clock.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. /*
  2. * linux/arch/arm/mach-omap1/clock.c
  3. *
  4. * Copyright (C) 2004 - 2005 Nokia corporation
  5. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  6. *
  7. * Modified to use omap shared clock framework by
  8. * Tony Lindgren <tony@atomide.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/list.h>
  17. #include <linux/errno.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <asm/io.h>
  21. #include <asm/arch/usb.h>
  22. #include <asm/arch/clock.h>
  23. #include <asm/arch/sram.h>
  24. #include "clock.h"
  25. __u32 arm_idlect1_mask;
  26. /*-------------------------------------------------------------------------
  27. * Omap1 specific clock functions
  28. *-------------------------------------------------------------------------*/
  29. static void omap1_watchdog_recalc(struct clk * clk)
  30. {
  31. clk->rate = clk->parent->rate / 14;
  32. }
  33. static void omap1_uart_recalc(struct clk * clk)
  34. {
  35. unsigned int val = omap_readl(clk->enable_reg);
  36. if (val & clk->enable_bit)
  37. clk->rate = 48000000;
  38. else
  39. clk->rate = 12000000;
  40. }
  41. static int omap1_clk_enable_dsp_domain(struct clk *clk)
  42. {
  43. int retval;
  44. retval = omap1_clk_enable(&api_ck.clk);
  45. if (!retval) {
  46. retval = omap1_clk_enable_generic(clk);
  47. omap1_clk_disable(&api_ck.clk);
  48. }
  49. return retval;
  50. }
  51. static void omap1_clk_disable_dsp_domain(struct clk *clk)
  52. {
  53. if (omap1_clk_enable(&api_ck.clk) == 0) {
  54. omap1_clk_disable_generic(clk);
  55. omap1_clk_disable(&api_ck.clk);
  56. }
  57. }
  58. static int omap1_clk_enable_uart_functional(struct clk *clk)
  59. {
  60. int ret;
  61. struct uart_clk *uclk;
  62. ret = omap1_clk_enable_generic(clk);
  63. if (ret == 0) {
  64. /* Set smart idle acknowledgement mode */
  65. uclk = (struct uart_clk *)clk;
  66. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
  67. uclk->sysc_addr);
  68. }
  69. return ret;
  70. }
  71. static void omap1_clk_disable_uart_functional(struct clk *clk)
  72. {
  73. struct uart_clk *uclk;
  74. /* Set force idle acknowledgement mode */
  75. uclk = (struct uart_clk *)clk;
  76. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
  77. omap1_clk_disable_generic(clk);
  78. }
  79. static void omap1_clk_allow_idle(struct clk *clk)
  80. {
  81. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  82. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  83. return;
  84. if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
  85. arm_idlect1_mask |= 1 << iclk->idlect_shift;
  86. }
  87. static void omap1_clk_deny_idle(struct clk *clk)
  88. {
  89. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  90. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  91. return;
  92. if (iclk->no_idle_count++ == 0)
  93. arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
  94. }
  95. static __u16 verify_ckctl_value(__u16 newval)
  96. {
  97. /* This function checks for following limitations set
  98. * by the hardware (all conditions must be true):
  99. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  100. * ARM_CK >= TC_CK
  101. * DSP_CK >= TC_CK
  102. * DSPMMU_CK >= TC_CK
  103. *
  104. * In addition following rules are enforced:
  105. * LCD_CK <= TC_CK
  106. * ARMPER_CK <= TC_CK
  107. *
  108. * However, maximum frequencies are not checked for!
