mode
  3770. */
  3771. tregs = task == current ? regs : task_pt_regs(task);
  3772. if (task == current) {
  3773. /*
  3774. * cancel user level control
  3775. */
  3776. ia64_psr(regs)->sp = 1;
  3777. DPRINT(("setting psr.sp for [%d]\n", task->pid));
  3778. }
  3779. /*
  3780. * save PMDs to context
  3781. * release ownership
  3782. */
  3783. pfm_flush_pmds(task, ctx);
  3784. /*
  3785. * at this point we are done with the PMU
  3786. * so we can unreserve the resource.
  3787. *
  3788. * when state was ZOMBIE, we have already unreserved.
  3789. */
  3790. if (prev_state != PFM_CTX_ZOMBIE)
  3791. pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
  3792. /*
  3793. * reset activation counter and psr
  3794. */
  3795. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3796. SET_LAST_CPU(ctx, -1);
  3797. /*
  3798. * PMU state will not be restored
  3799. */
  3800. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  3801. /*
  3802. * break links between context and task
  3803. */
  3804. task->thread.pfm_context = NULL;
  3805. ctx->ctx_task = NULL;
  3806. PFM_SET_WORK_PENDING(task, 0);
  3807. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  3808. ctx->ctx_fl_can_restart = 0;
  3809. ctx->ctx_fl_going_zombie = 0;
  3810. DPRINT(("disconnected [%d] from context\n", task->pid));
  3811. return 0;
  3812. }
  3813. /*
  3814. * called only from exit_thread(): task == current
  3815. * we come here only if current has a context attached (loaded or masked)
  3816. */
  3817. void
  3818. pfm_exit_thread(struct task_struct *task)
  3819. {
  3820. pfm_context_t *ctx;
  3821. unsigned long flags;
  3822. struct pt_regs *regs = task_pt_regs(task);
  3823. int ret, state;
  3824. int free_ok = 0;
  3825. ctx = PFM_GET_CTX(task);
  3826. PROTECT_CTX(ctx, flags);
  3827. DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
  3828. state = ctx->ctx_state;
  3829. switch(state) {
  3830. case PFM_CTX_UNLOADED:
  3831. /*
  3832. * only comes to thios function if pfm_context is not NULL, i.e., cannot
  3833. * be in unloaded state
  3834. */
  3835. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
  3836. break;
  3837. case PFM_CTX_LOADED:
  3838. case PFM_CTX_MASKED:
  3839. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3840. if (ret) {
  3841. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
  3842. }
  3843. DPRINT(("ctx unloaded for current state was %d\n", state));
  3844. pfm_end_notify_user(ctx);
  3845. break;
  3846. case PFM_CTX_ZOMBIE:
  3847. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3848. if (ret) {
  3849. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
  3850. }
  3851. free_ok = 1;
  3852. break;
  3853. default:
  3854. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
  3855. break;
  3856. }
  3857. UNPROTECT_CTX(ctx, flags);
  3858. { u64 psr = pfm_get_psr();
  3859. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  3860. BUG_ON(GET_PMU_OWNER());
  3861. BUG_ON(ia64_psr(regs)->up);
  3862. BUG_ON(ia64_psr(regs)->pp);
  3863. }
  3864. /*
  3865. * All memory free operations (especially for vmalloc'ed memory)
  3866. * MUST be done with interrupts ENABLED.
  3867. */
  3868. if (free_ok) pfm_context_free(ctx);
  3869. }
  3870. /*
  3871. * functions MUST be listed in the increasing order of their index (see permfon.h)
  3872. */
  3873. #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
  3874. #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
  3875. #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
  3876. #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
  3877. #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
  3878. static pfm_cmd_desc_t pfm_cmd_tab[]={
  3879. /* 0 */PFM_CMD_NONE,
  3880. /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3881. /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3882. /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3883. /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
  3884. /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
  3885. /* 6 */PFM_CMD_NONE,
  3886. /* 7 */PFM_CMD_NONE,
  3887. /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
  3888. /* 9 */PFM_CMD_NONE,
  3889. /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
  3890. /* 11 */PFM_CMD_NONE,
  3891. /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
  3892. /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
  3893. /* 14 */PFM_CMD_NONE,
  3894. /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3895. /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
  3896. /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
  3897. /* 18 */PFM_CMD_NONE,
  3898. /* 19 */PFM_CMD_NONE,
  3899. /* 20 */PFM_CMD_NONE,
  3900. /* 21 */PFM_CMD_NONE,
  3901. /* 22 */PFM_CMD_NONE,
  3902. /* 23 */PFM_CMD_NONE,
  3903. /* 24 */PFM_CMD_NONE,
  3904. /* 25 */PFM_CMD_NONE,
  3905. /* 26 */PFM_CMD_NONE,
  3906. /* 27 */PFM_CMD_NONE,
  3907. /* 28 */PFM_CMD_NONE,
  3908. /* 29 */PFM_CMD_NONE,
  3909. /* 30 */PFM_CMD_NONE,
  3910. /* 31 */PFM_CMD_NONE,
  3911. /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
  3912. /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
  3913. };
  3914. #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
  3915. static int
  3916. pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
  3917. {
  3918. struct task_struct *task;
  3919. int state, old_state;
  3920. recheck:
  3921. state = ctx->ctx_state;
  3922. task = ctx->ctx_task;
  3923. if (task == NULL) {
  3924. DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
  3925. return 0;
  3926. }
  3927. DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
  3928. ctx->ctx_fd,
  3929. state,
  3930. task->pid,
  3931. task->state, PFM_CMD_STOPPED(cmd)));
  3932. /*
  3933. * self-monitoring always ok.
  3934. *
  3935. * for system-wide the caller can either be the creator of the
  3936. * context (to one to which the context is attached to) OR
  3937. * a task running on the same CPU as the session.
  3938. */
  3939. if (task == current || ctx->ctx_fl_system) return 0;
  3940. /*
  3941. * we are monitoring another thread
  3942. */
  3943. switch(state) {
  3944. case PFM_CTX_UNLOADED:
  3945. /*
  3946. * if context is UNLOADED we are safe to go
  3947. */
  3948. return 0;
  3949. case PFM_CTX_ZOMBIE:
  3950. /*
  3951. * no command can operate on a zombie context
  3952. */
  3953. DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
  3954. return -EINVAL;
  3955. case PFM_CTX_MASKED:
  3956. /*
  3957. * PMU state has been saved to software even though
  3958. * the thread may still be running.
  3959. */
  3960. if (cmd != PFM_UNLOAD_CONTEXT) return 0;
  3961. }
  3962. /*
  3963. * context is LOADED or MASKED. Some commands may need to have
  3964. * the task stopped.
  3965. *
  3966. * We could lift this restriction for UP but it would mean that
  3967. * the user has no guarantee the task would not run between
  3968. * two successive calls to perfmonctl(). That's probably OK.
  3969. * If this user wants to ensure the task does not run, then
  3970. * the task must be stopped.
  3971. */
  3972. if (PFM_CMD_STOPPED(cmd)) {
  3973. if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
  3974. DPRINT(("[%d] task not in stopped state\n", task->pid));
  3975. return -EBUSY;
  3976. }
  3977. /*
  3978. * task is now stopped, wait for ctxsw out
  3979. *
  3980. * This is an interesting point in the code.
  3981. * We need to unprotect the context because
  3982. * the pfm_save_regs() routines needs to grab
  3983. * the same lock. There are danger in doing
  3984. * this because it leaves a window open for
  3985. * another task to get access to the context
  3986. * and possibly change its state. The one thing
  3987. * that is not possible is for the context to disappear
  3988. * because we are protected by the VFS layer, i.e.,
  3989. * get_fd()/put_fd().
