dmabounce.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. /*
  2. * arch/arm/common/dmabounce.c
  3. *
  4. * Special dma_{map/unmap/dma_sync}_* routines for systems that have
  5. * limited DMA windows. These functions utilize bounce buffers to
  6. * copy data to/from buffers located outside the DMA region. This
  7. * only works for systems in which DMA memory is at the bottom of
  8. * RAM and the remainder of memory is at the top an the DMA memory
  9. * can be marked as ZONE_DMA. Anything beyond that such as discontigous
  10. * DMA windows will require custom implementations that reserve memory
  11. * areas at early bootup.
  12. *
  13. * Original version by Brad Parker (brad@heeltoe.com)
  14. * Re-written by Christopher Hoover <ch@murgatroid.com>
  15. * Made generic by Deepak Saxena <dsaxena@plexity.net>
  16. *
  17. * Copyright (C) 2002 Hewlett Packard Company.
  18. * Copyright (C) 2004 MontaVista Software, Inc.
  19. *
  20. * This program is free software; you can redistribute it and/or
  21. * modify it under the terms of the GNU General Public License
  22. * version 2 as published by the Free Software Foundation.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/slab.h>
  27. #include <linux/device.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/dmapool.h>
  30. #include <linux/list.h>
  31. #include <asm/cacheflush.h>
  32. #undef DEBUG
  33. #undef STATS
  34. #ifdef STATS
  35. #define DO_STATS(X) do { X ; } while (0)
  36. #else
  37. #define DO_STATS(X) do { } while (0)
  38. #endif
  39. /* ************************************************** */
  40. struct safe_buffer {
  41. struct list_head node;
  42. /* original request */
  43. void *ptr;
  44. size_t size;
  45. int direction;
  46. /* safe buffer info */
  47. struct dmabounce_pool *pool;
  48. void *safe;
  49. dma_addr_t safe_dma_addr;
  50. };
  51. struct dmabounce_pool {
  52. unsigned long size;
  53. struct dma_pool *pool;
  54. #ifdef STATS
  55. unsigned long allocs;
  56. #endif
  57. };
  58. struct dmabounce_device_info {
  59. struct list_head node;
  60. struct device *dev;
  61. struct list_head safe_buffers;
  62. #ifdef STATS
  63. unsigned long total_allocs;
  64. unsigned long map_op_count;
  65. unsigned long bounce_count;
  66. #endif
  67. struct dmabounce_pool small;
  68. struct dmabounce_pool large;
  69. };
  70. static LIST_HEAD(dmabounce_devs);
  71. #ifdef STATS
  72. static void print_alloc_stats(struct dmabounce_device_info *device_info)
  73. {
  74. printk(KERN_INFO
  75. "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
  76. device_info->dev->bus_id,
  77. device_info->small.allocs, device_info->large.allocs,
  78. device_info->total_allocs - device_info->small.allocs -
  79. device_info->large.allocs,
  80. device_info->total_allocs);
  81. }
  82. #endif
  83. /* find the given device in the dmabounce device list */
  84. static inline struct dmabounce_device_info *
  85. find_dmabounce_dev(struct device *dev)
  86. {
  87. struct dmabounce_device_info *d;
  88. list_for_each_entry(d, &dmabounce_devs, node)
  89. if (d->dev == dev)
  90. return d;
  91. return NULL;
  92. }
  93. /* allocate a 'safe' buffer and keep track of it */
  94. static inline struct safe_buffer *
  95. alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
  96. size_t size, enum dma_data_direction dir)
  97. {
  98. struct safe_buffer *buf;
  99. struct dmabounce_pool *pool;
  100. struct device *dev = device_info->dev;
  101. dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
  102. __func__, ptr, size, dir);
  103. if (size <= device_info->small.size) {
  104. pool = &device_info->small;
  105. } else if (size <= device_info->large.size) {
  106. pool = &device_info->large;
  107. } else {
  108. pool = NULL;
  109. }
  110. buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
  111. if (buf == NULL) {
  112. dev_warn(dev, "%s: kmalloc failed\n", __func__);
  113. return NULL;
  114. }
  115. buf->ptr = ptr;
  116. buf->size = size;
  117. buf->direction = dir;
  118. buf->pool = pool;
  119. if (pool) {
  120. buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
  121. &buf->safe_dma_addr);
  122. } else {
  123. buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
  124. GFP_ATOMIC);
  125. }
  126. if (buf->safe == NULL) {
  127. dev_warn(dev,
  128. "%s: could not alloc dma memory (size=%d)\n",
  129. __func__, size);
  130. kfree(buf);
  131. return NULL;
  132. }
  133. #ifdef STATS
  134. if (pool)
  135. pool->allocs++;
  136. device_info->total_allocs++;
  137. if (device_info->total_allocs % 1000 == 0)
  138. print_alloc_stats(device_info);
  139. #endif
  140. list_add(&buf->node, &device_info->safe_buffers);
  141. return buf;
  142. }
  143. /* determine if a buffer is from our "safe" pool */
  144. static inline struct safe_buffer *
  145. find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
  146. {