  109. */
  110. __u8 per_exp;
  111. __u8 lcd_exp;
  112. __u8 arm_exp;
  113. __u8 dsp_exp;
  114. __u8 tc_exp;
  115. __u8 dspmmu_exp;
  116. per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
  117. lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
  118. arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
  119. dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
  120. tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
  121. dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
  122. if (dspmmu_exp < dsp_exp)
  123. dspmmu_exp = dsp_exp;
  124. if (dspmmu_exp > dsp_exp+1)
  125. dspmmu_exp = dsp_exp+1;
  126. if (tc_exp < arm_exp)
  127. tc_exp = arm_exp;
  128. if (tc_exp < dspmmu_exp)
  129. tc_exp = dspmmu_exp;
  130. if (tc_exp > lcd_exp)
  131. lcd_exp = tc_exp;
  132. if (tc_exp > per_exp)
  133. per_exp = tc_exp;
  134. newval &= 0xf000;
  135. newval |= per_exp << CKCTL_PERDIV_OFFSET;
  136. newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
  137. newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
  138. newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
  139. newval |= tc_exp << CKCTL_TCDIV_OFFSET;
  140. newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
  141. return newval;
  142. }
  143. static int calc_dsor_exp(struct clk *clk, unsigned long rate)
  144. {
  145. /* Note: If target frequency is too low, this function will return 4,
  146. * which is invalid value. Caller must check for this value and act
  147. * accordingly.
  148. *
  149. * Note: This function does not check for following limitations set
  150. * by the hardware (all conditions must be true):
  151. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  152. * ARM_CK >= TC_CK
  153. * DSP_CK >= TC_CK
  154. * DSPMMU_CK >= TC_CK
  155. */
  156. unsigned long realrate;
  157. struct clk * parent;
  158. unsigned dsor_exp;
  159. if (unlikely(!(clk->flags & RATE_CKCTL)))
  160. return -EINVAL;
  161. parent = clk->parent;
  162. if (unlikely(parent == 0))
  163. return -EIO;
  164. realrate = parent->rate;
  165. for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
  166. if (realrate <= rate)
  167. break;
  168. realrate /= 2;
  169. }
  170. return dsor_exp;
  171. }
  172. static void omap1_ckctl_recalc(struct clk * clk)
  173. {
  174. int dsor;
  175. /* Calculate divisor encoded as 2-bit exponent */
  176. dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
  177. if (unlikely(clk->rate == clk->parent->rate / dsor))
  178. return; /* No change, quick exit */
  179. clk->rate = clk->parent->rate / dsor;
  180. if (unlikely(clk->flags & RATE_PROPAGATES))
  181. propagate_rate(clk);
  182. }
  183. static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
  184. {
  185. int dsor;
  186. /* Calculate divisor encoded as 2-bit exponent
  187. *
  188. * The clock control bits are in DSP domain,
  189. * so api_ck is needed for access.
  190. * Note that DSP_CKCTL virt addr = phys addr, so
  191. * we must use __raw_readw() instead of omap_readw().
  192. */
  193. omap1_clk_enable(&api_ck.clk);
  194. dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
  195. omap1_clk_disable(&api_ck.clk);
  196. if (unlikely(clk->rate == clk->parent->rate / dsor))
  197. return; /* No change, quick exit */
  198. clk->rate = clk->parent->rate / dsor;
  199. if (unlikely(clk->flags & RATE_PROPAGATES))
  200. propagate_rate(clk);
  201. }
  202. /* MPU virtual clock functions */
  203. static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
  204. {
  205. /* Find the highest supported frequency <= rate and switch to it */
  206. struct mpu_rate * ptr;
  207. if (clk != &virtual_ck_mpu)
  208. return -EINVAL;
  209. for (ptr = rate_table; ptr->rate; ptr++) {
  210. if (ptr->xtal != ck_ref.rate)
  211. continue;
  212. /* DPLL1 cannot be reprogrammed without risking system crash */
  213. if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
  214. continue;
  215. /* Can check only after xtal frequency check */
  216. if (ptr->rate <= rate)
  217. break;
  218. }
  219. if (!ptr->rate)
  220. return -EINVAL;
  221. /*
  222. * In most cases we should not need to reprogram DPLL.
  223. * Reprogramming the DPLL is tricky, it must be done from SRAM.