  3990. */
  3991. old_state = state;
  3992. UNPROTECT_CTX(ctx, flags);
  3993. wait_task_inactive(task);
  3994. PROTECT_CTX(ctx, flags);
  3995. /*
  3996. * we must recheck to verify if state has changed
  3997. */
  3998. if (ctx->ctx_state != old_state) {
  3999. DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
  4000. goto recheck;
  4001. }
  4002. }
  4003. return 0;
  4004. }
  4005. /*
  4006. * system-call entry point (must return long)
  4007. */
  4008. asmlinkage long
  4009. sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
  4010. {
  4011. struct file *file = NULL;
  4012. pfm_context_t *ctx = NULL;
  4013. unsigned long flags = 0UL;
  4014. void *args_k = NULL;
  4015. long ret; /* will expand int return types */
  4016. size_t base_sz, sz, xtra_sz = 0;
  4017. int narg, completed_args = 0, call_made = 0, cmd_flags;
  4018. int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  4019. int (*getsize)(void *arg, size_t *sz);
  4020. #define PFM_MAX_ARGSIZE 4096
  4021. /*
  4022. * reject any call if perfmon was disabled at initialization
  4023. */
  4024. if (unlikely(pmu_conf == NULL)) return -ENOSYS;
  4025. if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
  4026. DPRINT(("invalid cmd=%d\n", cmd));
  4027. return -EINVAL;
  4028. }
  4029. func = pfm_cmd_tab[cmd].cmd_func;
  4030. narg = pfm_cmd_tab[cmd].cmd_narg;
  4031. base_sz = pfm_cmd_tab[cmd].cmd_argsize;
  4032. getsize = pfm_cmd_tab[cmd].cmd_getsize;
  4033. cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
  4034. if (unlikely(func == NULL)) {
  4035. DPRINT(("invalid cmd=%d\n", cmd));
  4036. return -EINVAL;
  4037. }
  4038. DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
  4039. PFM_CMD_NAME(cmd),
  4040. cmd,
  4041. narg,
  4042. base_sz,
  4043. count));
  4044. /*
  4045. * check if number of arguments matches what the command expects
  4046. */
  4047. if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
  4048. return -EINVAL;
  4049. restart_args:
  4050. sz = xtra_sz + base_sz*count;
  4051. /*
  4052. * limit abuse to min page size
  4053. */
  4054. if (unlikely(sz > PFM_MAX_ARGSIZE)) {
  4055. printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
  4056. return -E2BIG;
  4057. }
  4058. /*
  4059. * allocate default-sized argument buffer
  4060. */
  4061. if (likely(count && args_k == NULL)) {
  4062. args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
  4063. if (args_k == NULL) return -ENOMEM;
  4064. }
  4065. ret = -EFAULT;
  4066. /*
  4067. * copy arguments
  4068. *
  4069. * assume sz = 0 for command without parameters
  4070. */
  4071. if (sz && copy_from_user(args_k, arg, sz)) {
  4072. DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
  4073. goto error_args;
  4074. }
  4075. /*
  4076. * check if command supports extra parameters
  4077. */
  4078. if (completed_args == 0 && getsize) {
  4079. /*
  4080. * get extra parameters size (based on main argument)
  4081. */
  4082. ret = (*getsize)(args_k, &xtra_sz);
  4083. if (ret) goto error_args;
  4084. completed_args = 1;
  4085. DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
  4086. /* retry if necessary */
  4087. if (likely(xtra_sz)) goto restart_args;
  4088. }
  4089. if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
  4090. ret = -EBADF;
  4091. file = fget(fd);
  4092. if (unlikely(file == NULL)) {
  4093. DPRINT(("invalid fd %d\n", fd));
  4094. goto error_args;
  4095. }
  4096. if (unlikely(PFM_IS_FILE(file) == 0)) {
  4097. DPRINT(("fd %d not related to perfmon\n", fd));
  4098. goto error_args;
  4099. }
  4100. ctx = (pfm_context_t *)file->private_data;
  4101. if (unlikely(ctx == NULL)) {
  4102. DPRINT(("no context for fd %d\n", fd));
  4103. goto error_args;
  4104. }
  4105. prefetch(&ctx->ctx_state);
  4106. PROTECT_CTX(ctx, flags);
  4107. /*
  4108. * check task is stopped
  4109. */
  4110. ret = pfm_check_task_state(ctx, cmd, flags);
  4111. if (unlikely(ret)) goto abort_locked;
  4112. skip_fd:
  4113. ret = (*func)(ctx, args_k, count, task_pt_regs(current));
  4114. call_made = 1;
  4115. abort_locked:
  4116. if (likely(ctx)) {
  4117. DPRINT(("context unlocked\n"));
  4118. UNPROTECT_CTX(ctx, flags);
  4119. fput(file);
  4120. }
  4121. /* copy argument back to user, if needed */
  4122. if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
  4123. error_args:
  4124. kfree(args_k);
  4125. DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
  4126. return ret;
  4127. }
  4128. static void
  4129. pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
  4130. {
  4131. pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
  4132. pfm_ovfl_ctrl_t rst_ctrl;
  4133. int state;
  4134. int ret = 0;
  4135. state = ctx->ctx_state;
  4136. /*
  4137. * Unlock sampling buffer and reset index atomically
  4138. * XXX: not really needed when blocking
  4139. */
  4140. if (CTX_HAS_SMPL(ctx)) {
  4141. rst_ctrl.bits.mask_monitoring = 0;
  4142. rst_ctrl.bits.reset_ovfl_pmds = 0;
  4143. if (state == PFM_CTX_LOADED)
  4144. ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4145. else
  4146. ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4147. } else {
  4148. rst_ctrl.bits.mask_monitoring = 0;
  4149. rst_ctrl.bits.reset_ovfl_pmds = 1;
  4150. }
  4151. if (ret == 0) {
  4152. if (rst_ctrl.bits.reset_ovfl_pmds) {
  4153. pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
  4154. }
  4155. if (rst_ctrl.bits.mask_monitoring == 0) {
  4156. DPRINT(("resuming monitoring\n"));
  4157. if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
  4158. } else {
  4159. DPRINT(("stopping monitoring\n"));
  4160. //pfm_stop_monitoring(current, regs);
  4161. }
  4162. ctx->ctx_state = PFM_CTX_LOADED;
  4163. }
  4164. }
  4165. /*
  4166. * context MUST BE LOCKED when calling
  4167. * can only be called for current
  4168. */
  4169. static void
  4170. pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
  4171. {
  4172. int ret;
  4173. DPRINT(("entering for [%d]\n", current->pid));
  4174. ret = pfm_context_unload(ctx, NULL, 0, regs);
  4175. if (ret) {
  4176. printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
  4177. }
  4178. /*
  4179. * and wakeup controlling task, indicating we are now disconnected
  4180. */
  4181. wake_up_interruptible(&ctx->ctx_zombieq);
  4182. /*
  4183. * given that context is still locked, the controlling
  4184. * task will only get access when we return from
  4185. * pfm_handle_work().
  4186. */
  4187. }
  4188. static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
  4189. /*
  4190. * pfm_handle_work() can be called with interrupts enabled
  4191. * (TIF_NEED_RESCHED) or disabled. The down_interruptible
  4192. * call may sleep, therefore we must re-enable interrupts
  4193. * to avoid deadlocks. It is safe to do so because this function
  4194. * is called ONLY when returning to user level (PUStk=1), in which case
  4195. * there is no risk of kernel stack overflow due to deep
  4196. * interrupt nesting.
  4197. */
  4198. void
  4199. pfm_handle_work(void)
  4200. {
  4201. pfm_context_t *ctx;
  4202. struct pt_regs *regs;
  4203. unsigned long flags, dummy_flags;
  4204. unsigned long ovfl_regs;
  4205. unsigned int reason;
  4206. int ret;
  4207. ctx = PFM_GET_CTX(current);
  4208. if (ctx == NULL) {
  4209. printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
  4210. return;
  4211. }
  4212. PROTECT_CTX(ctx, flags);
  4213. PFM_SET_WORK_PENDING(current, 0);
  4214. pfm_clear_task_notify();
  4215. regs = task_pt_regs(current);
  4216. /*
  4217. * extract reason for being here and clear
  4218. */
  4219. reason = ctx->ctx_fl_trap_reason;
  4220. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  4221. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4222. DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
  4223. /*
  4224. * must be done before we check for simple-reset mode
  4225. */
  4226. if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
  4227. //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
  4228. if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
  4229. /*
  4230. * restore interrupt mask to what it was on entry.
  4231. * Could be enabled/diasbled.
  4232. */
  4233. UNPROTECT_CTX(ctx, flags);
  4234. /*
  4235. * force interrupt enable because of down_interruptible()
  4236. */
  4237. local_irq_enable();
  4238. DPRINT(("before block sleeping\n"));
  4239. /*
  4240. * may go through without blocking on SMP systems
  4241. * if restart has been received already by the time we call down()
  4242. */
  4243. ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
  4244. DPRINT(("after block sleeping ret=%d\n", ret));
  4245. /*
  4246. * lock context and mask interrupts again
  4247. * We save flags into a dummy because we may have
  4248. * altered interrupts mask compared to entry in this
  4249. * function.