  147. struct safe_buffer *b;
  148. list_for_each_entry(b, &device_info->safe_buffers, node)
  149. if (b->safe_dma_addr == safe_dma_addr)
  150. return b;
  151. return NULL;
  152. }
  153. static inline void
  154. free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
  155. {
  156. dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
  157. list_del(&buf->node);
  158. if (buf->pool)
  159. dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
  160. else
  161. dma_free_coherent(device_info->dev, buf->size, buf->safe,
  162. buf->safe_dma_addr);
  163. kfree(buf);
  164. }
  165. /* ************************************************** */
  166. #ifdef STATS
  167. static void print_map_stats(struct dmabounce_device_info *device_info)
  168. {
  169. dev_info(device_info->dev,
  170. "dmabounce: map_op_count=%lu, bounce_count=%lu\n",
  171. device_info->map_op_count, device_info->bounce_count);
  172. }
  173. #endif
  174. static inline dma_addr_t
  175. map_single(struct device *dev, void *ptr, size_t size,
  176. enum dma_data_direction dir)
  177. {
  178. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  179. dma_addr_t dma_addr;
  180. int needs_bounce = 0;
  181. if (device_info)
  182. DO_STATS ( device_info->map_op_count++ );
  183. dma_addr = virt_to_dma(dev, ptr);
  184. if (dev->dma_mask) {
  185. unsigned long mask = *dev->dma_mask;
  186. unsigned long limit;
  187. limit = (mask + 1) & ~mask;
  188. if (limit && size > limit) {
  189. dev_err(dev, "DMA mapping too big (requested %#x "
  190. "mask %#Lx)\n", size, *dev->dma_mask);
  191. return ~0;
  192. }
  193. /*
  194. * Figure out if we need to bounce from the DMA mask.
  195. */
  196. needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
  197. }
  198. if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
  199. struct safe_buffer *buf;
  200. buf = alloc_safe_buffer(device_info, ptr, size, dir);
  201. if (buf == 0) {
  202. dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
  203. __func__, ptr);
  204. return 0;
  205. }
  206. dev_dbg(dev,
  207. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  208. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  209. buf->safe, (void *) buf->safe_dma_addr);
  210. if ((dir == DMA_TO_DEVICE) ||
  211. (dir == DMA_BIDIRECTIONAL)) {
  212. dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
  213. __func__, ptr, buf->safe, size);
  214. memcpy(buf->safe, ptr, size);
  215. }
  216. ptr = buf->safe;
  217. dma_addr = buf->safe_dma_addr;
  218. }
  219. consistent_sync(ptr, size, dir);
  220. return dma_addr;
  221. }
  222. static inline void
  223. unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  224. enum dma_data_direction dir)
  225. {
  226. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  227. struct safe_buffer *buf = NULL;
  228. /*
  229. * Trying to unmap an invalid mapping
  230. */
  231. if (dma_mapping_error(dma_addr)) {
  232. dev_err(dev, "Trying to unmap invalid mapping\n");
  233. return;
  234. }
  235. if (device_info)
  236. buf = find_safe_buffer(device_info, dma_addr);
  237. if (buf) {
  238. BUG_ON(buf->size != size);
  239. dev_dbg(dev,
  240. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  241. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  242. buf->safe, (void *) buf->safe_dma_addr);
  243. DO_STATS ( device_info->bounce_count++ );
  244. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
  245. unsigned long ptr;
  246. dev_dbg(dev,
  247. "%s: copy back safe %p to unsafe %p size %d\n",
  248. __func__, buf->safe, buf->ptr, size);
  249. memcpy(buf->ptr, buf->safe, size);
  250. /*
  251. * DMA buffers must have the same cache properties
  252. * as if they were really used for DMA - which means
  253. * data must be written back to RAM. Note that
  254. * we don't use dmac_flush_range() here for the
  255. * bidirectional case because we know the cache
  256. * lines will be coherent with the data written.
  257. */
  258. ptr = (unsigned long)buf->ptr;
  259. dmac_clean_range(ptr, ptr + size);
  260. }
  261. free_safe_buffer(device_info, buf);
  262. }
  263. }
  264. static inline void
  265. sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  266. enum dma_data_direction dir)
  267. {
  268. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  269. struct safe_buffer *buf = NULL;
  270. if (device_info)
  271. buf = find_safe_buffer(device_info, dma_addr);
  272. if (buf) {
  273. /*
  274. * Both of these checks from original code need to be
  275. * commented out b/c some drivers rely on the following:
  276. *
  277. * 1) Drivers may map a large chunk of memory into DMA space
  278. * but only sync a small portion of it. Good example is
  279. * allocating a large buffer, mapping it, and then
  280. * breaking it up into small descriptors. No point
  281. * in syncing the whole buffer if you only have to
  282. * touch one descriptor.