  224. */
  225. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
  226. ck_dpll1.rate = ptr->pll_rate;
  227. propagate_rate(&ck_dpll1);
  228. return 0;
  229. }
  230. static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
  231. {
  232. int ret = -EINVAL;
  233. int dsor_exp;
  234. __u16 regval;
  235. if (clk->flags & RATE_CKCTL) {
  236. dsor_exp = calc_dsor_exp(clk, rate);
  237. if (dsor_exp > 3)
  238. dsor_exp = -EINVAL;
  239. if (dsor_exp < 0)
  240. return dsor_exp;
  241. regval = __raw_readw(DSP_CKCTL);
  242. regval &= ~(3 << clk->rate_offset);
  243. regval |= dsor_exp << clk->rate_offset;
  244. __raw_writew(regval, DSP_CKCTL);
  245. clk->rate = clk->parent->rate / (1 << dsor_exp);
  246. ret = 0;
  247. }
  248. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  249. propagate_rate(clk);
  250. return ret;
  251. }
  252. static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
  253. {
  254. /* Find the highest supported frequency <= rate */
  255. struct mpu_rate * ptr;
  256. long highest_rate;
  257. if (clk != &virtual_ck_mpu)
  258. return -EINVAL;
  259. highest_rate = -EINVAL;
  260. for (ptr = rate_table; ptr->rate; ptr++) {
  261. if (ptr->xtal != ck_ref.rate)
  262. continue;
  263. highest_rate = ptr->rate;
  264. /* Can check only after xtal frequency check */
  265. if (ptr->rate <= rate)
  266. break;
  267. }
  268. return highest_rate;
  269. }
  270. static unsigned calc_ext_dsor(unsigned long rate)
  271. {
  272. unsigned dsor;
  273. /* MCLK and BCLK divisor selection is not linear:
  274. * freq = 96MHz / dsor
  275. *
  276. * RATIO_SEL range: dsor <-> RATIO_SEL
  277. * 0..6: (RATIO_SEL+2) <-> (dsor-2)
  278. * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
  279. * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
  280. * can not be used.
  281. */
  282. for (dsor = 2; dsor < 96; ++dsor) {
  283. if ((dsor & 1) && dsor > 8)
  284. continue;
  285. if (rate >= 96000000 / dsor)
  286. break;
  287. }
  288. return dsor;
  289. }
  290. /* Only needed on 1510 */
  291. static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
  292. {
  293. unsigned int val;
  294. val = omap_readl(clk->enable_reg);
  295. if (rate == 12000000)
  296. val &= ~(1 << clk->enable_bit);
  297. else if (rate == 48000000)
  298. val |= (1 << clk->enable_bit);
  299. else
  300. return -EINVAL;
  301. omap_writel(val, clk->enable_reg);
  302. clk->rate = rate;
  303. return 0;
  304. }
  305. /* External clock (MCLK & BCLK) functions */
  306. static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
  307. {
  308. unsigned dsor;
  309. __u16 ratio_bits;
  310. dsor = calc_ext_dsor(rate);
  311. clk->rate = 96000000 / dsor;
  312. if (dsor > 8)
  313. ratio_bits = ((dsor - 8) / 2 + 6) << 2;
  314. else
  315. ratio_bits = (dsor - 2) << 2;
  316. ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
  317. omap_writew(ratio_bits, clk->enable_reg);
  318. return 0;
  319. }
  320. static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
  321. {
  322. return 96000000 / calc_ext_dsor(rate);
  323. }
  324. static void omap1_init_ext_clk(struct clk * clk)
  325. {
  326. unsigned dsor;
  327. __u16 ratio_bits;
  328. /* Determine current rate and ensure clock is based on 96MHz APLL */
  329. ratio_bits = omap_readw(clk->enable_reg) & ~1;
  330. omap_writew(ratio_bits, clk->enable_reg);
  331. ratio_bits = (ratio_bits & 0xfc) >> 2;
  332. if (ratio_bits > 6)
  333. dsor = (ratio_bits - 6) * 2 + 8;
  334. else
  335. dsor = ratio_bits + 2;
  336. clk-> rate = 96000000 / dsor;
  337. }
  338. static int omap1_clk_enable(struct clk *clk)
  339. {
  340. int ret = 0;
  341. if (clk->usecount++ == 0) {