  4250. */
  4251. PROTECT_CTX(ctx, dummy_flags);
  4252. /*
  4253. * we need to read the ovfl_regs only after wake-up
  4254. * because we may have had pfm_write_pmds() in between
  4255. * and that can changed PMD values and therefore
  4256. * ovfl_regs is reset for these new PMD values.
  4257. */
  4258. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4259. if (ctx->ctx_fl_going_zombie) {
  4260. do_zombie:
  4261. DPRINT(("context is zombie, bailing out\n"));
  4262. pfm_context_force_terminate(ctx, regs);
  4263. goto nothing_to_do;
  4264. }
  4265. /*
  4266. * in case of interruption of down() we don't restart anything
  4267. */
  4268. if (ret < 0) goto nothing_to_do;
  4269. skip_blocking:
  4270. pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
  4271. ctx->ctx_ovfl_regs[0] = 0UL;
  4272. nothing_to_do:
  4273. /*
  4274. * restore flags as they were upon entry
  4275. */
  4276. UNPROTECT_CTX(ctx, flags);
  4277. }
  4278. static int
  4279. pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
  4280. {
  4281. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4282. DPRINT(("ignoring overflow notification, owner is zombie\n"));
  4283. return 0;
  4284. }
  4285. DPRINT(("waking up somebody\n"));
  4286. if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
  4287. /*
  4288. * safe, we are not in intr handler, nor in ctxsw when
  4289. * we come here
  4290. */
  4291. kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
  4292. return 0;
  4293. }
  4294. static int
  4295. pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
  4296. {
  4297. pfm_msg_t *msg = NULL;
  4298. if (ctx->ctx_fl_no_msg == 0) {
  4299. msg = pfm_get_new_msg(ctx);
  4300. if (msg == NULL) {
  4301. printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
  4302. return -1;
  4303. }
  4304. msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
  4305. msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
  4306. msg->pfm_ovfl_msg.msg_active_set = 0;
  4307. msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
  4308. msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
  4309. msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
  4310. msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
  4311. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4312. }
  4313. DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
  4314. msg,
  4315. ctx->ctx_fl_no_msg,
  4316. ctx->ctx_fd,
  4317. ovfl_pmds));
  4318. return pfm_notify_user(ctx, msg);
  4319. }
  4320. static int
  4321. pfm_end_notify_user(pfm_context_t *ctx)
  4322. {
  4323. pfm_msg_t *msg;
  4324. msg = pfm_get_new_msg(ctx);
  4325. if (msg == NULL) {
  4326. printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
  4327. return -1;
  4328. }
  4329. /* no leak */
  4330. memset(msg, 0, sizeof(*msg));
  4331. msg->pfm_end_msg.msg_type = PFM_MSG_END;
  4332. msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
  4333. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4334. DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
  4335. msg,
  4336. ctx->ctx_fl_no_msg,
  4337. ctx->ctx_fd));
  4338. return pfm_notify_user(ctx, msg);
  4339. }
  4340. /*
  4341. * main overflow processing routine.
  4342. * it can be called from the interrupt path or explicitely during the context switch code
  4343. */
  4344. static void
  4345. pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
  4346. {
  4347. pfm_ovfl_arg_t *ovfl_arg;
  4348. unsigned long mask;
  4349. unsigned long old_val, ovfl_val, new_val;
  4350. unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
  4351. unsigned long tstamp;
  4352. pfm_ovfl_ctrl_t ovfl_ctrl;
  4353. unsigned int i, has_smpl;
  4354. int must_notify = 0;
  4355. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
  4356. /*
  4357. * sanity test. Should never happen
  4358. */
  4359. if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
  4360. tstamp = ia64_get_itc();
  4361. mask = pmc0 >> PMU_FIRST_COUNTER;
  4362. ovfl_val = pmu_conf->ovfl_val;
  4363. has_smpl = CTX_HAS_SMPL(ctx);
  4364. DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
  4365. "used_pmds=0x%lx\n",
  4366. pmc0,
  4367. task ? task->pid: -1,
  4368. (regs ? regs->cr_iip : 0),
  4369. CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
  4370. ctx->ctx_used_pmds[0]));
  4371. /*
  4372. * first we update the virtual counters
  4373. * assume there was a prior ia64_srlz_d() issued
  4374. */
  4375. for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
  4376. /* skip pmd which did not overflow */
  4377. if ((mask & 0x1) == 0) continue;
  4378. /*
  4379. * Note that the pmd is not necessarily 0 at this point as qualified events
  4380. * may have happened before the PMU was frozen. The residual count is not
  4381. * taken into consideration here but will be with any read of the pmd via
  4382. * pfm_read_pmds().
  4383. */
  4384. old_val = new_val = ctx->ctx_pmds[i].val;
  4385. new_val += 1 + ovfl_val;
  4386. ctx->ctx_pmds[i].val = new_val;
  4387. /*
  4388. * check for overflow condition
  4389. */
  4390. if (likely(old_val > new_val)) {
  4391. ovfl_pmds |= 1UL << i;
  4392. if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
  4393. }
  4394. DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
  4395. i,
  4396. new_val,
  4397. old_val,
  4398. ia64_get_pmd(i) & ovfl_val,
  4399. ovfl_pmds,
  4400. ovfl_notify));
  4401. }
  4402. /*
  4403. * there was no 64-bit overflow, nothing else to do
  4404. */
  4405. if (ovfl_pmds == 0UL) return;
  4406. /*
  4407. * reset all control bits
  4408. */
  4409. ovfl_ctrl.val = 0;
  4410. reset_pmds = 0UL;
  4411. /*
  4412. * if a sampling format module exists, then we "cache" the overflow by
  4413. * calling the module's handler() routine.
  4414. */
  4415. if (has_smpl) {
  4416. unsigned long start_cycles, end_cycles;
  4417. unsigned long pmd_mask;
  4418. int j, k, ret = 0;
  4419. int this_cpu = smp_processor_id();
  4420. pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
  4421. ovfl_arg = &ctx->ctx_ovfl_arg;
  4422. prefetch(ctx->ctx_smpl_hdr);
  4423. for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
  4424. mask = 1UL << i;
  4425. if ((pmd_mask & 0x1) == 0) continue;
  4426. ovfl_arg->ovfl_pmd = (unsigned char )i;
  4427. ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
  4428. ovfl_arg->active_set = 0;
  4429. ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
  4430. ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
  4431. ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
  4432. ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
  4433. ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
  4434. /*
  4435. * copy values of pmds of interest. Sampling format may copy them
  4436. * into sampling buffer.
  4437. */
  4438. if (smpl_pmds) {
  4439. for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
  4440. if ((smpl_pmds & 0x1) == 0) continue;
  4441. ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
  4442. DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
  4443. }
  4444. }
  4445. pfm_stats[this_cpu].pfm_smpl_handler_calls++;
  4446. start_cycles = ia64_get_itc();
  4447. /*
  4448. * call custom buffer format record (handler) routine
  4449. */
  4450. ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
  4451. end_cycles = ia64_get_itc();
  4452. /*
  4453. * For those controls, we take the union because they have
  4454. * an all or nothing behavior.
  4455. */
  4456. ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
  4457. ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
  4458. ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
  4459. /*
  4460. * build the bitmask of pmds to reset now
  4461. */
  4462. if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
  4463. pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
  4464. }
  4465. /*
  4466. * when the module cannot handle the rest of the overflows, we abort right here
  4467. */
  4468. if (ret && pmd_mask) {
  4469. DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
  4470. pmd_mask<<PMU_FIRST_COUNTER));
  4471. }
  4472. /*
  4473. * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
  4474. */
  4475. ovfl_pmds &= ~reset_pmds;
  4476. } else {
  4477. /*
  4478. * when no sampling module is used, then the default
  4479. * is to notify on overflow if requested by user
  4480. */
  4481. ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
  4482. ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
  4483. ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
  4484. ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
  4485. /*
  4486. * if needed, we reset all overflowed pmds
  4487. */
  4488. if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
  4489. }
  4490. DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
  4491. /*
  4492. * reset the requested PMD registers using the short reset values
  4493. */
  4494. if (reset_pmds) {
  4495. unsigned long bm = reset_pmds;
  4496. pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
  4497. }
  4498. if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
  4499. /*
  4500. * keep track of what to reset when unblocking
  4501. */
  4502. ctx->ctx_ovfl_regs[0] = ovfl_pmds;
  4503. /*
  4504. * check for blocking context
  4505. */
  4506. if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
  4507. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
  4508. /*
  4509. * set the perfmon specific checking pending work for the task
  4510. */
  4511. PFM_SET_WORK_PENDING(task, 1);
  4512. /*
  4513. * when coming from ctxsw, current still points to the
  4514. * previous task, therefore we must work with task and not current.