  283. *
  284. * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
  285. * usually only synced in one dir at a time.
  286. *
  287. * See drivers/net/eepro100.c for examples of both cases.
  288. *
  289. * -ds
  290. *
  291. * BUG_ON(buf->size != size);
  292. * BUG_ON(buf->direction != dir);
  293. */
  294. dev_dbg(dev,
  295. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  296. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  297. buf->safe, (void *) buf->safe_dma_addr);
  298. DO_STATS ( device_info->bounce_count++ );
  299. switch (dir) {
  300. case DMA_FROM_DEVICE:
  301. dev_dbg(dev,
  302. "%s: copy back safe %p to unsafe %p size %d\n",
  303. __func__, buf->safe, buf->ptr, size);
  304. memcpy(buf->ptr, buf->safe, size);
  305. break;
  306. case DMA_TO_DEVICE:
  307. dev_dbg(dev,
  308. "%s: copy out unsafe %p to safe %p, size %d\n",
  309. __func__,buf->ptr, buf->safe, size);
  310. memcpy(buf->safe, buf->ptr, size);
  311. break;
  312. case DMA_BIDIRECTIONAL:
  313. BUG(); /* is this allowed? what does it mean? */
  314. default:
  315. BUG();
  316. }
  317. consistent_sync(buf->safe, size, dir);
  318. } else {
  319. consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
  320. }
  321. }
  322. /* ************************************************** */
  323. /*
  324. * see if a buffer address is in an 'unsafe' range. if it is
  325. * allocate a 'safe' buffer and copy the unsafe buffer into it.
  326. * substitute the safe buffer for the unsafe one.
  327. * (basically move the buffer from an unsafe area to a safe one)
  328. */
  329. dma_addr_t
  330. dma_map_single(struct device *dev, void *ptr, size_t size,
  331. enum dma_data_direction dir)
  332. {
  333. unsigned long flags;
  334. dma_addr_t dma_addr;
  335. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  336. __func__, ptr, size, dir);
  337. BUG_ON(dir == DMA_NONE);
  338. local_irq_save(flags);
  339. dma_addr = map_single(dev, ptr, size, dir);
  340. local_irq_restore(flags);
  341. return dma_addr;
  342. }
  343. /*
  344. * see if a mapped address was really a "safe" buffer and if so, copy
  345. * the data from the safe buffer back to the unsafe buffer and free up
  346. * the safe buffer. (basically return things back to the way they
  347. * should be)
  348. */
  349. void
  350. dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  351. enum dma_data_direction dir)
  352. {
  353. unsigned long flags;
  354. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  355. __func__, (void *) dma_addr, size, dir);
  356. BUG_ON(dir == DMA_NONE);
  357. local_irq_save(flags);
  358. unmap_single(dev, dma_addr, size, dir);
  359. local_irq_restore(flags);
  360. }
  361. int
  362. dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  363. enum dma_data_direction dir)
  364. {
  365. unsigned long flags;
  366. int i;
  367. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  368. __func__, sg, nents, dir);
  369. BUG_ON(dir == DMA_NONE);
  370. local_irq_save(flags);
  371. for (i = 0; i < nents; i++, sg++) {
  372. struct page *page = sg->page;
  373. unsigned int offset = sg->offset;
  374. unsigned int length = sg->length;
  375. void *ptr = page_address(page) + offset;
  376. sg->dma_address =
  377. map_single(dev, ptr, length, dir);
  378. }
  379. local_irq_restore(flags);
  380. return nents;
  381. }
  382. void
  383. dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  384. enum dma_data_direction dir)
  385. {
  386. unsigned long flags;
  387. int i;
  388. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  389. __func__, sg, nents, dir);
  390. BUG_ON(dir == DMA_NONE);
  391. local_irq_save(flags);
  392. for (i = 0; i < nents; i++, sg++) {
  393. dma_addr_t dma_addr = sg->dma_address;
  394. unsigned int length = sg->length;
  395. unmap_single(dev, dma_addr, length, dir);
  396. }
  397. local_irq_restore(flags);
  398. }
  399. void
  400. dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
  401. enum dma_data_direction dir)
  402. {
  403. unsigned long flags;
  404. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  405. __func__, (void *) dma_addr, size, dir);
  406. local_irq_save(flags);
  407. sync_single(dev, dma_addr, size, dir);
  408. local_irq_restore(flags);
  409. }
  410. void
  411. dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
  412. enum dma_data_direction dir)
  413. {
  414. unsigned long flags;
  415. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  416. __func__, (void *) dma_addr, size, dir);