  342. if (likely(clk->parent)) {
  343. ret = omap1_clk_enable(clk->parent);
  344. if (unlikely(ret != 0)) {
  345. clk->usecount--;
  346. return ret;
  347. }
  348. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  349. if (!cpu_is_omap24xx())
  350. omap1_clk_deny_idle(clk->parent);
  351. }
  352. ret = clk->enable(clk);
  353. if (unlikely(ret != 0) && clk->parent) {
  354. omap1_clk_disable(clk->parent);
  355. clk->usecount--;
  356. }
  357. }
  358. return ret;
  359. }
  360. static void omap1_clk_disable(struct clk *clk)
  361. {
  362. if (clk->usecount > 0 && !(--clk->usecount)) {
  363. clk->disable(clk);
  364. if (likely(clk->parent)) {
  365. omap1_clk_disable(clk->parent);
  366. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  367. if (!cpu_is_omap24xx())
  368. omap1_clk_allow_idle(clk->parent);
  369. }
  370. }
  371. }
  372. static int omap1_clk_enable_generic(struct clk *clk)
  373. {
  374. __u16 regval16;
  375. __u32 regval32;
  376. if (clk->flags & ALWAYS_ENABLED)
  377. return 0;
  378. if (unlikely(clk->enable_reg == 0)) {
  379. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  380. clk->name);
  381. return 0;
  382. }
  383. if (clk->flags & ENABLE_REG_32BIT) {
  384. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  385. regval32 = __raw_readl(clk->enable_reg);
  386. regval32 |= (1 << clk->enable_bit);
  387. __raw_writel(regval32, clk->enable_reg);
  388. } else {
  389. regval32 = omap_readl(clk->enable_reg);
  390. regval32 |= (1 << clk->enable_bit);
  391. omap_writel(regval32, clk->enable_reg);
  392. }
  393. } else {
  394. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  395. regval16 = __raw_readw(clk->enable_reg);
  396. regval16 |= (1 << clk->enable_bit);
  397. __raw_writew(regval16, clk->enable_reg);
  398. } else {
  399. regval16 = omap_readw(clk->enable_reg);
  400. regval16 |= (1 << clk->enable_bit);
  401. omap_writew(regval16, clk->enable_reg);
  402. }
  403. }
  404. return 0;
  405. }
  406. static void omap1_clk_disable_generic(struct clk *clk)
  407. {
  408. __u16 regval16;
  409. __u32 regval32;
  410. if (clk->enable_reg == 0)
  411. return;
  412. if (clk->flags & ENABLE_REG_32BIT) {
  413. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  414. regval32 = __raw_readl(clk->enable_reg);
  415. regval32 &= ~(1 << clk->enable_bit);
  416. __raw_writel(regval32, clk->enable_reg);
  417. } else {
  418. regval32 = omap_readl(clk->enable_reg);
  419. regval32 &= ~(1 << clk->enable_bit);
  420. omap_writel(regval32, clk->enable_reg);
  421. }
  422. } else {
  423. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  424. regval16 = __raw_readw(clk->enable_reg);
  425. regval16 &= ~(1 << clk->enable_bit);
  426. __raw_writew(regval16, clk->enable_reg);
  427. } else {
  428. regval16 = omap_readw(clk->enable_reg);
  429. regval16 &= ~(1 << clk->enable_bit);
  430. omap_writew(regval16, clk->enable_reg);
  431. }
  432. }
  433. }
  434. static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
  435. {
  436. int dsor_exp;
  437. if (clk->flags & RATE_FIXED)
  438. return clk->rate;
  439. if (clk->flags & RATE_CKCTL) {
  440. dsor_exp = calc_dsor_exp(clk, rate);
  441. if (dsor_exp < 0)
  442. return dsor_exp;
  443. if (dsor_exp > 3)
  444. dsor_exp = 3;
  445. return clk->parent->rate / (1 << dsor_exp);
  446. }
  447. if(clk->round_rate != 0)
  448. return clk->round_rate(clk, rate);
  449. return clk->rate;
  450. }
  451. static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
  452. {
  453. int ret = -EINVAL;
  454. int dsor_exp;
  455. __u16 regval;
  456. if (clk->set_rate)
  457. ret = clk->set_rate(clk, rate);
  458. else if (clk->flags & RATE_CKCTL) {