  4515. */
  4516. pfm_set_task_notify(task);
  4517. }
  4518. /*
  4519. * defer until state is changed (shorten spin window). the context is locked
  4520. * anyway, so the signal receiver would come spin for nothing.
  4521. */
  4522. must_notify = 1;
  4523. }
  4524. DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
  4525. GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
  4526. PFM_GET_WORK_PENDING(task),
  4527. ctx->ctx_fl_trap_reason,
  4528. ovfl_pmds,
  4529. ovfl_notify,
  4530. ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
  4531. /*
  4532. * in case monitoring must be stopped, we toggle the psr bits
  4533. */
  4534. if (ovfl_ctrl.bits.mask_monitoring) {
  4535. pfm_mask_monitoring(task);
  4536. ctx->ctx_state = PFM_CTX_MASKED;
  4537. ctx->ctx_fl_can_restart = 1;
  4538. }
  4539. /*
  4540. * send notification now
  4541. */
  4542. if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
  4543. return;
  4544. sanity_check:
  4545. printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
  4546. smp_processor_id(),
  4547. task ? task->pid : -1,
  4548. pmc0);
  4549. return;
  4550. stop_monitoring:
  4551. /*
  4552. * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
  4553. * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
  4554. * come here as zombie only if the task is the current task. In which case, we
  4555. * can access the PMU hardware directly.
  4556. *
  4557. * Note that zombies do have PM_VALID set. So here we do the minimal.
  4558. *
  4559. * In case the context was zombified it could not be reclaimed at the time
  4560. * the monitoring program exited. At this point, the PMU reservation has been
  4561. * returned, the sampiing buffer has been freed. We must convert this call
  4562. * into a spurious interrupt. However, we must also avoid infinite overflows
  4563. * by stopping monitoring for this task. We can only come here for a per-task
  4564. * context. All we need to do is to stop monitoring using the psr bits which
  4565. * are always task private. By re-enabling secure montioring, we ensure that
  4566. * the monitored task will not be able to re-activate monitoring.
  4567. * The task will eventually be context switched out, at which point the context
  4568. * will be reclaimed (that includes releasing ownership of the PMU).
  4569. *
  4570. * So there might be a window of time where the number of per-task session is zero
  4571. * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
  4572. * context. This is safe because if a per-task session comes in, it will push this one
  4573. * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
  4574. * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
  4575. * also push our zombie context out.
  4576. *
  4577. * Overall pretty hairy stuff....
  4578. */
  4579. DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
  4580. pfm_clear_psr_up();
  4581. ia64_psr(regs)->up = 0;
  4582. ia64_psr(regs)->sp = 1;
  4583. return;
  4584. }
  4585. static int
  4586. pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
  4587. {
  4588. struct task_struct *task;
  4589. pfm_context_t *ctx;
  4590. unsigned long flags;
  4591. u64 pmc0;
  4592. int this_cpu = smp_processor_id();
  4593. int retval = 0;
  4594. pfm_stats[this_cpu].pfm_ovfl_intr_count++;
  4595. /*
  4596. * srlz.d done before arriving here
  4597. */
  4598. pmc0 = ia64_get_pmc(0);
  4599. task = GET_PMU_OWNER();
  4600. ctx = GET_PMU_CTX();
  4601. /*
  4602. * if we have some pending bits set
  4603. * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
  4604. */
  4605. if (PMC0_HAS_OVFL(pmc0) && task) {
  4606. /*
  4607. * we assume that pmc0.fr is always set here
  4608. */
  4609. /* sanity check */
  4610. if (!ctx) goto report_spurious1;
  4611. if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
  4612. goto report_spurious2;
  4613. PROTECT_CTX_NOPRINT(ctx, flags);
  4614. pfm_overflow_handler(task, ctx, pmc0, regs);
  4615. UNPROTECT_CTX_NOPRINT(ctx, flags);
  4616. } else {
  4617. pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
  4618. retval = -1;
  4619. }
  4620. /*
  4621. * keep it unfrozen at all times
  4622. */
  4623. pfm_unfreeze_pmu();
  4624. return retval;
  4625. report_spurious1:
  4626. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
  4627. this_cpu, task->pid);
  4628. pfm_unfreeze_pmu();
  4629. return -1;
  4630. report_spurious2:
  4631. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
  4632. this_cpu,
  4633. task->pid);
  4634. pfm_unfreeze_pmu();
  4635. return -1;
  4636. }
  4637. static irqreturn_t
  4638. pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
  4639. {
  4640. unsigned long start_cycles, total_cycles;
  4641. unsigned long min, max;
  4642. int this_cpu;
  4643. int ret;
  4644. this_cpu = get_cpu();
  4645. if (likely(!pfm_alt_intr_handler)) {
  4646. min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
  4647. max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
  4648. start_cycles = ia64_get_itc();
  4649. ret = pfm_do_interrupt_handler(irq, arg, regs);
  4650. total_cycles = ia64_get_itc();
  4651. /*
  4652. * don't measure spurious interrupts
  4653. */
  4654. if (likely(ret == 0)) {
  4655. total_cycles -= start_cycles;
  4656. if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
  4657. if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
  4658. pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
  4659. }
  4660. }
  4661. else {
  4662. (*pfm_alt_intr_handler->handler)(irq, arg, regs);
  4663. }
  4664. put_cpu_no_resched();
  4665. return IRQ_HANDLED;
  4666. }
  4667. /*
  4668. * /proc/perfmon interface, for debug only
  4669. */
  4670. #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
  4671. static void *
  4672. pfm_proc_start(struct seq_file *m, loff_t *pos)
  4673. {
  4674. if (*pos == 0) {
  4675. return PFM_PROC_SHOW_HEADER;
  4676. }
  4677. while (*pos <= NR_CPUS) {
  4678. if (cpu_online(*pos - 1)) {
  4679. return (void *)*pos;
  4680. }
  4681. ++*pos;
  4682. }
  4683. return NULL;
  4684. }
  4685. static void *
  4686. pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
  4687. {
  4688. ++*pos;
  4689. return pfm_proc_start(m, pos);
  4690. }
  4691. static void
  4692. pfm_proc_stop(struct seq_file *m, void *v)
  4693. {
  4694. }
  4695. static void
  4696. pfm_proc_show_header(struct seq_file *m)
  4697. {
  4698. struct list_head * pos;
  4699. pfm_buffer_fmt_t * entry;
  4700. unsigned long flags;
  4701. seq_printf(m,
  4702. "perfmon version : %u.%u\n"
  4703. "model : %s\n"
  4704. "fastctxsw : %s\n"
  4705. "expert mode : %s\n"
  4706. "ovfl_mask : 0x%lx\n"
  4707. "PMU flags : 0x%x\n",
  4708. PFM_VERSION_MAJ, PFM_VERSION_MIN,
  4709. pmu_conf->pmu_name,
  4710. pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
  4711. pfm_sysctl.expert_mode > 0 ? "Yes": "No",
  4712. pmu_conf->ovfl_val,
  4713. pmu_conf->flags);
  4714. LOCK_PFS(flags);
  4715. seq_printf(m,
  4716. "proc_sessions : %u\n"
  4717. "sys_sessions : %u\n"
  4718. "sys_use_dbregs : %u\n"
  4719. "ptrace_use_dbregs : %u\n",
  4720. pfm_sessions.pfs_task_sessions,
  4721. pfm_sessions.pfs_sys_sessions,
  4722. pfm_sessions.pfs_sys_use_dbregs,
  4723. pfm_sessions.pfs_ptrace_use_dbregs);
  4724. UNLOCK_PFS(flags);
  4725. spin_lock(&pfm_buffer_fmt_lock);
  4726. list_for_each(pos, &pfm_buffer_fmt_list) {
  4727. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  4728. seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
  4729. entry->fmt_uuid[0],
  4730. entry->fmt_uuid[1],
  4731. entry->fmt_uuid[2],