  417. local_irq_save(flags);
  418. sync_single(dev, dma_addr, size, dir);
  419. local_irq_restore(flags);
  420. }
  421. void
  422. dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
  423. enum dma_data_direction dir)
  424. {
  425. unsigned long flags;
  426. int i;
  427. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  428. __func__, sg, nents, dir);
  429. BUG_ON(dir == DMA_NONE);
  430. local_irq_save(flags);
  431. for (i = 0; i < nents; i++, sg++) {
  432. dma_addr_t dma_addr = sg->dma_address;
  433. unsigned int length = sg->length;
  434. sync_single(dev, dma_addr, length, dir);
  435. }
  436. local_irq_restore(flags);
  437. }
  438. void
  439. dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
  440. enum dma_data_direction dir)
  441. {
  442. unsigned long flags;
  443. int i;
  444. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  445. __func__, sg, nents, dir);
  446. BUG_ON(dir == DMA_NONE);
  447. local_irq_save(flags);
  448. for (i = 0; i < nents; i++, sg++) {
  449. dma_addr_t dma_addr = sg->dma_address;
  450. unsigned int length = sg->length;
  451. sync_single(dev, dma_addr, length, dir);
  452. }
  453. local_irq_restore(flags);
  454. }
  455. static int
  456. dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
  457. unsigned long size)
  458. {
  459. pool->size = size;
  460. DO_STATS(pool->allocs = 0);
  461. pool->pool = dma_pool_create(name, dev, size,
  462. 0 /* byte alignment */,
  463. 0 /* no page-crossing issues */);
  464. return pool->pool ? 0 : -ENOMEM;
  465. }
  466. int
  467. dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
  468. unsigned long large_buffer_size)
  469. {
  470. struct dmabounce_device_info *device_info;
  471. int ret;
  472. device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
  473. if (!device_info) {
  474. printk(KERN_ERR
  475. "Could not allocated dmabounce_device_info for %s",
  476. dev->bus_id);
  477. return -ENOMEM;
  478. }
  479. ret = dmabounce_init_pool(&device_info->small, dev,
  480. "small_dmabounce_pool", small_buffer_size);
  481. if (ret) {
  482. dev_err(dev,
  483. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  484. small_buffer_size);
  485. goto err_free;
  486. }
  487. if (large_buffer_size) {
  488. ret = dmabounce_init_pool(&device_info->large, dev,
  489. "large_dmabounce_pool",
  490. large_buffer_size);
  491. if (ret) {
  492. dev_err(dev,
  493. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  494. large_buffer_size);
  495. goto err_destroy;
  496. }
  497. }
  498. device_info->dev = dev;
  499. INIT_LIST_HEAD(&device_info->safe_buffers);
  500. #ifdef STATS
  501. device_info->total_allocs = 0;
  502. device_info->map_op_count = 0;
  503. device_info->bounce_count = 0;
  504. #endif
  505. list_add(&device_info->node, &dmabounce_devs);
  506. printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
  507. dev->bus_id, dev->bus->name);
  508. return 0;
  509. err_destroy:
  510. dma_pool_destroy(device_info->small.pool);
  511. err_free:
  512. kfree(device_info);
  513. return ret;
  514. }
  515. void
  516. dmabounce_unregister_dev(struct device *dev)
  517. {
  518. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  519. if (!device_info) {
  520. printk(KERN_WARNING
  521. "%s: Never registered with dmabounce but attempting" \
  522. "to unregister!\n", dev->bus_id);
  523. return;
  524. }
  525. if (!list_empty(&device_info->safe_buffers)) {
  526. printk(KERN_ERR
  527. "%s: Removing from dmabounce with pending buffers!\n",
  528. dev->bus_id);
  529. BUG();
  530. }
  531. if (device_info->small.pool)
  532. dma_pool_destroy(device_info->small.pool);
  533. if (device_info->large.pool)
  534. dma_pool_destroy(device_info->large.pool);
  535. #ifdef STATS
  536. print_alloc_stats(device_info);
  537. print_map_stats(device_info);
  538. #endif
  539. list_del(&device_info->node);
  540. kfree(device_info);
  541. printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
  542. dev->bus_id, dev->bus->name);
  543. }
  544. EXPORT_SYMBOL(dma_map_single);
  545. EXPORT_SYMBOL(dma_unmap_single);
  546. EXPORT_SYMBOL(dma_map_sg);
  547. EXPORT_SYMBOL(dma_unmap_sg);
  548. EXPORT_SYMBOL(dma_sync_single);
  549. EXPORT_SYMBOL(dma_sync_sg);
  550. EXPORT_SYMBOL(dmabounce_register_dev);
  551. EXPORT_SYMBOL(dmabounce_unregister_dev);
  552. MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
  553. MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
  554. MODULE_LICENSE("GPL");