io.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
  67. * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
  68. * prefer to use sub-pages only for EV and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include "ubi.h"
  90. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  91. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
  99. int len);
  100. #else
  101. #define paranoid_check_not_bad(ubi, pnum) 0
  102. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  103. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  104. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  105. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  106. #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
  107. #endif
  108. /**
  109. * ubi_io_read - read data from a physical eraseblock.
  110. * @ubi: UBI device description object
  111. * @buf: buffer where to store the read data
  112. * @pnum: physical eraseblock number to read from
  113. * @offset: offset within the physical eraseblock from where to read
  114. * @len: how many bytes to read
  115. *
  116. * This function reads data from offset @offset of physical eraseblock @pnum
  117. * and stores the read data in the @buf buffer. The following return codes are
  118. * possible:
  119. *
  120. * o %0 if all the requested data were successfully read;
  121. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  122. * correctable bit-flips were detected; this is harmless but may indicate
  123. * that this eraseblock may become bad soon (but do not have to);
  124. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  125. * example it can be an ECC error in case of NAND; this most probably means
  126. * that the data is corrupted;
  127. * o %-EIO if some I/O error occurred;
  128. * o other negative error codes in case of other errors.
  129. */
  130. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  131. int len)
  132. {
  133. int err, retries = 0;
  134. size_t read;
  135. loff_t addr;
  136. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  137. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  138. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  139. ubi_assert(len > 0);
  140. err = paranoid_check_not_bad(ubi, pnum);
  141. if (err)
  142. return err > 0 ? -EINVAL : err;
  143. addr = (loff_t)pnum * ubi->peb_size + offset;
  144. retry:
  145. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  146. if (err) {
  147. if (err == -EUCLEAN) {
  148. /*
  149. * -EUCLEAN is reported if there was a bit-flip which
  150. * was corrected, so this is harmless.
  151. *
  152. * We do not report about it here unless debugging is
  153. * enabled. A corresponding message will be printed
  154. * later, when it is has been scrubbed.
  155. */
  156. dbg_msg("fixable bit-flip detected at PEB %d", pnum);
  157. ubi_assert(len == read);
  158. return UBI_IO_BITFLIPS;
  159. }
  160. if (read != len && retries++ < UBI_IO_RETRIES) {
  161. dbg_io("error %d while reading %d bytes from PEB %d:%d, "
  162. "read only %zd bytes, retry",
  163. err, len, pnum, offset, read);
  164. yield();
  165. goto retry;
  166. }
  167. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  168. "read %zd bytes", err, len, pnum, offset, read);
  169. ubi_dbg_dump_stack();
  170. /*
  171. * The driver should never return -EBADMSG if it failed to read
  172. * all the requested data. But some buggy drivers might do
  173. * this, so we change it to -EIO.
  174. */
  175. if (read != len && err == -EBADMSG) {
  176. ubi_assert(0);
  177. err = -EIO;
  178. }
  179. } else {
  180. ubi_assert(len == read);
  181. if (ubi_dbg_is_bitflip()) {
  182. dbg_gen("bit-flip (emulated)");
  183. err = UBI_IO_BITFLIPS;
  184. }
  185. }
  186. return err;
  187. }
  188. /**
  189. * ubi_io_write - write data to a physical eraseblock.
  190. * @ubi: UBI device description object
  191. * @buf: buffer with the data to write
  192. * @pnum: physical eraseblock number to write to
  193. * @offset: offset within the physical eraseblock where to write
  194. * @len: how many bytes to write
  195. *
  196. * This function writes @len bytes of data from buffer @buf to offset @offset
  197. * of physical eraseblock @pnum. If all the data were successfully written,
  198. * zero is returned. If an error occurred, this function returns a negative
  199. * error code. If %-EIO is returned, the physical eraseblock most probably went
  200. * bad.
  201. *
  202. * Note, in case of an error, it is possible that something was still written
  203. * to the flash media, but may be some garbage.
  204. */
  205. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  206. int len)
  207. {
  208. int err;
  209. size_t written;
  210. loff_t addr;
  211. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  212. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  213. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  214. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  215. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  216. if (ubi->ro_mode) {
  217. ubi_err("read-only mode");
  218. return -EROFS;
  219. }
  220. /* The below has to be compiled out if paranoid checks are disabled */
  221. err = paranoid_check_not_bad(ubi, pnum);
  222. if (err)
  223. return err > 0 ? -EINVAL : err;
  224. /* The area we are writing to has to contain all 0xFF bytes */
  225. err = paranoid_check_all_ff(ubi, pnum, offset, len);
  226. if (err)
  227. return err > 0 ? -EINVAL : err;
  228. if (offset >= ubi->leb_start) {
  229. /*
  230. * We write to the data area of the physical eraseblock. Make
  231. * sure it has valid EC and VID headers.