  4732. entry->fmt_uuid[3],
  4733. entry->fmt_uuid[4],
  4734. entry->fmt_uuid[5],
  4735. entry->fmt_uuid[6],
  4736. entry->fmt_uuid[7],
  4737. entry->fmt_uuid[8],
  4738. entry->fmt_uuid[9],
  4739. entry->fmt_uuid[10],
  4740. entry->fmt_uuid[11],
  4741. entry->fmt_uuid[12],
  4742. entry->fmt_uuid[13],
  4743. entry->fmt_uuid[14],
  4744. entry->fmt_uuid[15],
  4745. entry->fmt_name);
  4746. }
  4747. spin_unlock(&pfm_buffer_fmt_lock);
  4748. }
  4749. static int
  4750. pfm_proc_show(struct seq_file *m, void *v)
  4751. {
  4752. unsigned long psr;
  4753. unsigned int i;
  4754. int cpu;
  4755. if (v == PFM_PROC_SHOW_HEADER) {
  4756. pfm_proc_show_header(m);
  4757. return 0;
  4758. }
  4759. /* show info for CPU (v - 1) */
  4760. cpu = (long)v - 1;
  4761. seq_printf(m,
  4762. "CPU%-2d overflow intrs : %lu\n"
  4763. "CPU%-2d overflow cycles : %lu\n"
  4764. "CPU%-2d overflow min : %lu\n"
  4765. "CPU%-2d overflow max : %lu\n"
  4766. "CPU%-2d smpl handler calls : %lu\n"
  4767. "CPU%-2d smpl handler cycles : %lu\n"
  4768. "CPU%-2d spurious intrs : %lu\n"
  4769. "CPU%-2d replay intrs : %lu\n"
  4770. "CPU%-2d syst_wide : %d\n"
  4771. "CPU%-2d dcr_pp : %d\n"
  4772. "CPU%-2d exclude idle : %d\n"
  4773. "CPU%-2d owner : %d\n"
  4774. "CPU%-2d context : %p\n"
  4775. "CPU%-2d activations : %lu\n",
  4776. cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
  4777. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
  4778. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
  4779. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
  4780. cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
  4781. cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
  4782. cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
  4783. cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
  4784. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
  4785. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
  4786. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
  4787. cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
  4788. cpu, pfm_get_cpu_data(pmu_ctx, cpu),
  4789. cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
  4790. if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
  4791. psr = pfm_get_psr();
  4792. ia64_srlz_d();
  4793. seq_printf(m,
  4794. "CPU%-2d psr : 0x%lx\n"
  4795. "CPU%-2d pmc0 : 0x%lx\n",
  4796. cpu, psr,
  4797. cpu, ia64_get_pmc(0));
  4798. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  4799. if (PMC_IS_COUNTING(i) == 0) continue;
  4800. seq_printf(m,
  4801. "CPU%-2d pmc%u : 0x%lx\n"
  4802. "CPU%-2d pmd%u : 0x%lx\n",
  4803. cpu, i, ia64_get_pmc(i),
  4804. cpu, i, ia64_get_pmd(i));
  4805. }
  4806. }
  4807. return 0;
  4808. }
  4809. struct seq_operations pfm_seq_ops = {
  4810. .start = pfm_proc_start,
  4811. .next = pfm_proc_next,
  4812. .stop = pfm_proc_stop,
  4813. .show = pfm_proc_show
  4814. };
  4815. static int
  4816. pfm_proc_open(struct inode *inode, struct file *file)
  4817. {
  4818. return seq_open(file, &pfm_seq_ops);
  4819. }
  4820. /*
  4821. * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
  4822. * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
  4823. * is active or inactive based on mode. We must rely on the value in
  4824. * local_cpu_data->pfm_syst_info
  4825. */
  4826. void
  4827. pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
  4828. {
  4829. struct pt_regs *regs;
  4830. unsigned long dcr;
  4831. unsigned long dcr_pp;
  4832. dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
  4833. /*
  4834. * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
  4835. * on every CPU, so we can rely on the pid to identify the idle task.
  4836. */
  4837. if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
  4838. regs = task_pt_regs(task);
  4839. ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
  4840. return;
  4841. }
  4842. /*
  4843. * if monitoring has started
  4844. */
  4845. if (dcr_pp) {
  4846. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  4847. /*
  4848. * context switching in?
  4849. */
  4850. if (is_ctxswin) {
  4851. /* mask monitoring for the idle task */
  4852. ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
  4853. pfm_clear_psr_pp();
  4854. ia64_srlz_i();
  4855. return;
  4856. }
  4857. /*
  4858. * context switching out
  4859. * restore monitoring for next task
  4860. *
  4861. * Due to inlining this odd if-then-else construction generates
  4862. * better code.
  4863. */
  4864. ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
  4865. pfm_set_psr_pp();
  4866. ia64_srlz_i();
  4867. }
  4868. }
  4869. #ifdef CONFIG_SMP
  4870. static void
  4871. pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
  4872. {
  4873. struct task_struct *task = ctx->ctx_task;
  4874. ia64_psr(regs)->up = 0;
  4875. ia64_psr(regs)->sp = 1;
  4876. if (GET_PMU_OWNER() == task) {
  4877. DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
  4878. SET_PMU_OWNER(NULL, NULL);
  4879. }
  4880. /*
  4881. * disconnect the task from the context and vice-versa
  4882. */
  4883. PFM_SET_WORK_PENDING(task, 0);
  4884. task->thread.pfm_context = NULL;
  4885. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  4886. DPRINT(("force cleanup for [%d]\n", task->pid));
  4887. }
  4888. /*
  4889. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  4890. */
  4891. void
  4892. pfm_save_regs(struct task_struct *task)
  4893. {
  4894. pfm_context_t *ctx;
  4895. struct thread_struct *t;
  4896. unsigned long flags;
  4897. u64 psr;
  4898. ctx = PFM_GET_CTX(task);
  4899. if (ctx == NULL) return;
  4900. t = &task->thread;
  4901. /*
  4902. * we always come here with interrupts ALREADY disabled by
  4903. * the scheduler. So we simply need to protect against concurrent
  4904. * access, not CPU concurrency.
  4905. */
  4906. flags = pfm_protect_ctx_ctxsw(ctx);
  4907. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4908. struct pt_regs *regs = task_pt_regs(task);
  4909. pfm_clear_psr_up();
  4910. pfm_force_cleanup(ctx, regs);
  4911. BUG_ON(ctx->ctx_smpl_hdr);
  4912. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4913. pfm_context_free(ctx);
  4914. return;
  4915. }
  4916. /*
  4917. * save current PSR: needed because we modify it
  4918. */
  4919. ia64_srlz_d();
  4920. psr = pfm_get_psr();
  4921. BUG_ON(psr & (IA64_PSR_I));
  4922. /*
  4923. * stop monitoring:
  4924. * This is the last instruction which may generate an overflow
  4925. *
  4926. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4927. * It will be restored from ipsr when going back to user level
  4928. */
  4929. pfm_clear_psr_up();
  4930. /*
  4931. * keep a copy of psr.up (for reload)
  4932. */
  4933. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4934. /*
  4935. * release ownership of this PMU.
  4936. * PM interrupts are masked, so nothing
  4937. * can happen.
  4938. */
  4939. SET_PMU_OWNER(NULL, NULL);
  4940. /*
  4941. * we systematically save the PMD as we have no
  4942. * guarantee we will be schedule at that same
  4943. * CPU again.
  4944. */
  4945. pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
  4946. /*
  4947. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  4948. * we will need it on the restore path to check
  4949. * for pending overflow.
  4950. */
  4951. t->pmcs[0] = ia64_get_pmc(0);
  4952. /*
  4953. * unfreeze PMU if had pending overflows
  4954. */
  4955. if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  4956. /*
  4957. * finally, allow context access.
  4958. * interrupts will still be masked after this call.