  459. dsor_exp = calc_dsor_exp(clk, rate);
  460. if (dsor_exp > 3)
  461. dsor_exp = -EINVAL;
  462. if (dsor_exp < 0)
  463. return dsor_exp;
  464. regval = omap_readw(ARM_CKCTL);
  465. regval &= ~(3 << clk->rate_offset);
  466. regval |= dsor_exp << clk->rate_offset;
  467. regval = verify_ckctl_value(regval);
  468. omap_writew(regval, ARM_CKCTL);
  469. clk->rate = clk->parent->rate / (1 << dsor_exp);
  470. ret = 0;
  471. }
  472. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  473. propagate_rate(clk);
  474. return ret;
  475. }
  476. /*-------------------------------------------------------------------------
  477. * Omap1 clock reset and init functions
  478. *-------------------------------------------------------------------------*/
  479. #ifdef CONFIG_OMAP_RESET_CLOCKS
  480. /*
  481. * Resets some clocks that may be left on from bootloader,
  482. * but leaves serial clocks on. See also omap_late_clk_reset().
  483. */
  484. static inline void omap1_early_clk_reset(void)
  485. {
  486. //omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
  487. }
  488. static int __init omap1_late_clk_reset(void)
  489. {
  490. /* Turn off all unused clocks */
  491. struct clk *p;
  492. __u32 regval32;
  493. /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
  494. regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4);
  495. omap_writew(regval32, SOFT_REQ_REG);
  496. omap_writew(0, SOFT_REQ_REG2);
  497. list_for_each_entry(p, &clocks, node) {
  498. if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) ||
  499. p->enable_reg == 0)
  500. continue;
  501. /* Clocks in the DSP domain need api_ck. Just assume bootloader
  502. * has not enabled any DSP clocks */
  503. if ((u32)p->enable_reg == DSP_IDLECT2) {
  504. printk(KERN_INFO "Skipping reset check for DSP domain "
  505. "clock \"%s\"\n", p->name);
  506. continue;
  507. }
  508. /* Is the clock already disabled? */
  509. if (p->flags & ENABLE_REG_32BIT) {
  510. if (p->flags & VIRTUAL_IO_ADDRESS)
  511. regval32 = __raw_readl(p->enable_reg);
  512. else
  513. regval32 = omap_readl(p->enable_reg);
  514. } else {
  515. if (p->flags & VIRTUAL_IO_ADDRESS)
  516. regval32 = __raw_readw(p->enable_reg);
  517. else
  518. regval32 = omap_readw(p->enable_reg);
  519. }
  520. if ((regval32 & (1 << p->enable_bit)) == 0)
  521. continue;
  522. /* FIXME: This clock seems to be necessary but no-one
  523. * has asked for its activation. */
  524. if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera
  525. || p == &ck_dpll1out.clk // FIX: SoSSI, SSR
  526. || p == &arm_gpio_ck // FIX: GPIO code for 1510
  527. ) {
  528. printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
  529. p->name);
  530. continue;
  531. }
  532. printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name);
  533. p->disable(p);
  534. printk(" done\n");
  535. }
  536. return 0;
  537. }
  538. late_initcall(omap1_late_clk_reset);
  539. #else
  540. #define omap1_early_clk_reset() {}
  541. #endif
  542. static struct clk_functions omap1_clk_functions = {
  543. .clk_enable = omap1_clk_enable,
  544. .clk_disable = omap1_clk_disable,
  545. .clk_round_rate = omap1_clk_round_rate,
  546. .clk_set_rate = omap1_clk_set_rate,
  547. };
  548. int __init omap1_clk_init(void)
  549. {
  550. struct clk ** clkp;
  551. const struct omap_clock_config *info;
  552. int crystal_type = 0; /* Default 12 MHz */
  553. omap1_early_clk_reset();
  554. clk_init(&omap1_clk_functions);
  555. /* By default all idlect1 clocks are allowed to idle */
  556. arm_idlect1_mask = ~0;
  557. for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
  558. if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