  232. */
  233. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  234. if (err)
  235. return err > 0 ? -EINVAL : err;
  236. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  237. if (err)
  238. return err > 0 ? -EINVAL : err;
  239. }
  240. if (ubi_dbg_is_write_failure()) {
  241. dbg_err("cannot write %d bytes to PEB %d:%d "
  242. "(emulated)", len, pnum, offset);
  243. ubi_dbg_dump_stack();
  244. return -EIO;
  245. }
  246. addr = (loff_t)pnum * ubi->peb_size + offset;
  247. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  248. if (err) {
  249. ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
  250. " %zd bytes", err, len, pnum, offset, written);
  251. ubi_dbg_dump_stack();
  252. } else
  253. ubi_assert(written == len);
  254. return err;
  255. }
  256. /**
  257. * erase_callback - MTD erasure call-back.
  258. * @ei: MTD erase information object.
  259. *
  260. * Note, even though MTD erase interface is asynchronous, all the current
  261. * implementations are synchronous anyway.
  262. */
  263. static void erase_callback(struct erase_info *ei)
  264. {
  265. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  266. }
  267. /**
  268. * do_sync_erase - synchronously erase a physical eraseblock.
  269. * @ubi: UBI device description object
  270. * @pnum: the physical eraseblock number to erase
  271. *
  272. * This function synchronously erases physical eraseblock @pnum and returns
  273. * zero in case of success and a negative error code in case of failure. If
  274. * %-EIO is returned, the physical eraseblock most probably went bad.
  275. */
  276. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  277. {
  278. int err, retries = 0;
  279. struct erase_info ei;
  280. wait_queue_head_t wq;
  281. dbg_io("erase PEB %d", pnum);
  282. retry:
  283. init_waitqueue_head(&wq);
  284. memset(&ei, 0, sizeof(struct erase_info));
  285. ei.mtd = ubi->mtd;
  286. ei.addr = (loff_t)pnum * ubi->peb_size;
  287. ei.len = ubi->peb_size;
  288. ei.callback = erase_callback;
  289. ei.priv = (unsigned long)&wq;
  290. err = ubi->mtd->erase(ubi->mtd, &ei);
  291. if (err) {
  292. if (retries++ < UBI_IO_RETRIES) {
  293. dbg_io("error %d while erasing PEB %d, retry",
  294. err, pnum);
  295. yield();
  296. goto retry;
  297. }
  298. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  299. ubi_dbg_dump_stack();
  300. return err;
  301. }
  302. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  303. ei.state == MTD_ERASE_FAILED);
  304. if (err) {
  305. ubi_err("interrupted PEB %d erasure", pnum);
  306. return -EINTR;
  307. }
  308. if (ei.state == MTD_ERASE_FAILED) {
  309. if (retries++ < UBI_IO_RETRIES) {
  310. dbg_io("error while erasing PEB %d, retry", pnum);
  311. yield();
  312. goto retry;
  313. }
  314. ubi_err("cannot erase PEB %d", pnum);
  315. ubi_dbg_dump_stack();
  316. return -EIO;
  317. }
  318. err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  319. if (err)
  320. return err > 0 ? -EINVAL : err;
  321. if (ubi_dbg_is_erase_failure() && !err) {
  322. dbg_err("cannot erase PEB %d (emulated)", pnum);
  323. return -EIO;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * check_pattern - check if buffer contains only a certain byte pattern.
  329. * @buf: buffer to check
  330. * @patt: the pattern to check
  331. * @size: buffer size in bytes
  332. *
  333. * This function returns %1 in there are only @patt bytes in @buf, and %0 if
  334. * something else was also found.
  335. */
  336. static int check_pattern(const void *buf, uint8_t patt, int size)
  337. {
  338. int i;
  339. for (i = 0; i < size; i++)
  340. if (((const uint8_t *)buf)[i] != patt)
  341. return 0;
  342. return 1;
  343. }
  344. /* Patterns to write to a physical eraseblock when torturing it */
  345. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  346. /**
  347. * torture_peb - test a supposedly bad physical eraseblock.