  4959. */
  4960. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4961. }
  4962. #else /* !CONFIG_SMP */
  4963. void
  4964. pfm_save_regs(struct task_struct *task)
  4965. {
  4966. pfm_context_t *ctx;
  4967. u64 psr;
  4968. ctx = PFM_GET_CTX(task);
  4969. if (ctx == NULL) return;
  4970. /*
  4971. * save current PSR: needed because we modify it
  4972. */
  4973. psr = pfm_get_psr();
  4974. BUG_ON(psr & (IA64_PSR_I));
  4975. /*
  4976. * stop monitoring:
  4977. * This is the last instruction which may generate an overflow
  4978. *
  4979. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4980. * It will be restored from ipsr when going back to user level
  4981. */
  4982. pfm_clear_psr_up();
  4983. /*
  4984. * keep a copy of psr.up (for reload)
  4985. */
  4986. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4987. }
  4988. static void
  4989. pfm_lazy_save_regs (struct task_struct *task)
  4990. {
  4991. pfm_context_t *ctx;
  4992. struct thread_struct *t;
  4993. unsigned long flags;
  4994. { u64 psr = pfm_get_psr();
  4995. BUG_ON(psr & IA64_PSR_UP);
  4996. }
  4997. ctx = PFM_GET_CTX(task);
  4998. t = &task->thread;
  4999. /*
  5000. * we need to mask PMU overflow here to
  5001. * make sure that we maintain pmc0 until
  5002. * we save it. overflow interrupts are
  5003. * treated as spurious if there is no
  5004. * owner.
  5005. *
  5006. * XXX: I don't think this is necessary
  5007. */
  5008. PROTECT_CTX(ctx,flags);
  5009. /*
  5010. * release ownership of this PMU.
  5011. * must be done before we save the registers.
  5012. *
  5013. * after this call any PMU interrupt is treated
  5014. * as spurious.
  5015. */
  5016. SET_PMU_OWNER(NULL, NULL);
  5017. /*
  5018. * save all the pmds we use
  5019. */
  5020. pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
  5021. /*
  5022. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  5023. * it is needed to check for pended overflow
  5024. * on the restore path
  5025. */
  5026. t->pmcs[0] = ia64_get_pmc(0);
  5027. /*
  5028. * unfreeze PMU if had pending overflows
  5029. */
  5030. if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  5031. /*
  5032. * now get can unmask PMU interrupts, they will
  5033. * be treated as purely spurious and we will not
  5034. * lose any information
  5035. */
  5036. UNPROTECT_CTX(ctx,flags);
  5037. }
  5038. #endif /* CONFIG_SMP */
  5039. #ifdef CONFIG_SMP
  5040. /*
  5041. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  5042. */
  5043. void
  5044. pfm_load_regs (struct task_struct *task)
  5045. {
  5046. pfm_context_t *ctx;
  5047. struct thread_struct *t;
  5048. unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
  5049. unsigned long flags;
  5050. u64 psr, psr_up;
  5051. int need_irq_resend;
  5052. ctx = PFM_GET_CTX(task);
  5053. if (unlikely(ctx == NULL)) return;
  5054. BUG_ON(GET_PMU_OWNER());
  5055. t = &task->thread;
  5056. /*
  5057. * possible on unload
  5058. */
  5059. if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
  5060. /*
  5061. * we always come here with interrupts ALREADY disabled by
  5062. * the scheduler. So we simply need to protect against concurrent
  5063. * access, not CPU concurrency.
  5064. */
  5065. flags = pfm_protect_ctx_ctxsw(ctx);
  5066. psr = pfm_get_psr();
  5067. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5068. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5069. BUG_ON(psr & IA64_PSR_I);
  5070. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
  5071. struct pt_regs *regs = task_pt_regs(task);
  5072. BUG_ON(ctx->ctx_smpl_hdr);
  5073. pfm_force_cleanup(ctx, regs);
  5074. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5075. /*
  5076. * this one (kmalloc'ed) is fine with interrupts disabled
  5077. */
  5078. pfm_context_free(ctx);
  5079. return;
  5080. }
  5081. /*
  5082. * we restore ALL the debug registers to avoid picking up
  5083. * stale state.
  5084. */
  5085. if (ctx->ctx_fl_using_dbreg) {
  5086. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5087. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5088. }
  5089. /*
  5090. * retrieve saved psr.up
  5091. */
  5092. psr_up = ctx->ctx_saved_psr_up;
  5093. /*
  5094. * if we were the last user of the PMU on that CPU,
  5095. * then nothing to do except restore psr
  5096. */
  5097. if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
  5098. /*
  5099. * retrieve partial reload masks (due to user modifications)
  5100. */
  5101. pmc_mask = ctx->ctx_reload_pmcs[0];
  5102. pmd_mask = ctx->ctx_reload_pmds[0];
  5103. } else {
  5104. /*
  5105. * To avoid leaking information to the user level when psr.sp=0,
  5106. * we must reload ALL implemented pmds (even the ones we don't use).
  5107. * In the kernel we only allow PFM_READ_PMDS on registers which
  5108. * we initialized or requested (sampling) so there is no risk there.
  5109. */
  5110. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5111. /*
  5112. * ALL accessible PMCs are systematically reloaded, unused registers
  5113. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5114. * up stale configuration.
  5115. *
  5116. * PMC0 is never in the mask. It is always restored separately.
  5117. */
  5118. pmc_mask = ctx->ctx_all_pmcs[0];
  5119. }
  5120. /*
  5121. * when context is MASKED, we will restore PMC with plm=0
  5122. * and PMD with stale information, but that's ok, nothing
  5123. * will be captured.
  5124. *
  5125. * XXX: optimize here
  5126. */
  5127. if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
  5128. if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
  5129. /*
  5130. * check for pending overflow at the time the state
  5131. * was saved.
  5132. */
  5133. if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
  5134. /*
  5135. * reload pmc0 with the overflow information
  5136. * On McKinley PMU, this will trigger a PMU interrupt
  5137. */
  5138. ia64_set_pmc(0, t->pmcs[0]);
  5139. ia64_srlz_d();
  5140. t->pmcs[0] = 0UL;
  5141. /*
  5142. * will replay the PMU interrupt
  5143. */
  5144. if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
  5145. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5146. }
  5147. /*
  5148. * we just did a reload, so we reset the partial reload fields
  5149. */
  5150. ctx->ctx_reload_pmcs[0] = 0UL;
  5151. ctx->ctx_reload_pmds[0] = 0UL;
  5152. SET_LAST_CPU(ctx, smp_processor_id());
  5153. /*
  5154. * dump activation value for this PMU
  5155. */
  5156. INC_ACTIVATION();
  5157. /*
  5158. * record current activation for this context
  5159. */
  5160. SET_ACTIVATION(ctx);
  5161. /*
  5162. * establish new ownership.
  5163. */
  5164. SET_PMU_OWNER(task, ctx);
  5165. /*
  5166. * restore the psr.up bit. measurement
  5167. * is active again.
  5168. * no PMU interrupt can happen at this point
  5169. * because we still have interrupts disabled.
  5170. */
  5171. if (likely(psr_up)) pfm_set_psr_up();
  5172. /*
  5173. * allow concurrent access to context
  5174. */
  5175. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5176. }
  5177. #else /* !CONFIG_SMP */
  5178. /*
  5179. * reload PMU state for UP kernels
  5180. * in 2.5 we come here with interrupts disabled
  5181. */
  5182. void
  5183. pfm_load_regs (struct task_struct *task)
  5184. {
  5185. struct thread_struct *t;
  5186. pfm_context_t *ctx;
  5187. struct task_struct *owner;
  5188. unsigned long pmd_mask, pmc_mask;
  5189. u64 psr, psr_up;
  5190. int need_irq_resend;
  5191. owner = GET_PMU_OWNER();
  5192. ctx = PFM_GET_CTX(task);
  5193. t = &task->thread;
  5194. psr = pfm_get_psr();
  5195. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5196. BUG_ON(psr & IA64_PSR_I);
  5197. /*
  5198. * we restore ALL the debug registers to avoid picking up
  5199. * stale state.
  5200. *
  5201. * This must be done even when the task is still the owner
  5202. * as the registers may have been modified via ptrace()
  5203. * (not perfmon) by the previous task.
  5204. */
  5205. if (ctx->ctx_fl_using_dbreg) {
  5206. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5207. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5208. }
  5209. /*
  5210. * retrieved saved psr.up
  5211. */
  5212. psr_up = ctx->ctx_saved_psr_up;
  5213. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5214. /*
  5215. * short path, our state is still there, just
  5216. * need to restore psr and we go
  5217. *
  5218. * we do not touch either PMC nor PMD. the psr is not touched
  5219. * by the overflow_handler. So we are safe w.r.t. to interrupt
  5220. * concurrency even without interrupt masking.
  5221. */
  5222. if (likely(owner == task)) {
  5223. if (likely(psr_up)) pfm_set_psr_up();
  5224. return;
  5225. }
  5226. /*
  5227. * someone else is still using the PMU, first push it out and
  5228. * then we'll be able to install our stuff !
  5229. *
  5230. * Upon return, there will be no owner for the current PMU
  5231. */
  5232. if (owner) pfm_lazy_save_regs(owner);
  5233. /*
  5234. * To avoid leaking information to the user level when psr.sp=0,
  5235. * we must reload ALL implemented pmds (even the ones we don't use).
  5236. * In the kernel we only allow PFM_READ_PMDS on registers which
  5237. * we initialized or requested (sampling) so there is no risk there.
  5238. */
  5239. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5240. /*
  5241. * ALL accessible PMCs are systematically reloaded, unused registers
  5242. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5243. * up stale configuration.
  5244. *
  5245. * PMC0 is never in the mask. It is always restored separately
  5246. */
  5247. pmc_mask = ctx->ctx_all_pmcs[0];
  5248. pfm_restore_pmds(t->pmds, pmd_mask);
  5249. pfm_restore_pmcs(t->pmcs, pmc_mask);
  5250. /*
  5251. * check for pending overflow at the time the state
  5252. * was saved.
  5253. */
  5254. if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
  5255. /*
  5256. * reload pmc0 with the overflow information
  5257. * On McKinley PMU, this will trigger a PMU interrupt
  5258. */
  5259. ia64_set_pmc(0, t->pmcs[0]);
  5260. ia64_srlz_d();
  5261. t->pmcs[0] = 0UL;
  5262. /*
  5263. * will replay the PMU interrupt
  5264. */
  5265. if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
  5266. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5267. }
  5268. /*
  5269. * establish new ownership.
  5270. */
  5271. SET_PMU_OWNER(task, ctx);
  5272. /*
  5273. * restore the psr.up bit. measurement
  5274. * is active again.
  5275. * no PMU interrupt can happen at this point
  5276. * because we still have interrupts disabled.
  5277. */
  5278. if (likely(psr_up)) pfm_set_psr_up();
  5279. }
  5280. #endif /* CONFIG_SMP */
  5281. /*
  5282. * this function assumes monitoring is stopped
  5283. */
  5284. static void
  5285. pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
  5286. {
  5287. u64 pmc0;
  5288. unsigned long mask2, val, pmd_val, ovfl_val;
  5289. int i, can_access_pmu = 0;
  5290. int is_self;
  5291. /*
  5292. * is the caller the task being monitored (or which initiated the
  5293. * session for system wide measurements)
  5294. */
  5295. is_self = ctx->ctx_task == task ? 1 : 0;
  5296. /*
  5297. * can access PMU is task is the owner of the PMU state on the current CPU
  5298. * or if we are running on the CPU bound to the context in system-wide mode
  5299. * (that is not necessarily the task the context is attached to in this mode).
  5300. * In system-wide we always have can_access_pmu true because a task running on an
  5301. * invalid processor is flagged earlier in the call stack (see pfm_stop).
  5302. */
  5303. can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
  5304. if (can_access_pmu) {
  5305. /*
  5306. * Mark the PMU as not owned
  5307. * This will cause the interrupt handler to do nothing in case an overflow
  5308. * interrupt was in-flight
  5309. * This also guarantees that pmc0 will contain the final state
  5310. * It virtually gives us full control on overflow processing from that point
  5311. * on.
  5312. */
  5313. SET_PMU_OWNER(NULL, NULL);
  5314. DPRINT(("releasing ownership\n"));
  5315. /*
  5316. * read current overflow status:
  5317. *
  5318. * we are guaranteed to read the final stable state
  5319. */
  5320. ia64_srlz_d();
  5321. pmc0 = ia64_get_pmc(0); /* slow */
  5322. /*
  5323. * reset freeze bit, overflow status information destroyed
  5324. */
  5325. pfm_unfreeze_pmu();
  5326. } else {
  5327. pmc0 = task->thread.pmcs[0];
  5328. /*
  5329. * clear whatever overflow status bits there were
  5330. */
  5331. task->thread.pmcs[0] = 0;
  5332. }
  5333. ovfl_val = pmu_conf->ovfl_val;
  5334. /*
  5335. * we save all the used pmds
  5336. * we take care of overflows for counting PMDs
  5337. *
  5338. * XXX: sampling situation is not taken into account here
  5339. */
  5340. mask2 = ctx->ctx_used_pmds[0];
  5341. DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
  5342. for (i = 0; mask2; i++, mask2>>=1) {
  5343. /* skip non used pmds */
  5344. if ((mask2 & 0x1) == 0) continue;
  5345. /*
  5346. * can access PMU always true in system wide mode
  5347. */
  5348. val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
  5349. if (PMD_IS_COUNTING(i)) {
  5350. DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
  5351. task->pid,
  5352. i,
  5353. ctx->ctx_pmds[i].val,
  5354. val & ovfl_val));
  5355. /*
  5356. * we rebuild the full 64 bit value of the counter
  5357. */
  5358. val = ctx->ctx_pmds[i].val + (val & ovfl_val);
  5359. /*
  5360. * now everything is in ctx_pmds[] and we need
  5361. * to clear the saved context from save_regs() such that
  5362. * pfm_read_pmds() gets the correct value
  5363. */
  5364. pmd_val = 0UL;
  5365. /*
  5366. * take care of overflow inline
  5367. */
  5368. if (pmc0 & (1UL << i)) {
  5369. val += 1 + ovfl_val;
  5370. DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
  5371. }
  5372. }
  5373. DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
  5374. if (is_self) task->thread.pmds[i] = pmd_val;
  5375. ctx->ctx_pmds[i].val = val;
  5376. }
  5377. }
  5378. static struct irqaction perfmon_irqaction = {
  5379. .handler = pfm_interrupt_handler,
  5380. .flags = SA_INTERRUPT,
  5381. .name = "perfmon"
  5382. };
  5383. static void
  5384. pfm_alt_save_pmu_state(void *data)
  5385. {
  5386. struct pt_regs *regs;
  5387. regs = task_pt_regs(current);
  5388. DPRINT(("called\n"));
  5389. /*
  5390. * should not be necessary but
  5391. * let's take not risk
  5392. */
  5393. pfm_clear_psr_up();
  5394. pfm_clear_psr_pp();
  5395. ia64_psr(regs)->pp = 0;
  5396. /*
  5397. * This call is required
  5398. * May cause a spurious interrupt on some processors
  5399. */
  5400. pfm_freeze_pmu();
  5401. ia64_srlz_d();
  5402. }
  5403. void
  5404. pfm_alt_restore_pmu_state(void *data)
  5405. {
  5406. struct pt_regs *regs;
  5407. regs = task_pt_regs(current);
  5408. DPRINT(("called\n"));
  5409. /*
  5410. * put PMU back in state expected
  5411. * by perfmon
  5412. */
  5413. pfm_clear_psr_up();
  5414. pfm_clear_psr_pp();
  5415. ia64_psr(regs)->pp = 0;
  5416. /*
  5417. * perfmon runs with PMU unfrozen at all times
  5418. */
  5419. pfm_unfreeze_pmu();
  5420. ia64_srlz_d();
  5421. }
  5422. int
  5423. pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5424. {
  5425. int ret, i;
  5426. int reserve_cpu;
  5427. /* some sanity checks */
  5428. if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
  5429. /* do the easy test first */
  5430. if (pfm_alt_intr_handler) return -EBUSY;
  5431. /* one at a time in the install or remove, just fail the others */
  5432. if (!spin_trylock(&pfm_alt_install_check)) {
  5433. return -EBUSY;
  5434. }
  5435. /* reserve our session */
  5436. for_each_online_cpu(reserve_cpu) {
  5437. ret = pfm_reserve_session(NULL, 1, reserve_cpu);
  5438. if (ret) goto cleanup_reserve;
  5439. }
  5440. /* save the current system wide pmu states */
  5441. ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
  5442. if (ret) {
  5443. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5444. goto cleanup_reserve;
  5445. }
  5446. /* officially change to the alternate interrupt handler */
  5447. pfm_alt_intr_handler = hdl;
  5448. spin_unlock(&pfm_alt_install_check);
  5449. return 0;
  5450. cleanup_reserve:
  5451. for_each_online_cpu(i) {
  5452. /* don't unreserve more than we reserved */
  5453. if (i >= reserve_cpu) break;
  5454. pfm_unreserve_session(NULL, 1, i);
  5455. }
  5456. spin_unlock(&pfm_alt_install_check);
  5457. return ret;
  5458. }
  5459. EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
  5460. int
  5461. pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5462. {
  5463. int i;
  5464. int ret;
  5465. if (hdl == NULL) return -EINVAL;
  5466. /* cannot remove someone else's handler! */
  5467. if (pfm_alt_intr_handler != hdl) return -EINVAL;
  5468. /* one at a time in the install or remove, just fail the others */
  5469. if (!spin_trylock(&pfm_alt_install_check)) {
  5470. return -EBUSY;
  5471. }
  5472. pfm_alt_intr_handler = NULL;
  5473. ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
  5474. if (ret) {
  5475. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5476. }
  5477. for_each_online_cpu(i) {
  5478. pfm_unreserve_session(NULL, 1, i);
  5479. }
  5480. spin_unlock(&pfm_alt_install_check);
  5481. return 0;
  5482. }
  5483. EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
  5484. /*
  5485. * perfmon initialization routine, called from the initcall() table
  5486. */
  5487. static int init_pfm_fs(void);
  5488. static int __init
  5489. pfm_probe_pmu(void)
  5490. {
  5491. pmu_config_t **p;
  5492. int family;
  5493. family = local_cpu_data->family;
  5494. p = pmu_confs;
  5495. while(*p) {
  5496. if ((*p)->probe) {
  5497. if ((*p)->probe() == 0) goto found;
  5498. } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
  5499. goto found;
  5500. }
  5501. p++;
  5502. }
  5503. return -1;
  5504. found:
  5505. pmu_conf = *p;
  5506. return 0;
  5507. }
  5508. static struct file_operations pfm_proc_fops = {
  5509. .open = pfm_proc_open,
  5510. .read = seq_read,
  5511. .llseek = seq_lseek,
  5512. .release = seq_release,
  5513. };
  5514. int __init
  5515. pfm_init(void)
  5516. {
  5517. unsigned int n, n_counters, i;
  5518. printk("perfmon: version %u.%u IRQ %u\n",
  5519. PFM_VERSION_MAJ,
  5520. PFM_VERSION_MIN,
  5521. IA64_PERFMON_VECTOR);
  5522. if (pfm_probe_pmu()) {
  5523. printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
  5524. local_cpu_data->family);
  5525. return -ENODEV;
  5526. }
  5527. /*
  5528. * compute the number of implemented PMD/PMC from the
  5529. * description tables
  5530. */
  5531. n = 0;
  5532. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  5533. if (PMC_IS_IMPL(i) == 0) continue;
  5534. pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
  5535. n++;
  5536. }
  5537. pmu_conf->num_pmcs = n;
  5538. n = 0; n_counters = 0;
  5539. for (i=0; PMD_IS_LAST(i) == 0; i++) {
  5540. if (PMD_IS_IMPL(i) == 0) continue;
  5541. pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
  5542. n++;
  5543. if (PMD_IS_COUNTING(i)) n_counters++;
  5544. }
  5545. pmu_conf->num_pmds = n;
  5546. pmu_conf->num_counters = n_counters;
  5547. /*
  5548. * sanity checks on the number of debug registers
  5549. */
  5550. if (pmu_conf->use_rr_dbregs) {
  5551. if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
  5552. printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
  5553. pmu_conf = NULL;
  5554. return -1;
  5555. }
  5556. if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
  5557. printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
  5558. pmu_conf = NULL;
  5559. return -1;
  5560. }
  5561. }
  5562. printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
  5563. pmu_conf->pmu_name,
  5564. pmu_conf->num_pmcs,
  5565. pmu_conf->num_pmds,
  5566. pmu_conf->num_counters,
  5567. ffz(pmu_conf->ovfl_val));
  5568. /* sanity check */
  5569. if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
  5570. printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
  5571. pmu_conf = NULL;
  5572. return -1;
  5573. }
  5574. /*
  5575. * create /proc/perfmon (mostly for debugging purposes)
  5576. */
  5577. perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
  5578. if (perfmon_dir == NULL) {
  5579. printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
  5580. pmu_conf = NULL;
  5581. return -1;
  5582. }
  5583. /*
  5584. * install customized file operations for /proc/perfmon entry
  5585. */
  5586. perfmon_dir->proc_fops = &pfm_proc_fops;
  5587. /*
  5588. * create /proc/sys/kernel/perfmon (for debugging purposes)
  5589. */
  5590. pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
  5591. /*
  5592. * initialize all our spinlocks
  5593. */
  5594. spin_lock_init(&pfm_sessions.pfs_lock);
  5595. spin_lock_init(&pfm_buffer_fmt_lock);
  5596. init_pfm_fs();
  5597. for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
  5598. return 0;
  5599. }
  5600. __initcall(pfm_init);
  5601. /*
  5602. * this function is called before pfm_init()
  5603. */
  5604. void
  5605. pfm_init_percpu (void)
  5606. {
  5607. /*
  5608. * make sure no measurement is active
  5609. * (may inherit programmed PMCs from EFI).
  5610. */
  5611. pfm_clear_psr_pp();
  5612. pfm_clear_psr_up();
  5613. /*
  5614. * we run with the PMU not frozen at all times
  5615. */
  5616. pfm_unfreeze_pmu();
  5617. if (smp_processor_id() == 0)
  5618. register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
  5619. ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
  5620. ia64_srlz_d();
  5621. }
  5622. /*
  5623. * used for debug purposes only
  5624. */
  5625. void
  5626. dump_pmu_state(const char *from)
  5627. {
  5628. struct task_struct *task;
  5629. struct thread_struct *t;
  5630. struct pt_regs *regs;
  5631. pfm_context_t *ctx;
  5632. unsigned long psr, dcr, info, flags;
  5633. int i, this_cpu;
  5634. local_irq_save(flags);
  5635. this_cpu = smp_processor_id();
  5636. regs = task_pt_regs(current);
  5637. info = PFM_CPUINFO_GET();
  5638. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  5639. if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
  5640. local_irq_restore(flags);
  5641. return;
  5642. }
  5643. printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
  5644. this_cpu,
  5645. from,
  5646. current->pid,
  5647. regs->cr_iip,
  5648. current->comm);
  5649. task = GET_PMU_OWNER();
  5650. ctx = GET_PMU_CTX();
  5651. printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
  5652. psr = pfm_get_psr();
  5653. printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
  5654. this_cpu,
  5655. ia64_get_pmc(0),
  5656. psr & IA64_PSR_PP ? 1 : 0,
  5657. psr & IA64_PSR_UP ? 1 : 0,
  5658. dcr & IA64_DCR_PP ? 1 : 0,
  5659. info,
  5660. ia64_psr(regs)->up,
  5661. ia64_psr(regs)->pp);
  5662. ia64_psr(regs)->up = 0;
  5663. ia64_psr(regs)->pp = 0;
  5664. t = &current->thread;
  5665. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  5666. if (PMC_IS_IMPL(i) == 0) continue;
  5667. printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
  5668. }
  5669. for (i=1; PMD_IS_LAST(i) == 0; i++) {
  5670. if (PMD_IS_IMPL(i) == 0) continue;
  5671. printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
  5672. }
  5673. if (ctx) {
  5674. printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
  5675. this_cpu,
  5676. ctx->ctx_state,
  5677. ctx->ctx_smpl_vaddr,
  5678. ctx->ctx_smpl_hdr,
  5679. ctx->ctx_msgq_head,
  5680. ctx->ctx_msgq_tail,
  5681. ctx->ctx_saved_psr_up);
  5682. }
  5683. local_irq_restore(flags);
  5684. }
  5685. /*
  5686. * called from process.c:copy_thread(). task is new child.
  5687. */
  5688. void
  5689. pfm_inherit(struct task_struct *task, struct pt_regs *regs)
  5690. {
  5691. struct thread_struct *thread;
  5692. DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
  5693. thread = &task->thread;
  5694. /*
  5695. * cut links inherited from parent (current)
  5696. */
  5697. thread->pfm_context = NULL;
  5698. PFM_SET_WORK_PENDING(task, 0);
  5699. /*
  5700. * the psr bits are already set properly in copy_threads()
  5701. */
  5702. }
  5703. #else /* !CONFIG_PERFMON */
  5704. asmlinkage long
  5705. sys_perfmonctl (int fd, int cmd, void *arg, int count)
  5706. {
  5707. return -ENOSYS;
  5708. }
  5709. #endif /* CONFIG_PERFMON */