  559. clk_register(*clkp);
  560. continue;
  561. }
  562. if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
  563. clk_register(*clkp);
  564. continue;
  565. }
  566. if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
  567. clk_register(*clkp);
  568. continue;
  569. }
  570. }
  571. info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
  572. if (info != NULL) {
  573. if (!cpu_is_omap1510())
  574. crystal_type = info->system_clock_type;
  575. }
  576. #if defined(CONFIG_ARCH_OMAP730)
  577. ck_ref.rate = 13000000;
  578. #elif defined(CONFIG_ARCH_OMAP16XX)
  579. if (crystal_type == 2)
  580. ck_ref.rate = 19200000;
  581. #endif
  582. printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
  583. omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
  584. omap_readw(ARM_CKCTL));
  585. /* We want to be in syncronous scalable mode */
  586. omap_writew(0x1000, ARM_SYSST);
  587. #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
  588. /* Use values set by bootloader. Determine PLL rate and recalculate
  589. * dependent clocks as if kernel had changed PLL or divisors.
  590. */
  591. {
  592. unsigned pll_ctl_val = omap_readw(DPLL_CTL);
  593. ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
  594. if (pll_ctl_val & 0x10) {
  595. /* PLL enabled, apply multiplier and divisor */
  596. if (pll_ctl_val & 0xf80)
  597. ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
  598. ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
  599. } else {
  600. /* PLL disabled, apply bypass divisor */
  601. switch (pll_ctl_val & 0xc) {
  602. case 0:
  603. break;
  604. case 0x4:
  605. ck_dpll1.rate /= 2;
  606. break;
  607. default:
  608. ck_dpll1.rate /= 4;
  609. break;
  610. }
  611. }
  612. }
  613. propagate_rate(&ck_dpll1);
  614. #else
  615. /* Find the highest supported frequency and enable it */
  616. if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
  617. printk(KERN_ERR "System frequencies not set. Check your config.\n");
  618. /* Guess sane values (60MHz) */
  619. omap_writew(0x2290, DPLL_CTL);
  620. omap_writew(0x1005, ARM_CKCTL);
  621. ck_dpll1.rate = 60000000;
  622. propagate_rate(&ck_dpll1);
  623. }
  624. #endif
  625. /* Cache rates for clocks connected to ck_ref (not dpll1) */
  626. propagate_rate(&ck_ref);
  627. printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
  628. "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
  629. ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
  630. ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
  631. arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
  632. #ifdef CONFIG_MACH_OMAP_PERSEUS2
  633. /* Select slicer output as OMAP input clock */
  634. omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
  635. #endif
  636. /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
  637. omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
  638. /* Put DSP/MPUI into reset until needed */
  639. omap_writew(0, ARM_RSTCT1);
  640. omap_writew(1, ARM_RSTCT2);
  641. omap_writew(0x400, ARM_IDLECT1);
  642. /*
  643. * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
  644. * of the ARM_IDLECT2 register must be set to zero. The power-on
  645. * default value of this bit is one.
  646. */
  647. omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
  648. /*
  649. * Only enable those clocks we will need, let the drivers
  650. * enable other clocks as necessary
  651. */
  652. clk_enable(&armper_ck.clk);
  653. clk_enable(&armxor_ck.clk);
  654. clk_enable(&armtim_ck.clk); /* This should be done by timer code */
  655. if (cpu_is_omap1510())
  656. clk_enable(&arm_gpio_ck);
  657. return 0;
  658. }