  348. * @ubi: UBI device description object
  349. * @pnum: the physical eraseblock number to test
  350. *
  351. * This function returns %-EIO if the physical eraseblock did not pass the
  352. * test, a positive number of erase operations done if the test was
  353. * successfully passed, and other negative error codes in case of other errors.
  354. */
  355. static int torture_peb(struct ubi_device *ubi, int pnum)
  356. {
  357. int err, i, patt_count;
  358. ubi_msg("run torture test for PEB %d", pnum);
  359. patt_count = ARRAY_SIZE(patterns);
  360. ubi_assert(patt_count > 0);
  361. mutex_lock(&ubi->buf_mutex);
  362. for (i = 0; i < patt_count; i++) {
  363. err = do_sync_erase(ubi, pnum);
  364. if (err)
  365. goto out;
  366. /* Make sure the PEB contains only 0xFF bytes */
  367. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  368. if (err)
  369. goto out;
  370. err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
  371. if (err == 0) {
  372. ubi_err("erased PEB %d, but a non-0xFF byte found",
  373. pnum);
  374. err = -EIO;
  375. goto out;
  376. }
  377. /* Write a pattern and check it */
  378. memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
  379. err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  380. if (err)
  381. goto out;
  382. memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
  383. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  384. if (err)
  385. goto out;
  386. err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
  387. if (err == 0) {
  388. ubi_err("pattern %x checking failed for PEB %d",
  389. patterns[i], pnum);
  390. err = -EIO;
  391. goto out;
  392. }
  393. }
  394. err = patt_count;
  395. ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
  396. out:
  397. mutex_unlock(&ubi->buf_mutex);
  398. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  399. /*
  400. * If a bit-flip or data integrity error was detected, the test
  401. * has not passed because it happened on a freshly erased
  402. * physical eraseblock which means something is wrong with it.
  403. */
  404. ubi_err("read problems on freshly erased PEB %d, must be bad",
  405. pnum);
  406. err = -EIO;
  407. }
  408. return err;
  409. }
  410. /**
  411. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  412. * @ubi: UBI device description object
  413. * @pnum: physical eraseblock number to erase
  414. * @torture: if this physical eraseblock has to be tortured
  415. *
  416. * This function synchronously erases physical eraseblock @pnum. If @torture
  417. * flag is not zero, the physical eraseblock is checked by means of writing
  418. * different patterns to it and reading them back. If the torturing is enabled,
  419. * the physical eraseblock is erased more then once.
  420. *
  421. * This function returns the number of erasures made in case of success, %-EIO
  422. * if the erasure failed or the torturing test failed, and other negative error
  423. * codes in case of other errors. Note, %-EIO means that the physical
  424. * eraseblock is bad.
  425. */
  426. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  427. {
  428. int err, ret = 0;
  429. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  430. err = paranoid_check_not_bad(ubi, pnum);
  431. if (err != 0)
  432. return err > 0 ? -EINVAL : err;
  433. if (ubi->ro_mode) {
  434. ubi_err("read-only mode");
  435. return -EROFS;
  436. }
  437. if (torture) {
  438. ret = torture_peb(ubi, pnum);
  439. if (ret < 0)
  440. return ret;
  441. }
  442. err = do_sync_erase(ubi, pnum);
  443. if (err)
  444. return err;
  445. return ret + 1;
  446. }
  447. /**
  448. * ubi_io_is_bad - check if a physical eraseblock is bad.
  449. * @ubi: UBI device description object
  450. * @pnum: the physical eraseblock number to check
  451. *
  452. * This function returns a positive number if the physical eraseblock is bad,
  453. * zero if not, and a negative error code if an error occurred.
  454. */
  455. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  456. {
  457. struct mtd_info *mtd = ubi->mtd;
  458. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  459. if (ubi->bad_allowed) {
  460. int ret;
  461. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  462. if (ret < 0)
  463. ubi_err("error %d while checking if PEB %d is bad",
  464. ret, pnum);
  465. else if (ret)
  466. dbg_io("PEB %d is bad", pnum);
  467. return ret;
  468. }
  469. return 0;
  470. }
  471. /**
  472. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  473. * @ubi: UBI device description object
  474. * @pnum: the physical eraseblock number to mark
  475. *
  476. * This function returns zero in case of success and a negative error code in
  477. * case of failure.
  478. */
  479. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  480. {
  481. int err;
  482. struct mtd_info *mtd = ubi->mtd;
  483. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  484. if (ubi->ro_mode) {
  485. ubi_err("read-only mode");
  486. return -EROFS;
  487. }
  488. if (!ubi->bad_allowed)
  489. return 0;
  490. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  491. if (err)
  492. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  493. return err;
  494. }
  495. /**
  496. * validate_ec_hdr - validate an erase counter header.
  497. * @ubi: UBI device description object
  498. * @ec_hdr: the erase counter header to check
  499. *
  500. * This function returns zero if the erase counter header is OK, and %1 if
  501. * not.
  502. */
  503. static int validate_ec_hdr(const struct ubi_device *ubi,
  504. const struct ubi_ec_hdr *ec_hdr)
  505. {
  506. long long ec;
  507. int vid_hdr_offset, leb_start;
  508. ec = be64_to_cpu(ec_hdr->ec);
  509. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  510. leb_start = be32_to_cpu(ec_hdr->data_offset);
  511. if (ec_hdr->version != UBI_VERSION) {
  512. ubi_err("node with incompatible UBI version found: "
  513. "this UBI version is %d, image version is %d",
  514. UBI_VERSION, (int)ec_hdr->version);
  515. goto bad;
  516. }
  517. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  518. ubi_err("bad VID header offset %d, expected %d",
  519. vid_hdr_offset, ubi->vid_hdr_offset);
  520. goto bad;
  521. }
  522. if (leb_start != ubi->leb_start) {
  523. ubi_err("bad data offset %d, expected %d",
  524. leb_start, ubi->leb_start);
  525. goto bad;
  526. }
  527. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  528. ubi_err("bad erase counter %lld", ec);
  529. goto bad;
  530. }
  531. return 0;
  532. bad:
  533. ubi_err("bad EC header");
  534. ubi_dbg_dump_ec_hdr(ec_hdr);
  535. ubi_dbg_dump_stack();
  536. return 1;
  537. }
  538. /**
  539. * ubi_io_read_ec_hdr - read and check an erase counter header.
  540. * @ubi: UBI device description object
  541. * @pnum: physical eraseblock to read from
  542. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  543. * header
  544. * @verbose: be verbose if the header is corrupted or was not found
  545. *
  546. * This function reads erase counter header from physical eraseblock @pnum and
  547. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  548. * erase counter header. The following codes may be returned:
  549. *
  550. * o %0 if the CRC checksum is correct and the header was successfully read;
  551. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  552. * and corrected by the flash driver; this is harmless but may indicate that
  553. * this eraseblock may become bad soon (but may be not);
  554. * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
  555. * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
  556. * o a negative error code in case of failure.
  557. */
  558. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  559. struct ubi_ec_hdr *ec_hdr, int verbose)
  560. {
  561. int err, read_err = 0;
  562. uint32_t crc, magic, hdr_crc;
  563. dbg_io("read EC header from PEB %d", pnum);
  564. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  565. if (UBI_IO_DEBUG)
  566. verbose = 1;
  567. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  568. if (err) {
  569. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  570. return err;
  571. /*
  572. * We read all the data, but either a correctable bit-flip
  573. * occurred, or MTD reported about some data integrity error,
  574. * like an ECC error in case of NAND. The former is harmless,
  575. * the later may mean that the read data is corrupted. But we
  576. * have a CRC check-sum and we will detect this. If the EC
  577. * header is still OK, we just report this as there was a
  578. * bit-flip.
  579. */
  580. read_err = err;
  581. }
  582. magic = be32_to_cpu(ec_hdr->magic);
  583. if (magic != UBI_EC_HDR_MAGIC) {
  584. /*
  585. * The magic field is wrong. Let's check if we have read all
  586. * 0xFF. If yes, this physical eraseblock is assumed to be
  587. * empty.
  588. *
  589. * But if there was a read error, we do not test it for all
  590. * 0xFFs. Even if it does contain all 0xFFs, this error
  591. * indicates that something is still wrong with this physical
  592. * eraseblock and we anyway cannot treat it as empty.
  593. */
  594. if (read_err != -EBADMSG &&
  595. check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  596. /* The physical eraseblock is supposedly empty */
  597. /*
  598. * The below is just a paranoid check, it has to be
  599. * compiled out if paranoid checks are disabled.
  600. */
  601. err = paranoid_check_all_ff(ubi, pnum, 0,
  602. ubi->peb_size);
  603. if (err)
  604. return err > 0 ? UBI_IO_BAD_EC_HDR : err;
  605. if (verbose)
  606. ubi_warn("no EC header found at PEB %d, "
  607. "only 0xFF bytes", pnum);
  608. return UBI_IO_PEB_EMPTY;
  609. }
  610. /*
  611. * This is not a valid erase counter header, and these are not
  612. * 0xFF bytes. Report that the header is corrupted.
  613. */
  614. if (verbose) {
  615. ubi_warn("bad magic number at PEB %d: %08x instead of "
  616. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  617. ubi_dbg_dump_ec_hdr(ec_hdr);
  618. }
  619. return UBI_IO_BAD_EC_HDR;
  620. }
  621. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  622. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  623. if (hdr_crc != crc) {
  624. if (verbose) {
  625. ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
  626. " read %#08x", pnum, crc, hdr_crc);
  627. ubi_dbg_dump_ec_hdr(ec_hdr);
  628. }
  629. return UBI_IO_BAD_EC_HDR;
  630. }
  631. /* And of course validate what has just been read from the media */
  632. err = validate_ec_hdr(ubi, ec_hdr);
  633. if (err) {
  634. ubi_err("validation failed for PEB %d", pnum);
  635. return -EINVAL;
  636. }
  637. return read_err ? UBI_IO_BITFLIPS : 0;
  638. }
  639. /**
  640. * ubi_io_write_ec_hdr - write an erase counter header.
  641. * @ubi: UBI device description object
  642. * @pnum: physical eraseblock to write to
  643. * @ec_hdr: the erase counter header to write
  644. *
  645. * This function writes erase counter header described by @ec_hdr to physical
  646. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  647. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  648. * field.
  649. *
  650. * This function returns zero in case of success and a negative error code in
  651. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  652. * went bad.
  653. */
  654. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  655. struct ubi_ec_hdr *ec_hdr)
  656. {
  657. int err;
  658. uint32_t crc;
  659. dbg_io("write EC header to PEB %d", pnum);
  660. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  661. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  662. ec_hdr->version = UBI_VERSION;
  663. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  664. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  665. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  666. ec_hdr->hdr_crc = cpu_to_be32(crc);
  667. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  668. if (err)
  669. return -EINVAL;
  670. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  671. return err;
  672. }
  673. /**
  674. * validate_vid_hdr - validate a volume identifier header.
  675. * @ubi: UBI device description object
  676. * @vid_hdr: the volume identifier header to check
  677. *
  678. * This function checks that data stored in the volume identifier header
  679. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  680. */
  681. static int validate_vid_hdr(const struct ubi_device *ubi,
  682. const struct ubi_vid_hdr *vid_hdr)
  683. {
  684. int vol_type = vid_hdr->vol_type;
  685. int copy_flag = vid_hdr->copy_flag;
  686. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  687. int lnum = be32_to_cpu(vid_hdr->lnum);
  688. int compat = vid_hdr->compat;
  689. int data_size = be32_to_cpu(vid_hdr->data_size);
  690. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  691. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  692. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  693. int usable_leb_size = ubi->leb_size - data_pad;
  694. if (copy_flag != 0 && copy_flag != 1) {
  695. dbg_err("bad copy_flag");
  696. goto bad;
  697. }
  698. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  699. data_pad < 0) {
  700. dbg_err("negative values");
  701. goto bad;
  702. }
  703. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  704. dbg_err("bad vol_id");
  705. goto bad;
  706. }
  707. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  708. dbg_err("bad compat");
  709. goto bad;
  710. }
  711. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  712. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  713. compat != UBI_COMPAT_REJECT) {
  714. dbg_err("bad compat");
  715. goto bad;
  716. }
  717. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  718. dbg_err("bad vol_type");
  719. goto bad;
  720. }
  721. if (data_pad >= ubi->leb_size / 2) {
  722. dbg_err("bad data_pad");
  723. goto bad;
  724. }
  725. if (vol_type == UBI_VID_STATIC) {
  726. /*
  727. * Although from high-level point of view static volumes may
  728. * contain zero bytes of data, but no VID headers can contain
  729. * zero at these fields, because they empty volumes do not have
  730. * mapped logical eraseblocks.
  731. */
  732. if (used_ebs == 0) {
  733. dbg_err("zero used_ebs");
  734. goto bad;
  735. }
  736. if (data_size == 0) {
  737. dbg_err("zero data_size");
  738. goto bad;
  739. }
  740. if (lnum < used_ebs - 1) {
  741. if (data_size != usable_leb_size) {
  742. dbg_err("bad data_size");
  743. goto bad;
  744. }
  745. } else if (lnum == used_ebs - 1) {
  746. if (data_size == 0) {
  747. dbg_err("bad data_size at last LEB");
  748. goto bad;
  749. }
  750. } else {
  751. dbg_err("too high lnum");
  752. goto bad;
  753. }
  754. } else {
  755. if (copy_flag == 0) {
  756. if (data_crc != 0) {
  757. dbg_err("non-zero data CRC");
  758. goto bad;
  759. }
  760. if (data_size != 0) {
  761. dbg_err("non-zero data_size");
  762. goto bad;
  763. }
  764. } else {
  765. if (data_size == 0) {
  766. dbg_err("zero data_size of copy");
  767. goto bad;
  768. }
  769. }
  770. if (used_ebs != 0) {
  771. dbg_err("bad used_ebs");
  772. goto bad;
  773. }
  774. }
  775. return 0;
  776. bad:
  777. ubi_err("bad VID header");
  778. ubi_dbg_dump_vid_hdr(vid_hdr);
  779. ubi_dbg_dump_stack();
  780. return 1;
  781. }
  782. /**
  783. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  784. * @ubi: UBI device description object
  785. * @pnum: physical eraseblock number to read from
  786. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  787. * identifier header
  788. * @verbose: be verbose if the header is corrupted or wasn't found
  789. *
  790. * This function reads the volume identifier header from physical eraseblock
  791. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  792. * volume identifier header. The following codes may be returned:
  793. *
  794. * o %0 if the CRC checksum is correct and the header was successfully read;
  795. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  796. * and corrected by the flash driver; this is harmless but may indicate that
  797. * this eraseblock may become bad soon;
  798. * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
  799. * error detected);
  800. * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
  801. * header there);
  802. * o a negative error code in case of failure.
  803. */
  804. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  805. struct ubi_vid_hdr *vid_hdr, int verbose)
  806. {
  807. int err, read_err = 0;
  808. uint32_t crc, magic, hdr_crc;
  809. void *p;
  810. dbg_io("read VID header from PEB %d", pnum);
  811. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  812. if (UBI_IO_DEBUG)
  813. verbose = 1;
  814. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  815. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  816. ubi->vid_hdr_alsize);
  817. if (err) {
  818. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  819. return err;
  820. /*
  821. * We read all the data, but either a correctable bit-flip
  822. * occurred, or MTD reported about some data integrity error,
  823. * like an ECC error in case of NAND. The former is harmless,
  824. * the later may mean the read data is corrupted. But we have a
  825. * CRC check-sum and we will identify this. If the VID header is
  826. * still OK, we just report this as there was a bit-flip.
  827. */
  828. read_err = err;
  829. }
  830. magic = be32_to_cpu(vid_hdr->magic);
  831. if (magic != UBI_VID_HDR_MAGIC) {
  832. /*
  833. * If we have read all 0xFF bytes, the VID header probably does
  834. * not exist and the physical eraseblock is assumed to be free.
  835. *
  836. * But if there was a read error, we do not test the data for
  837. * 0xFFs. Even if it does contain all 0xFFs, this error
  838. * indicates that something is still wrong with this physical
  839. * eraseblock and it cannot be regarded as free.
  840. */
  841. if (read_err != -EBADMSG &&
  842. check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  843. /* The physical eraseblock is supposedly free */
  844. /*
  845. * The below is just a paranoid check, it has to be
  846. * compiled out if paranoid checks are disabled.
  847. */
  848. err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
  849. ubi->leb_size);
  850. if (err)
  851. return err > 0 ? UBI_IO_BAD_VID_HDR : err;
  852. if (verbose)
  853. ubi_warn("no VID header found at PEB %d, "
  854. "only 0xFF bytes", pnum);
  855. return UBI_IO_PEB_FREE;
  856. }
  857. /*
  858. * This is not a valid VID header, and these are not 0xFF
  859. * bytes. Report that the header is corrupted.
  860. */
  861. if (verbose) {
  862. ubi_warn("bad magic number at PEB %d: %08x instead of "
  863. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  864. ubi_dbg_dump_vid_hdr(vid_hdr);
  865. }
  866. return UBI_IO_BAD_VID_HDR;
  867. }
  868. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  869. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  870. if (hdr_crc != crc) {
  871. if (verbose) {
  872. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  873. "read %#08x", pnum, crc, hdr_crc);
  874. ubi_dbg_dump_vid_hdr(vid_hdr);
  875. }
  876. return UBI_IO_BAD_VID_HDR;
  877. }
  878. /* Validate the VID header that we have just read */
  879. err = validate_vid_hdr(ubi, vid_hdr);
  880. if (err) {
  881. ubi_err("validation failed for PEB %d", pnum);
  882. return -EINVAL;
  883. }
  884. return read_err ? UBI_IO_BITFLIPS : 0;
  885. }
  886. /**
  887. * ubi_io_write_vid_hdr - write a volume identifier header.
  888. * @ubi: UBI device description object
  889. * @pnum: the physical eraseblock number to write to
  890. * @vid_hdr: the volume identifier header to write
  891. *
  892. * This function writes the volume identifier header described by @vid_hdr to
  893. * physical eraseblock @pnum. This function automatically fills the
  894. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  895. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  896. *
  897. * This function returns zero in case of success and a negative error code in
  898. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  899. * bad.
  900. */
  901. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  902. struct ubi_vid_hdr *vid_hdr)
  903. {
  904. int err;
  905. uint32_t crc;
  906. void *p;
  907. dbg_io("write VID header to PEB %d", pnum);
  908. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  909. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  910. if (err)
  911. return err > 0 ? -EINVAL: err;
  912. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  913. vid_hdr->version = UBI_VERSION;
  914. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  915. vid_hdr->hdr_crc = cpu_to_be32(crc);
  916. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  917. if (err)
  918. return -EINVAL;
  919. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  920. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  921. ubi->vid_hdr_alsize);
  922. return err;
  923. }
  924. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  925. /**
  926. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  927. * @ubi: UBI device description object
  928. * @pnum: physical eraseblock number to check
  929. *
  930. * This function returns zero if the physical eraseblock is good, a positive
  931. * number if it is bad and a negative error code if an error occurred.
  932. */
  933. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  934. {
  935. int err;
  936. err = ubi_io_is_bad(ubi, pnum);
  937. if (!err)
  938. return err;
  939. ubi_err("paranoid check failed for PEB %d", pnum);
  940. ubi_dbg_dump_stack();
  941. return err;
  942. }
  943. /**
  944. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  945. * @ubi: UBI device description object
  946. * @pnum: physical eraseblock number the erase counter header belongs to
  947. * @ec_hdr: the erase counter header to check
  948. *
  949. * This function returns zero if the erase counter header contains valid
  950. * values, and %1 if not.
  951. */
  952. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  953. const struct ubi_ec_hdr *ec_hdr)
  954. {
  955. int err;
  956. uint32_t magic;
  957. magic = be32_to_cpu(ec_hdr->magic);
  958. if (magic != UBI_EC_HDR_MAGIC) {
  959. ubi_err("bad magic %#08x, must be %#08x",
  960. magic, UBI_EC_HDR_MAGIC);
  961. goto fail;
  962. }
  963. err = validate_ec_hdr(ubi, ec_hdr);
  964. if (err) {
  965. ubi_err("paranoid check failed for PEB %d", pnum);
  966. goto fail;
  967. }
  968. return 0;
  969. fail:
  970. ubi_dbg_dump_ec_hdr(ec_hdr);
  971. ubi_dbg_dump_stack();
  972. return 1;
  973. }
  974. /**
  975. * paranoid_check_peb_ec_hdr - check that the erase counter header of a
  976. * physical eraseblock is in-place and is all right.
  977. * @ubi: UBI device description object
  978. * @pnum: the physical eraseblock number to check
  979. *
  980. * This function returns zero if the erase counter header is all right, %1 if
  981. * not, and a negative error code if an error occurred.
  982. */
  983. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  984. {
  985. int err;
  986. uint32_t crc, hdr_crc;
  987. struct ubi_ec_hdr *ec_hdr;
  988. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  989. if (!ec_hdr)
  990. return -ENOMEM;
  991. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  992. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  993. goto exit;
  994. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  995. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  996. if (hdr_crc != crc) {
  997. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  998. ubi_err("paranoid check failed for PEB %d", pnum);
  999. ubi_dbg_dump_ec_hdr(ec_hdr);
  1000. ubi_dbg_dump_stack();
  1001. err = 1;
  1002. goto exit;
  1003. }
  1004. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  1005. exit:
  1006. kfree(ec_hdr);
  1007. return err;
  1008. }
  1009. /**
  1010. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  1011. * @ubi: UBI device description object
  1012. * @pnum: physical eraseblock number the volume identifier header belongs to
  1013. * @vid_hdr: the volume identifier header to check
  1014. *
  1015. * This function returns zero if the volume identifier header is all right, and
  1016. * %1 if not.
  1017. */
  1018. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1019. const struct ubi_vid_hdr *vid_hdr)
  1020. {
  1021. int err;
  1022. uint32_t magic;
  1023. magic = be32_to_cpu(vid_hdr->magic);
  1024. if (magic != UBI_VID_HDR_MAGIC) {
  1025. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1026. magic, pnum, UBI_VID_HDR_MAGIC);
  1027. goto fail;
  1028. }
  1029. err = validate_vid_hdr(ubi, vid_hdr);
  1030. if (err) {
  1031. ubi_err("paranoid check failed for PEB %d", pnum);
  1032. goto fail;
  1033. }
  1034. return err;
  1035. fail:
  1036. ubi_err("paranoid check failed for PEB %d", pnum);
  1037. ubi_dbg_dump_vid_hdr(vid_hdr);
  1038. ubi_dbg_dump_stack();
  1039. return 1;
  1040. }
  1041. /**
  1042. * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
  1043. * physical eraseblock is in-place and is all right.
  1044. * @ubi: UBI device description object
  1045. * @pnum: the physical eraseblock number to check
  1046. *
  1047. * This function returns zero if the volume identifier header is all right,
  1048. * %1 if not, and a negative error code if an error occurred.
  1049. */
  1050. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1051. {
  1052. int err;
  1053. uint32_t crc, hdr_crc;
  1054. struct ubi_vid_hdr *vid_hdr;
  1055. void *p;
  1056. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1057. if (!vid_hdr)
  1058. return -ENOMEM;
  1059. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1060. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1061. ubi->vid_hdr_alsize);
  1062. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1063. goto exit;
  1064. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1065. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1066. if (hdr_crc != crc) {
  1067. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1068. "read %#08x", pnum, crc, hdr_crc);
  1069. ubi_err("paranoid check failed for PEB %d", pnum);
  1070. ubi_dbg_dump_vid_hdr(vid_hdr);
  1071. ubi_dbg_dump_stack();
  1072. err = 1;
  1073. goto exit;
  1074. }
  1075. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1076. exit:
  1077. ubi_free_vid_hdr(ubi, vid_hdr);
  1078. return err;
  1079. }
  1080. /**
  1081. * paranoid_check_all_ff - check that a region of flash is empty.
  1082. * @ubi: UBI device description object
  1083. * @pnum: the physical eraseblock number to check
  1084. * @offset: the starting offset within the physical eraseblock to check
  1085. * @len: the length of the region to check
  1086. *
  1087. * This function returns zero if only 0xFF bytes are present at offset
  1088. * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
  1089. * code if an error occurred.
  1090. */
  1091. static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
  1092. int len)
  1093. {
  1094. size_t read;
  1095. int err;
  1096. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1097. mutex_lock(&ubi->dbg_buf_mutex);
  1098. err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
  1099. if (err && err != -EUCLEAN) {
  1100. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1101. "read %zd bytes", err, len, pnum, offset, read);
  1102. goto error;
  1103. }
  1104. err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
  1105. if (err == 0) {
  1106. ubi_err("flash region at PEB %d:%d, length %d does not "
  1107. "contain all 0xFF bytes", pnum, offset, len);
  1108. goto fail;
  1109. }
  1110. mutex_unlock(&ubi->dbg_buf_mutex);
  1111. return 0;
  1112. fail:
  1113. ubi_err("paranoid check failed for PEB %d", pnum);
  1114. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1115. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1116. ubi->dbg_peb_buf, len, 1);
  1117. err = 1;
  1118. error:
  1119. ubi_dbg_dump_stack();
  1120. mutex_unlock(&ubi->dbg_buf_mutex);
  1121. return err;
  1122. }
  1123. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */