efx.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include "net_driver.h"
  23. #include "efx.h"
  24. #include "mdio_10g.h"
  25. #include "falcon.h"
  26. /**************************************************************************
  27. *
  28. * Type name strings
  29. *
  30. **************************************************************************
  31. */
  32. /* Loopback mode names (see LOOPBACK_MODE()) */
  33. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  34. const char *efx_loopback_mode_names[] = {
  35. [LOOPBACK_NONE] = "NONE",
  36. [LOOPBACK_GMAC] = "GMAC",
  37. [LOOPBACK_XGMII] = "XGMII",
  38. [LOOPBACK_XGXS] = "XGXS",
  39. [LOOPBACK_XAUI] = "XAUI",
  40. [LOOPBACK_GPHY] = "GPHY",
  41. [LOOPBACK_PHYXS] = "PHYXS",
  42. [LOOPBACK_PCS] = "PCS",
  43. [LOOPBACK_PMAPMD] = "PMA/PMD",
  44. [LOOPBACK_NETWORK] = "NETWORK",
  45. };
  46. /* Interrupt mode names (see INT_MODE())) */
  47. const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
  48. const char *efx_interrupt_mode_names[] = {
  49. [EFX_INT_MODE_MSIX] = "MSI-X",
  50. [EFX_INT_MODE_MSI] = "MSI",
  51. [EFX_INT_MODE_LEGACY] = "legacy",
  52. };
  53. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  54. const char *efx_reset_type_names[] = {
  55. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  56. [RESET_TYPE_ALL] = "ALL",
  57. [RESET_TYPE_WORLD] = "WORLD",
  58. [RESET_TYPE_DISABLE] = "DISABLE",
  59. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  60. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  61. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  62. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  63. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  64. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  65. };
  66. #define EFX_MAX_MTU (9 * 1024)
  67. /* RX slow fill workqueue. If memory allocation fails in the fast path,
  68. * a work item is pushed onto this work queue to retry the allocation later,
  69. * to avoid the NIC being starved of RX buffers. Since this is a per cpu
  70. * workqueue, there is nothing to be gained in making it per NIC
  71. */
  72. static struct workqueue_struct *refill_workqueue;
  73. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  74. * queued onto this work queue. This is not a per-nic work queue, because
  75. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  76. */
  77. static struct workqueue_struct *reset_workqueue;
  78. /**************************************************************************
  79. *
  80. * Configurable values
  81. *
  82. *************************************************************************/
  83. /*
  84. * Use separate channels for TX and RX events
  85. *
  86. * Set this to 1 to use separate channels for TX and RX. It allows us
  87. * to control interrupt affinity separately for TX and RX.
  88. *
  89. * This is only used in MSI-X interrupt mode
  90. */
  91. static unsigned int separate_tx_channels;
  92. module_param(separate_tx_channels, uint, 0644);
  93. MODULE_PARM_DESC(separate_tx_channels,
  94. "Use separate channels for TX and RX");
  95. /* This is the weight assigned to each of the (per-channel) virtual
  96. * NAPI devices.
  97. */
  98. static int napi_weight = 64;
  99. /* This is the time (in jiffies) between invocations of the hardware
  100. * monitor, which checks for known hardware bugs and resets the
  101. * hardware and driver as necessary.
  102. */
  103. unsigned int efx_monitor_interval = 1 * HZ;
  104. /* This controls whether or not the driver will initialise devices
  105. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  106. * such devices will be initialised with a random locally-generated
  107. * MAC address. This allows for loading the sfc_mtd driver to
  108. * reprogram the flash, even if the flash contents (including the MAC
  109. * address) have previously been erased.
  110. */
  111. static unsigned int allow_bad_hwaddr;
  112. /* Initial interrupt moderation settings. They can be modified after
  113. * module load with ethtool.
  114. *
  115. * The default for RX should strike a balance between increasing the
  116. * round-trip latency and reducing overhead.
  117. */
  118. static unsigned int rx_irq_mod_usec = 60;
  119. /* Initial interrupt moderation settings. They can be modified after
  120. * module load with ethtool.
  121. *
  122. * This default is chosen to ensure that a 10G link does not go idle
  123. * while a TX queue is stopped after it has become full. A queue is
  124. * restarted when it drops below half full. The time this takes (assuming
  125. * worst case 3 descriptors per packet and 1024 descriptors) is
  126. * 512 / 3 * 1.2 = 205 usec.
  127. */
  128. static unsigned int tx_irq_mod_usec = 150;
  129. /* This is the first interrupt mode to try out of:
  130. * 0 => MSI-X
  131. * 1 => MSI
  132. * 2 => legacy
  133. */
  134. static unsigned int interrupt_mode;
  135. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  136. * i.e. the number of CPUs among which we may distribute simultaneous
  137. * interrupt handling.
  138. *
  139. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  140. * The default (0) means to assign an interrupt to each package (level II cache)
  141. */
  142. static unsigned int rss_cpus;
  143. module_param(rss_cpus, uint, 0444);
  144. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  145. static int phy_flash_cfg;
  146. module_param(phy_flash_cfg, int, 0644);
  147. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  148. static unsigned irq_adapt_low_thresh = 10000;
  149. module_param(irq_adapt_low_thresh, uint, 0644);
  150. MODULE_PARM_DESC(irq_adapt_low_thresh,
  151. "Threshold score for reducing IRQ moderation");
  152. static unsigned irq_adapt_high_thresh = 20000;
  153. module_param(irq_adapt_high_thresh, uint, 0644);
  154. MODULE_PARM_DESC(irq_adapt_high_thresh,
  155. "Threshold score for increasing IRQ moderation");
  156. /**************************************************************************
  157. *
  158. * Utility functions and prototypes
  159. *
  160. *************************************************************************/
  161. static void efx_remove_channel(struct efx_channel *channel);
  162. static void efx_remove_port(struct efx_nic *efx);
  163. static void efx_fini_napi(struct efx_nic *efx);
  164. static void efx_fini_channels(struct efx_nic *efx);
  165. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  166. do { \
  167. if ((efx->state == STATE_RUNNING) || \
  168. (efx->state == STATE_DISABLED)) \
  169. ASSERT_RTNL(); \
  170. } while (0)
  171. /**************************************************************************
  172. *
  173. * Event queue processing
  174. *
  175. *************************************************************************/
  176. /* Process channel's event queue
  177. *
  178. * This function is responsible for processing the event queue of a
  179. * single channel. The caller must guarantee that this function will
  180. * never be concurrently called more than once on the same channel,
  181. * though different channels may be being processed concurrently.
  182. */
  183. static int efx_process_channel(struct efx_channel *channel, int rx_quota)
  184. {
  185. struct efx_nic *efx = channel->efx;
  186. int rx_packets;
  187. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  188. !channel->enabled))
  189. return 0;
  190. rx_packets = falcon_process_eventq(channel, rx_quota);
  191. if (rx_packets == 0)
  192. return 0;
  193. /* Deliver last RX packet. */
  194. if (channel->rx_pkt) {
  195. __efx_rx_packet(channel, channel->rx_pkt,
  196. channel->rx_pkt_csummed);
  197. channel->rx_pkt = NULL;
  198. }
  199. efx_rx_strategy(channel);
  200. efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
  201. return rx_packets;
  202. }
  203. /* Mark channel as finished processing
  204. *
  205. * Note that since we will not receive further interrupts for this
  206. * channel before we finish processing and call the eventq_read_ack()
  207. * method, there is no need to use the interrupt hold-off timers.
  208. */
  209. static inline void efx_channel_processed(struct efx_channel *channel)
  210. {
  211. /* The interrupt handler for this channel may set work_pending
  212. * as soon as we acknowledge the events we've seen. Make sure
  213. * it's cleared before then. */
  214. channel->work_pending = false;
  215. smp_wmb();
  216. falcon_eventq_read_ack(channel);
  217. }
  218. /* NAPI poll handler
  219. *
  220. * NAPI guarantees serialisation of polls of the same device, which
  221. * provides the guarantee required by efx_process_channel().
  222. */
  223. static int efx_poll(struct napi_struct *napi, int budget)
  224. {
  225. struct efx_channel *channel =
  226. container_of(napi, struct efx_channel, napi_str);
  227. int rx_packets;
  228. EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
  229. channel->channel, raw_smp_processor_id());
  230. rx_packets = efx_process_channel(channel, budget);
  231. if (rx_packets < budget) {
  232. struct efx_nic *efx = channel->efx;
  233. if (channel->used_flags & EFX_USED_BY_RX &&
  234. efx->irq_rx_adaptive &&
  235. unlikely(++channel->irq_count == 1000)) {
  236. if (unlikely(channel->irq_mod_score <
  237. irq_adapt_low_thresh)) {
  238. if (channel->irq_moderation > 1) {
  239. channel->irq_moderation -= 1;
  240. falcon_set_int_moderation(channel);
  241. }
  242. } else if (unlikely(channel->irq_mod_score >
  243. irq_adapt_high_thresh)) {
  244. if (channel->irq_moderation <
  245. efx->irq_rx_moderation) {
  246. channel->irq_moderation += 1;
  247. falcon_set_int_moderation(channel);
  248. }
  249. }
  250. channel->irq_count = 0;
  251. channel->irq_mod_score = 0;
  252. }
  253. /* There is no race here; although napi_disable() will
  254. * only wait for napi_complete(), this isn't a problem
  255. * since efx_channel_processed() will have no effect if
  256. * interrupts have already been disabled.
  257. */
  258. napi_complete(napi);
  259. efx_channel_processed(channel);
  260. }
  261. return rx_packets;
  262. }
  263. /* Process the eventq of the specified channel immediately on this CPU
  264. *
  265. * Disable hardware generated interrupts, wait for any existing
  266. * processing to finish, then directly poll (and ack ) the eventq.
  267. * Finally reenable NAPI and interrupts.
  268. *
  269. * Since we are touching interrupts the caller should hold the suspend lock
  270. */
  271. void efx_process_channel_now(struct efx_channel *channel)
  272. {
  273. struct efx_nic *efx = channel->efx;
  274. BUG_ON(!channel->used_flags);
  275. BUG_ON(!channel->enabled);
  276. /* Disable interrupts and wait for ISRs to complete */
  277. falcon_disable_interrupts(efx);
  278. if (efx->legacy_irq)
  279. synchronize_irq(efx->legacy_irq);
  280. if (channel->irq)
  281. synchronize_irq(channel->irq);
  282. /* Wait for any NAPI processing to complete */
  283. napi_disable(&channel->napi_str);
  284. /* Poll the channel */
  285. efx_process_channel(channel, EFX_EVQ_SIZE);
  286. /* Ack the eventq. This may cause an interrupt to be generated
  287. * when they are reenabled */
  288. efx_channel_processed(channel);
  289. napi_enable(&channel->napi_str);
  290. falcon_enable_interrupts(efx);
  291. }
  292. /* Create event queue
  293. * Event queue memory allocations are done only once. If the channel
  294. * is reset, the memory buffer will be reused; this guards against
  295. * errors during channel reset and also simplifies interrupt handling.
  296. */
  297. static int efx_probe_eventq(struct efx_channel *channel)
  298. {
  299. EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
  300. return falcon_probe_eventq(channel);
  301. }
  302. /* Prepare channel's event queue */
  303. static void efx_init_eventq(struct efx_channel *channel)
  304. {
  305. EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
  306. channel->eventq_read_ptr = 0;
  307. falcon_init_eventq(channel);
  308. }
  309. static void efx_fini_eventq(struct efx_channel *channel)
  310. {
  311. EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
  312. falcon_fini_eventq(channel);
  313. }
  314. static void efx_remove_eventq(struct efx_channel *channel)
  315. {
  316. EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
  317. falcon_remove_eventq(channel);
  318. }
  319. /**************************************************************************
  320. *
  321. * Channel handling
  322. *
  323. *************************************************************************/
  324. static int efx_probe_channel(struct efx_channel *channel)
  325. {
  326. struct efx_tx_queue *tx_queue;
  327. struct efx_rx_queue *rx_queue;
  328. int rc;
  329. EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
  330. rc = efx_probe_eventq(channel);
  331. if (rc)
  332. goto fail1;
  333. efx_for_each_channel_tx_queue(tx_queue, channel) {
  334. rc = efx_probe_tx_queue(tx_queue);
  335. if (rc)
  336. goto fail2;
  337. }
  338. efx_for_each_channel_rx_queue(rx_queue, channel) {
  339. rc = efx_probe_rx_queue(rx_queue);
  340. if (rc)
  341. goto fail3;
  342. }
  343. channel->n_rx_frm_trunc = 0;
  344. return 0;
  345. fail3:
  346. efx_for_each_channel_rx_queue(rx_queue, channel)
  347. efx_remove_rx_queue(rx_queue);
  348. fail2:
  349. efx_for_each_channel_tx_queue(tx_queue, channel)
  350. efx_remove_tx_queue(tx_queue);
  351. fail1:
  352. return rc;
  353. }
  354. static void efx_set_channel_names(struct efx_nic *efx)
  355. {
  356. struct efx_channel *channel;
  357. const char *type = "";
  358. int number;
  359. efx_for_each_channel(channel, efx) {
  360. number = channel->channel;
  361. if (efx->n_channels > efx->n_rx_queues) {
  362. if (channel->channel < efx->n_rx_queues) {
  363. type = "-rx";
  364. } else {
  365. type = "-tx";
  366. number -= efx->n_rx_queues;
  367. }
  368. }
  369. snprintf(channel->name, sizeof(channel->name),
  370. "%s%s-%d", efx->name, type, number);
  371. }
  372. }
  373. /* Channels are shutdown and reinitialised whilst the NIC is running
  374. * to propagate configuration changes (mtu, checksum offload), or
  375. * to clear hardware error conditions
  376. */
  377. static void efx_init_channels(struct efx_nic *efx)
  378. {
  379. struct efx_tx_queue *tx_queue;
  380. struct efx_rx_queue *rx_queue;
  381. struct efx_channel *channel;
  382. /* Calculate the rx buffer allocation parameters required to
  383. * support the current MTU, including padding for header
  384. * alignment and overruns.
  385. */
  386. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  387. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  388. efx->type->rx_buffer_padding);
  389. efx->rx_buffer_order = get_order(efx->rx_buffer_len);
  390. /* Initialise the channels */
  391. efx_for_each_channel(channel, efx) {
  392. EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
  393. efx_init_eventq(channel);
  394. efx_for_each_channel_tx_queue(tx_queue, channel)
  395. efx_init_tx_queue(tx_queue);
  396. /* The rx buffer allocation strategy is MTU dependent */
  397. efx_rx_strategy(channel);
  398. efx_for_each_channel_rx_queue(rx_queue, channel)
  399. efx_init_rx_queue(rx_queue);
  400. WARN_ON(channel->rx_pkt != NULL);
  401. efx_rx_strategy(channel);
  402. }
  403. }
  404. /* This enables event queue processing and packet transmission.
  405. *
  406. * Note that this function is not allowed to fail, since that would
  407. * introduce too much complexity into the suspend/resume path.
  408. */
  409. static void efx_start_channel(struct efx_channel *channel)
  410. {
  411. struct efx_rx_queue *rx_queue;
  412. EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
  413. /* The interrupt handler for this channel may set work_pending
  414. * as soon as we enable it. Make sure it's cleared before
  415. * then. Similarly, make sure it sees the enabled flag set. */
  416. channel->work_pending = false;
  417. channel->enabled = true;
  418. smp_wmb();
  419. napi_enable(&channel->napi_str);
  420. /* Load up RX descriptors */
  421. efx_for_each_channel_rx_queue(rx_queue, channel)
  422. efx_fast_push_rx_descriptors(rx_queue);
  423. }
  424. /* This disables event queue processing and packet transmission.
  425. * This function does not guarantee that all queue processing
  426. * (e.g. RX refill) is complete.
  427. */
  428. static void efx_stop_channel(struct efx_channel *channel)
  429. {
  430. struct efx_rx_queue *rx_queue;
  431. if (!channel->enabled)
  432. return;
  433. EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
  434. channel->enabled = false;
  435. napi_disable(&channel->napi_str);
  436. /* Ensure that any worker threads have exited or will be no-ops */
  437. efx_for_each_channel_rx_queue(rx_queue, channel) {
  438. spin_lock_bh(&rx_queue->add_lock);
  439. spin_unlock_bh(&rx_queue->add_lock);
  440. }
  441. }
  442. static void efx_fini_channels(struct efx_nic *efx)
  443. {
  444. struct efx_channel *channel;
  445. struct efx_tx_queue *tx_queue;
  446. struct efx_rx_queue *rx_queue;
  447. int rc;
  448. EFX_ASSERT_RESET_SERIALISED(efx);
  449. BUG_ON(efx->port_enabled);
  450. rc = falcon_flush_queues(efx);
  451. if (rc)
  452. EFX_ERR(efx, "failed to flush queues\n");
  453. else
  454. EFX_LOG(efx, "successfully flushed all queues\n");
  455. efx_for_each_channel(channel, efx) {
  456. EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
  457. efx_for_each_channel_rx_queue(rx_queue, channel)
  458. efx_fini_rx_queue(rx_queue);
  459. efx_for_each_channel_tx_queue(tx_queue, channel)
  460. efx_fini_tx_queue(tx_queue);
  461. efx_fini_eventq(channel);
  462. }
  463. }
  464. static void efx_remove_channel(struct efx_channel *channel)
  465. {
  466. struct efx_tx_queue *tx_queue;
  467. struct efx_rx_queue *rx_queue;
  468. EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
  469. efx_for_each_channel_rx_queue(rx_queue, channel)
  470. efx_remove_rx_queue(rx_queue);
  471. efx_for_each_channel_tx_queue(tx_queue, channel)
  472. efx_remove_tx_queue(tx_queue);
  473. efx_remove_eventq(channel);
  474. channel->used_flags = 0;
  475. }
  476. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
  477. {
  478. queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
  479. }
  480. /**************************************************************************
  481. *
  482. * Port handling
  483. *
  484. **************************************************************************/
  485. /* This ensures that the kernel is kept informed (via
  486. * netif_carrier_on/off) of the link status, and also maintains the
  487. * link status's stop on the port's TX queue.
  488. */
  489. static void efx_link_status_changed(struct efx_nic *efx)
  490. {
  491. struct efx_link_state *link_state = &efx->link_state;
  492. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  493. * that no events are triggered between unregister_netdev() and the
  494. * driver unloading. A more general condition is that NETDEV_CHANGE
  495. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  496. if (!netif_running(efx->net_dev))
  497. return;
  498. if (efx->port_inhibited) {
  499. netif_carrier_off(efx->net_dev);
  500. return;
  501. }
  502. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  503. efx->n_link_state_changes++;
  504. if (link_state->up)
  505. netif_carrier_on(efx->net_dev);
  506. else
  507. netif_carrier_off(efx->net_dev);
  508. }
  509. /* Status message for kernel log */
  510. if (link_state->up) {
  511. EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
  512. link_state->speed, link_state->fd ? "full" : "half",
  513. efx->net_dev->mtu,
  514. (efx->promiscuous ? " [PROMISC]" : ""));
  515. } else {
  516. EFX_INFO(efx, "link down\n");
  517. }
  518. }
  519. static void efx_fini_port(struct efx_nic *efx);
  520. /* This call reinitialises the MAC to pick up new PHY settings. The
  521. * caller must hold the mac_lock */
  522. void __efx_reconfigure_port(struct efx_nic *efx)
  523. {
  524. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  525. EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
  526. raw_smp_processor_id());
  527. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  528. if (efx_dev_registered(efx)) {
  529. netif_addr_lock_bh(efx->net_dev);
  530. netif_addr_unlock_bh(efx->net_dev);
  531. }
  532. falcon_stop_nic_stats(efx);
  533. falcon_deconfigure_mac_wrapper(efx);
  534. /* Reconfigure the PHY, disabling transmit in mac level loopback. */
  535. if (LOOPBACK_INTERNAL(efx))
  536. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  537. else
  538. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  539. efx->phy_op->reconfigure(efx);
  540. if (falcon_switch_mac(efx))
  541. goto fail;
  542. efx->mac_op->reconfigure(efx);
  543. falcon_start_nic_stats(efx);
  544. /* Inform kernel of loss/gain of carrier */
  545. efx_link_status_changed(efx);
  546. return;
  547. fail:
  548. EFX_ERR(efx, "failed to reconfigure MAC\n");
  549. efx->port_enabled = false;
  550. efx_fini_port(efx);
  551. }
  552. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  553. * disabled. */
  554. void efx_reconfigure_port(struct efx_nic *efx)
  555. {
  556. EFX_ASSERT_RESET_SERIALISED(efx);
  557. mutex_lock(&efx->mac_lock);
  558. __efx_reconfigure_port(efx);
  559. mutex_unlock(&efx->mac_lock);
  560. }
  561. /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
  562. * we don't efx_reconfigure_port() if the port is disabled. Care is taken
  563. * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
  564. static void efx_phy_work(struct work_struct *data)
  565. {
  566. struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
  567. mutex_lock(&efx->mac_lock);
  568. if (efx->port_enabled)
  569. __efx_reconfigure_port(efx);
  570. mutex_unlock(&efx->mac_lock);
  571. }
  572. /* Asynchronous work item for changing MAC promiscuity and multicast
  573. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  574. * MAC directly. */
  575. static void efx_mac_work(struct work_struct *data)
  576. {
  577. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  578. mutex_lock(&efx->mac_lock);
  579. if (efx->port_enabled) {
  580. falcon_push_multicast_hash(efx);
  581. efx->mac_op->reconfigure(efx);
  582. }
  583. mutex_unlock(&efx->mac_lock);
  584. }
  585. static int efx_probe_port(struct efx_nic *efx)
  586. {
  587. int rc;
  588. EFX_LOG(efx, "create port\n");
  589. /* Connect up MAC/PHY operations table and read MAC address */
  590. rc = falcon_probe_port(efx);
  591. if (rc)
  592. goto err;
  593. if (phy_flash_cfg)
  594. efx->phy_mode = PHY_MODE_SPECIAL;
  595. /* Sanity check MAC address */
  596. if (is_valid_ether_addr(efx->mac_address)) {
  597. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  598. } else {
  599. EFX_ERR(efx, "invalid MAC address %pM\n",
  600. efx->mac_address);
  601. if (!allow_bad_hwaddr) {
  602. rc = -EINVAL;
  603. goto err;
  604. }
  605. random_ether_addr(efx->net_dev->dev_addr);
  606. EFX_INFO(efx, "using locally-generated MAC %pM\n",
  607. efx->net_dev->dev_addr);
  608. }
  609. return 0;
  610. err:
  611. efx_remove_port(efx);
  612. return rc;
  613. }
  614. static int efx_init_port(struct efx_nic *efx)
  615. {
  616. int rc;
  617. EFX_LOG(efx, "init port\n");
  618. mutex_lock(&efx->mac_lock);
  619. rc = efx->phy_op->init(efx);
  620. if (rc)
  621. goto fail1;
  622. efx->phy_op->reconfigure(efx);
  623. rc = falcon_switch_mac(efx);
  624. if (rc)
  625. goto fail2;
  626. efx->mac_op->reconfigure(efx);
  627. efx->port_initialized = true;
  628. mutex_unlock(&efx->mac_lock);
  629. return 0;
  630. fail2:
  631. efx->phy_op->fini(efx);
  632. fail1:
  633. mutex_unlock(&efx->mac_lock);
  634. return rc;
  635. }
  636. /* Allow efx_reconfigure_port() to be scheduled, and close the window
  637. * between efx_stop_port and efx_flush_all whereby a previously scheduled
  638. * efx_phy_work()/efx_mac_work() may have been cancelled */
  639. static void efx_start_port(struct efx_nic *efx)
  640. {
  641. EFX_LOG(efx, "start port\n");
  642. BUG_ON(efx->port_enabled);
  643. mutex_lock(&efx->mac_lock);
  644. efx->port_enabled = true;
  645. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  646. * and then cancelled by efx_flush_all() */
  647. falcon_push_multicast_hash(efx);
  648. efx->mac_op->reconfigure(efx);
  649. mutex_unlock(&efx->mac_lock);
  650. }
  651. /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
  652. * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
  653. * and efx_mac_work may still be scheduled via NAPI processing until
  654. * efx_flush_all() is called */
  655. static void efx_stop_port(struct efx_nic *efx)
  656. {
  657. EFX_LOG(efx, "stop port\n");
  658. mutex_lock(&efx->mac_lock);
  659. efx->port_enabled = false;
  660. mutex_unlock(&efx->mac_lock);
  661. /* Serialise against efx_set_multicast_list() */
  662. if (efx_dev_registered(efx)) {
  663. netif_addr_lock_bh(efx->net_dev);
  664. netif_addr_unlock_bh(efx->net_dev);
  665. }
  666. }
  667. static void efx_fini_port(struct efx_nic *efx)
  668. {
  669. EFX_LOG(efx, "shut down port\n");
  670. if (!efx->port_initialized)
  671. return;
  672. efx->phy_op->fini(efx);
  673. efx->port_initialized = false;
  674. efx->link_state.up = false;
  675. efx_link_status_changed(efx);
  676. }
  677. static void efx_remove_port(struct efx_nic *efx)
  678. {
  679. EFX_LOG(efx, "destroying port\n");
  680. falcon_remove_port(efx);
  681. }
  682. /**************************************************************************
  683. *
  684. * NIC handling
  685. *
  686. **************************************************************************/
  687. /* This configures the PCI device to enable I/O and DMA. */
  688. static int efx_init_io(struct efx_nic *efx)
  689. {
  690. struct pci_dev *pci_dev = efx->pci_dev;
  691. dma_addr_t dma_mask = efx->type->max_dma_mask;
  692. int rc;
  693. EFX_LOG(efx, "initialising I/O\n");
  694. rc = pci_enable_device(pci_dev);
  695. if (rc) {
  696. EFX_ERR(efx, "failed to enable PCI device\n");
  697. goto fail1;
  698. }
  699. pci_set_master(pci_dev);
  700. /* Set the PCI DMA mask. Try all possibilities from our
  701. * genuine mask down to 32 bits, because some architectures
  702. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  703. * masks event though they reject 46 bit masks.
  704. */
  705. while (dma_mask > 0x7fffffffUL) {
  706. if (pci_dma_supported(pci_dev, dma_mask) &&
  707. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  708. break;
  709. dma_mask >>= 1;
  710. }
  711. if (rc) {
  712. EFX_ERR(efx, "could not find a suitable DMA mask\n");
  713. goto fail2;
  714. }
  715. EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
  716. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  717. if (rc) {
  718. /* pci_set_consistent_dma_mask() is not *allowed* to
  719. * fail with a mask that pci_set_dma_mask() accepted,
  720. * but just in case...
  721. */
  722. EFX_ERR(efx, "failed to set consistent DMA mask\n");
  723. goto fail2;
  724. }
  725. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  726. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  727. if (rc) {
  728. EFX_ERR(efx, "request for memory BAR failed\n");
  729. rc = -EIO;
  730. goto fail3;
  731. }
  732. efx->membase = ioremap_nocache(efx->membase_phys,
  733. efx->type->mem_map_size);
  734. if (!efx->membase) {
  735. EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
  736. (unsigned long long)efx->membase_phys,
  737. efx->type->mem_map_size);
  738. rc = -ENOMEM;
  739. goto fail4;
  740. }
  741. EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
  742. (unsigned long long)efx->membase_phys,
  743. efx->type->mem_map_size, efx->membase);
  744. return 0;
  745. fail4:
  746. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  747. fail3:
  748. efx->membase_phys = 0;
  749. fail2:
  750. pci_disable_device(efx->pci_dev);
  751. fail1:
  752. return rc;
  753. }
  754. static void efx_fini_io(struct efx_nic *efx)
  755. {
  756. EFX_LOG(efx, "shutting down I/O\n");
  757. if (efx->membase) {
  758. iounmap(efx->membase);
  759. efx->membase = NULL;
  760. }
  761. if (efx->membase_phys) {
  762. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  763. efx->membase_phys = 0;
  764. }
  765. pci_disable_device(efx->pci_dev);
  766. }
  767. /* Get number of RX queues wanted. Return number of online CPU
  768. * packages in the expectation that an IRQ balancer will spread
  769. * interrupts across them. */
  770. static int efx_wanted_rx_queues(void)
  771. {
  772. cpumask_var_t core_mask;
  773. int count;
  774. int cpu;
  775. if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
  776. printk(KERN_WARNING
  777. "sfc: RSS disabled due to allocation failure\n");
  778. return 1;
  779. }
  780. count = 0;
  781. for_each_online_cpu(cpu) {
  782. if (!cpumask_test_cpu(cpu, core_mask)) {
  783. ++count;
  784. cpumask_or(core_mask, core_mask,
  785. topology_core_cpumask(cpu));
  786. }
  787. }
  788. free_cpumask_var(core_mask);
  789. return count;
  790. }
  791. /* Probe the number and type of interrupts we are able to obtain, and
  792. * the resulting numbers of channels and RX queues.
  793. */
  794. static void efx_probe_interrupts(struct efx_nic *efx)
  795. {
  796. int max_channels =
  797. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  798. int rc, i;
  799. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  800. struct msix_entry xentries[EFX_MAX_CHANNELS];
  801. int wanted_ints;
  802. int rx_queues;
  803. /* We want one RX queue and interrupt per CPU package
  804. * (or as specified by the rss_cpus module parameter).
  805. * We will need one channel per interrupt.
  806. */
  807. rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
  808. wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
  809. wanted_ints = min(wanted_ints, max_channels);
  810. for (i = 0; i < wanted_ints; i++)
  811. xentries[i].entry = i;
  812. rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
  813. if (rc > 0) {
  814. EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
  815. " available (%d < %d).\n", rc, wanted_ints);
  816. EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
  817. EFX_BUG_ON_PARANOID(rc >= wanted_ints);
  818. wanted_ints = rc;
  819. rc = pci_enable_msix(efx->pci_dev, xentries,
  820. wanted_ints);
  821. }
  822. if (rc == 0) {
  823. efx->n_rx_queues = min(rx_queues, wanted_ints);
  824. efx->n_channels = wanted_ints;
  825. for (i = 0; i < wanted_ints; i++)
  826. efx->channel[i].irq = xentries[i].vector;
  827. } else {
  828. /* Fall back to single channel MSI */
  829. efx->interrupt_mode = EFX_INT_MODE_MSI;
  830. EFX_ERR(efx, "could not enable MSI-X\n");
  831. }
  832. }
  833. /* Try single interrupt MSI */
  834. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  835. efx->n_rx_queues = 1;
  836. efx->n_channels = 1;
  837. rc = pci_enable_msi(efx->pci_dev);
  838. if (rc == 0) {
  839. efx->channel[0].irq = efx->pci_dev->irq;
  840. } else {
  841. EFX_ERR(efx, "could not enable MSI\n");
  842. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  843. }
  844. }
  845. /* Assume legacy interrupts */
  846. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  847. efx->n_rx_queues = 1;
  848. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  849. efx->legacy_irq = efx->pci_dev->irq;
  850. }
  851. }
  852. static void efx_remove_interrupts(struct efx_nic *efx)
  853. {
  854. struct efx_channel *channel;
  855. /* Remove MSI/MSI-X interrupts */
  856. efx_for_each_channel(channel, efx)
  857. channel->irq = 0;
  858. pci_disable_msi(efx->pci_dev);
  859. pci_disable_msix(efx->pci_dev);
  860. /* Remove legacy interrupt */
  861. efx->legacy_irq = 0;
  862. }
  863. static void efx_set_channels(struct efx_nic *efx)
  864. {
  865. struct efx_tx_queue *tx_queue;
  866. struct efx_rx_queue *rx_queue;
  867. efx_for_each_tx_queue(tx_queue, efx) {
  868. if (separate_tx_channels)
  869. tx_queue->channel = &efx->channel[efx->n_channels-1];
  870. else
  871. tx_queue->channel = &efx->channel[0];
  872. tx_queue->channel->used_flags |= EFX_USED_BY_TX;
  873. }
  874. efx_for_each_rx_queue(rx_queue, efx) {
  875. rx_queue->channel = &efx->channel[rx_queue->queue];
  876. rx_queue->channel->used_flags |= EFX_USED_BY_RX;
  877. }
  878. }
  879. static int efx_probe_nic(struct efx_nic *efx)
  880. {
  881. int rc;
  882. EFX_LOG(efx, "creating NIC\n");
  883. /* Carry out hardware-type specific initialisation */
  884. rc = falcon_probe_nic(efx);
  885. if (rc)
  886. return rc;
  887. /* Determine the number of channels and RX queues by trying to hook
  888. * in MSI-X interrupts. */
  889. efx_probe_interrupts(efx);
  890. efx_set_channels(efx);
  891. /* Initialise the interrupt moderation settings */
  892. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
  893. return 0;
  894. }
  895. static void efx_remove_nic(struct efx_nic *efx)
  896. {
  897. EFX_LOG(efx, "destroying NIC\n");
  898. efx_remove_interrupts(efx);
  899. falcon_remove_nic(efx);
  900. }
  901. /**************************************************************************
  902. *
  903. * NIC startup/shutdown
  904. *
  905. *************************************************************************/
  906. static int efx_probe_all(struct efx_nic *efx)
  907. {
  908. struct efx_channel *channel;
  909. int rc;
  910. /* Create NIC */
  911. rc = efx_probe_nic(efx);
  912. if (rc) {
  913. EFX_ERR(efx, "failed to create NIC\n");
  914. goto fail1;
  915. }
  916. /* Create port */
  917. rc = efx_probe_port(efx);
  918. if (rc) {
  919. EFX_ERR(efx, "failed to create port\n");
  920. goto fail2;
  921. }
  922. /* Create channels */
  923. efx_for_each_channel(channel, efx) {
  924. rc = efx_probe_channel(channel);
  925. if (rc) {
  926. EFX_ERR(efx, "failed to create channel %d\n",
  927. channel->channel);
  928. goto fail3;
  929. }
  930. }
  931. efx_set_channel_names(efx);
  932. return 0;
  933. fail3:
  934. efx_for_each_channel(channel, efx)
  935. efx_remove_channel(channel);
  936. efx_remove_port(efx);
  937. fail2:
  938. efx_remove_nic(efx);
  939. fail1:
  940. return rc;
  941. }
  942. /* Called after previous invocation(s) of efx_stop_all, restarts the
  943. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  944. * and ensures that the port is scheduled to be reconfigured.
  945. * This function is safe to call multiple times when the NIC is in any
  946. * state. */
  947. static void efx_start_all(struct efx_nic *efx)
  948. {
  949. struct efx_channel *channel;
  950. EFX_ASSERT_RESET_SERIALISED(efx);
  951. /* Check that it is appropriate to restart the interface. All
  952. * of these flags are safe to read under just the rtnl lock */
  953. if (efx->port_enabled)
  954. return;
  955. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  956. return;
  957. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  958. return;
  959. /* Mark the port as enabled so port reconfigurations can start, then
  960. * restart the transmit interface early so the watchdog timer stops */
  961. efx_start_port(efx);
  962. if (efx_dev_registered(efx))
  963. efx_wake_queue(efx);
  964. efx_for_each_channel(channel, efx)
  965. efx_start_channel(channel);
  966. falcon_enable_interrupts(efx);
  967. /* Start hardware monitor if we're in RUNNING */
  968. if (efx->state == STATE_RUNNING)
  969. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  970. efx_monitor_interval);
  971. falcon_start_nic_stats(efx);
  972. }
  973. /* Flush all delayed work. Should only be called when no more delayed work
  974. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  975. * since we're holding the rtnl_lock at this point. */
  976. static void efx_flush_all(struct efx_nic *efx)
  977. {
  978. struct efx_rx_queue *rx_queue;
  979. /* Make sure the hardware monitor is stopped */
  980. cancel_delayed_work_sync(&efx->monitor_work);
  981. /* Ensure that all RX slow refills are complete. */
  982. efx_for_each_rx_queue(rx_queue, efx)
  983. cancel_delayed_work_sync(&rx_queue->work);
  984. /* Stop scheduled port reconfigurations */
  985. cancel_work_sync(&efx->mac_work);
  986. cancel_work_sync(&efx->phy_work);
  987. }
  988. /* Quiesce hardware and software without bringing the link down.
  989. * Safe to call multiple times, when the nic and interface is in any
  990. * state. The caller is guaranteed to subsequently be in a position
  991. * to modify any hardware and software state they see fit without
  992. * taking locks. */
  993. static void efx_stop_all(struct efx_nic *efx)
  994. {
  995. struct efx_channel *channel;
  996. EFX_ASSERT_RESET_SERIALISED(efx);
  997. /* port_enabled can be read safely under the rtnl lock */
  998. if (!efx->port_enabled)
  999. return;
  1000. falcon_stop_nic_stats(efx);
  1001. /* Disable interrupts and wait for ISR to complete */
  1002. falcon_disable_interrupts(efx);
  1003. if (efx->legacy_irq)
  1004. synchronize_irq(efx->legacy_irq);
  1005. efx_for_each_channel(channel, efx) {
  1006. if (channel->irq)
  1007. synchronize_irq(channel->irq);
  1008. }
  1009. /* Stop all NAPI processing and synchronous rx refills */
  1010. efx_for_each_channel(channel, efx)
  1011. efx_stop_channel(channel);
  1012. /* Stop all asynchronous port reconfigurations. Since all
  1013. * event processing has already been stopped, there is no
  1014. * window to loose phy events */
  1015. efx_stop_port(efx);
  1016. /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
  1017. efx_flush_all(efx);
  1018. /* Isolate the MAC from the TX and RX engines, so that queue
  1019. * flushes will complete in a timely fashion. */
  1020. falcon_deconfigure_mac_wrapper(efx);
  1021. msleep(10); /* Let the Rx FIFO drain */
  1022. falcon_drain_tx_fifo(efx);
  1023. /* Stop the kernel transmit interface late, so the watchdog
  1024. * timer isn't ticking over the flush */
  1025. if (efx_dev_registered(efx)) {
  1026. efx_stop_queue(efx);
  1027. netif_tx_lock_bh(efx->net_dev);
  1028. netif_tx_unlock_bh(efx->net_dev);
  1029. }
  1030. }
  1031. static void efx_remove_all(struct efx_nic *efx)
  1032. {
  1033. struct efx_channel *channel;
  1034. efx_for_each_channel(channel, efx)
  1035. efx_remove_channel(channel);
  1036. efx_remove_port(efx);
  1037. efx_remove_nic(efx);
  1038. }
  1039. /**************************************************************************
  1040. *
  1041. * Interrupt moderation
  1042. *
  1043. **************************************************************************/
  1044. static unsigned irq_mod_ticks(int usecs, int resolution)
  1045. {
  1046. if (usecs <= 0)
  1047. return 0; /* cannot receive interrupts ahead of time :-) */
  1048. if (usecs < resolution)
  1049. return 1; /* never round down to 0 */
  1050. return usecs / resolution;
  1051. }
  1052. /* Set interrupt moderation parameters */
  1053. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
  1054. bool rx_adaptive)
  1055. {
  1056. struct efx_tx_queue *tx_queue;
  1057. struct efx_rx_queue *rx_queue;
  1058. unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
  1059. unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
  1060. EFX_ASSERT_RESET_SERIALISED(efx);
  1061. efx_for_each_tx_queue(tx_queue, efx)
  1062. tx_queue->channel->irq_moderation = tx_ticks;
  1063. efx->irq_rx_adaptive = rx_adaptive;
  1064. efx->irq_rx_moderation = rx_ticks;
  1065. efx_for_each_rx_queue(rx_queue, efx)
  1066. rx_queue->channel->irq_moderation = rx_ticks;
  1067. }
  1068. /**************************************************************************
  1069. *
  1070. * Hardware monitor
  1071. *
  1072. **************************************************************************/
  1073. /* Run periodically off the general workqueue. Serialised against
  1074. * efx_reconfigure_port via the mac_lock */
  1075. static void efx_monitor(struct work_struct *data)
  1076. {
  1077. struct efx_nic *efx = container_of(data, struct efx_nic,
  1078. monitor_work.work);
  1079. EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
  1080. raw_smp_processor_id());
  1081. /* If the mac_lock is already held then it is likely a port
  1082. * reconfiguration is already in place, which will likely do
  1083. * most of the work of check_hw() anyway. */
  1084. if (!mutex_trylock(&efx->mac_lock))
  1085. goto out_requeue;
  1086. if (!efx->port_enabled)
  1087. goto out_unlock;
  1088. falcon_monitor(efx);
  1089. out_unlock:
  1090. mutex_unlock(&efx->mac_lock);
  1091. out_requeue:
  1092. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1093. efx_monitor_interval);
  1094. }
  1095. /**************************************************************************
  1096. *
  1097. * ioctls
  1098. *
  1099. *************************************************************************/
  1100. /* Net device ioctl
  1101. * Context: process, rtnl_lock() held.
  1102. */
  1103. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1104. {
  1105. struct efx_nic *efx = netdev_priv(net_dev);
  1106. struct mii_ioctl_data *data = if_mii(ifr);
  1107. EFX_ASSERT_RESET_SERIALISED(efx);
  1108. /* Convert phy_id from older PRTAD/DEVAD format */
  1109. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1110. (data->phy_id & 0xfc00) == 0x0400)
  1111. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1112. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1113. }
  1114. /**************************************************************************
  1115. *
  1116. * NAPI interface
  1117. *
  1118. **************************************************************************/
  1119. static int efx_init_napi(struct efx_nic *efx)
  1120. {
  1121. struct efx_channel *channel;
  1122. efx_for_each_channel(channel, efx) {
  1123. channel->napi_dev = efx->net_dev;
  1124. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1125. efx_poll, napi_weight);
  1126. }
  1127. return 0;
  1128. }
  1129. static void efx_fini_napi(struct efx_nic *efx)
  1130. {
  1131. struct efx_channel *channel;
  1132. efx_for_each_channel(channel, efx) {
  1133. if (channel->napi_dev)
  1134. netif_napi_del(&channel->napi_str);
  1135. channel->napi_dev = NULL;
  1136. }
  1137. }
  1138. /**************************************************************************
  1139. *
  1140. * Kernel netpoll interface
  1141. *
  1142. *************************************************************************/
  1143. #ifdef CONFIG_NET_POLL_CONTROLLER
  1144. /* Although in the common case interrupts will be disabled, this is not
  1145. * guaranteed. However, all our work happens inside the NAPI callback,
  1146. * so no locking is required.
  1147. */
  1148. static void efx_netpoll(struct net_device *net_dev)
  1149. {
  1150. struct efx_nic *efx = netdev_priv(net_dev);
  1151. struct efx_channel *channel;
  1152. efx_for_each_channel(channel, efx)
  1153. efx_schedule_channel(channel);
  1154. }
  1155. #endif
  1156. /**************************************************************************
  1157. *
  1158. * Kernel net device interface
  1159. *
  1160. *************************************************************************/
  1161. /* Context: process, rtnl_lock() held. */
  1162. static int efx_net_open(struct net_device *net_dev)
  1163. {
  1164. struct efx_nic *efx = netdev_priv(net_dev);
  1165. EFX_ASSERT_RESET_SERIALISED(efx);
  1166. EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
  1167. raw_smp_processor_id());
  1168. if (efx->state == STATE_DISABLED)
  1169. return -EIO;
  1170. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1171. return -EBUSY;
  1172. efx_start_all(efx);
  1173. return 0;
  1174. }
  1175. /* Context: process, rtnl_lock() held.
  1176. * Note that the kernel will ignore our return code; this method
  1177. * should really be a void.
  1178. */
  1179. static int efx_net_stop(struct net_device *net_dev)
  1180. {
  1181. struct efx_nic *efx = netdev_priv(net_dev);
  1182. EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
  1183. raw_smp_processor_id());
  1184. if (efx->state != STATE_DISABLED) {
  1185. /* Stop the device and flush all the channels */
  1186. efx_stop_all(efx);
  1187. efx_fini_channels(efx);
  1188. efx_init_channels(efx);
  1189. }
  1190. return 0;
  1191. }
  1192. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1193. static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
  1194. {
  1195. struct efx_nic *efx = netdev_priv(net_dev);
  1196. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1197. struct net_device_stats *stats = &net_dev->stats;
  1198. spin_lock_bh(&efx->stats_lock);
  1199. falcon_update_nic_stats(efx);
  1200. spin_unlock_bh(&efx->stats_lock);
  1201. stats->rx_packets = mac_stats->rx_packets;
  1202. stats->tx_packets = mac_stats->tx_packets;
  1203. stats->rx_bytes = mac_stats->rx_bytes;
  1204. stats->tx_bytes = mac_stats->tx_bytes;
  1205. stats->multicast = mac_stats->rx_multicast;
  1206. stats->collisions = mac_stats->tx_collision;
  1207. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1208. mac_stats->rx_length_error);
  1209. stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
  1210. stats->rx_crc_errors = mac_stats->rx_bad;
  1211. stats->rx_frame_errors = mac_stats->rx_align_error;
  1212. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1213. stats->rx_missed_errors = mac_stats->rx_missed;
  1214. stats->tx_window_errors = mac_stats->tx_late_collision;
  1215. stats->rx_errors = (stats->rx_length_errors +
  1216. stats->rx_over_errors +
  1217. stats->rx_crc_errors +
  1218. stats->rx_frame_errors +
  1219. stats->rx_fifo_errors +
  1220. stats->rx_missed_errors +
  1221. mac_stats->rx_symbol_error);
  1222. stats->tx_errors = (stats->tx_window_errors +
  1223. mac_stats->tx_bad);
  1224. return stats;
  1225. }
  1226. /* Context: netif_tx_lock held, BHs disabled. */
  1227. static void efx_watchdog(struct net_device *net_dev)
  1228. {
  1229. struct efx_nic *efx = netdev_priv(net_dev);
  1230. EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
  1231. " resetting channels\n",
  1232. atomic_read(&efx->netif_stop_count), efx->port_enabled);
  1233. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1234. }
  1235. /* Context: process, rtnl_lock() held. */
  1236. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1237. {
  1238. struct efx_nic *efx = netdev_priv(net_dev);
  1239. int rc = 0;
  1240. EFX_ASSERT_RESET_SERIALISED(efx);
  1241. if (new_mtu > EFX_MAX_MTU)
  1242. return -EINVAL;
  1243. efx_stop_all(efx);
  1244. EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
  1245. efx_fini_channels(efx);
  1246. net_dev->mtu = new_mtu;
  1247. efx_init_channels(efx);
  1248. efx_start_all(efx);
  1249. return rc;
  1250. }
  1251. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1252. {
  1253. struct efx_nic *efx = netdev_priv(net_dev);
  1254. struct sockaddr *addr = data;
  1255. char *new_addr = addr->sa_data;
  1256. EFX_ASSERT_RESET_SERIALISED(efx);
  1257. if (!is_valid_ether_addr(new_addr)) {
  1258. EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
  1259. new_addr);
  1260. return -EINVAL;
  1261. }
  1262. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1263. /* Reconfigure the MAC */
  1264. efx_reconfigure_port(efx);
  1265. return 0;
  1266. }
  1267. /* Context: netif_addr_lock held, BHs disabled. */
  1268. static void efx_set_multicast_list(struct net_device *net_dev)
  1269. {
  1270. struct efx_nic *efx = netdev_priv(net_dev);
  1271. struct dev_mc_list *mc_list = net_dev->mc_list;
  1272. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1273. u32 crc;
  1274. int bit;
  1275. int i;
  1276. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1277. /* Build multicast hash table */
  1278. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1279. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1280. } else {
  1281. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1282. for (i = 0; i < net_dev->mc_count; i++) {
  1283. crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
  1284. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1285. set_bit_le(bit, mc_hash->byte);
  1286. mc_list = mc_list->next;
  1287. }
  1288. /* Broadcast packets go through the multicast hash filter.
  1289. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1290. * so we always add bit 0xff to the mask.
  1291. */
  1292. set_bit_le(0xff, mc_hash->byte);
  1293. }
  1294. if (efx->port_enabled)
  1295. queue_work(efx->workqueue, &efx->mac_work);
  1296. /* Otherwise efx_start_port() will do this */
  1297. }
  1298. static const struct net_device_ops efx_netdev_ops = {
  1299. .ndo_open = efx_net_open,
  1300. .ndo_stop = efx_net_stop,
  1301. .ndo_get_stats = efx_net_stats,
  1302. .ndo_tx_timeout = efx_watchdog,
  1303. .ndo_start_xmit = efx_hard_start_xmit,
  1304. .ndo_validate_addr = eth_validate_addr,
  1305. .ndo_do_ioctl = efx_ioctl,
  1306. .ndo_change_mtu = efx_change_mtu,
  1307. .ndo_set_mac_address = efx_set_mac_address,
  1308. .ndo_set_multicast_list = efx_set_multicast_list,
  1309. #ifdef CONFIG_NET_POLL_CONTROLLER
  1310. .ndo_poll_controller = efx_netpoll,
  1311. #endif
  1312. };
  1313. static void efx_update_name(struct efx_nic *efx)
  1314. {
  1315. strcpy(efx->name, efx->net_dev->name);
  1316. efx_mtd_rename(efx);
  1317. efx_set_channel_names(efx);
  1318. }
  1319. static int efx_netdev_event(struct notifier_block *this,
  1320. unsigned long event, void *ptr)
  1321. {
  1322. struct net_device *net_dev = ptr;
  1323. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1324. event == NETDEV_CHANGENAME)
  1325. efx_update_name(netdev_priv(net_dev));
  1326. return NOTIFY_DONE;
  1327. }
  1328. static struct notifier_block efx_netdev_notifier = {
  1329. .notifier_call = efx_netdev_event,
  1330. };
  1331. static ssize_t
  1332. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1333. {
  1334. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1335. return sprintf(buf, "%d\n", efx->phy_type);
  1336. }
  1337. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1338. static int efx_register_netdev(struct efx_nic *efx)
  1339. {
  1340. struct net_device *net_dev = efx->net_dev;
  1341. int rc;
  1342. net_dev->watchdog_timeo = 5 * HZ;
  1343. net_dev->irq = efx->pci_dev->irq;
  1344. net_dev->netdev_ops = &efx_netdev_ops;
  1345. SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
  1346. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1347. /* Clear MAC statistics */
  1348. efx->mac_op->update_stats(efx);
  1349. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1350. rtnl_lock();
  1351. rc = dev_alloc_name(net_dev, net_dev->name);
  1352. if (rc < 0)
  1353. goto fail_locked;
  1354. efx_update_name(efx);
  1355. rc = register_netdevice(net_dev);
  1356. if (rc)
  1357. goto fail_locked;
  1358. /* Always start with carrier off; PHY events will detect the link */
  1359. netif_carrier_off(efx->net_dev);
  1360. rtnl_unlock();
  1361. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1362. if (rc) {
  1363. EFX_ERR(efx, "failed to init net dev attributes\n");
  1364. goto fail_registered;
  1365. }
  1366. return 0;
  1367. fail_locked:
  1368. rtnl_unlock();
  1369. EFX_ERR(efx, "could not register net dev\n");
  1370. return rc;
  1371. fail_registered:
  1372. unregister_netdev(net_dev);
  1373. return rc;
  1374. }
  1375. static void efx_unregister_netdev(struct efx_nic *efx)
  1376. {
  1377. struct efx_tx_queue *tx_queue;
  1378. if (!efx->net_dev)
  1379. return;
  1380. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1381. /* Free up any skbs still remaining. This has to happen before
  1382. * we try to unregister the netdev as running their destructors
  1383. * may be needed to get the device ref. count to 0. */
  1384. efx_for_each_tx_queue(tx_queue, efx)
  1385. efx_release_tx_buffers(tx_queue);
  1386. if (efx_dev_registered(efx)) {
  1387. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1388. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1389. unregister_netdev(efx->net_dev);
  1390. }
  1391. }
  1392. /**************************************************************************
  1393. *
  1394. * Device reset and suspend
  1395. *
  1396. **************************************************************************/
  1397. /* Tears down the entire software state and most of the hardware state
  1398. * before reset. */
  1399. void efx_reset_down(struct efx_nic *efx, enum reset_type method,
  1400. struct ethtool_cmd *ecmd)
  1401. {
  1402. EFX_ASSERT_RESET_SERIALISED(efx);
  1403. efx_stop_all(efx);
  1404. mutex_lock(&efx->mac_lock);
  1405. mutex_lock(&efx->spi_lock);
  1406. efx->phy_op->get_settings(efx, ecmd);
  1407. efx_fini_channels(efx);
  1408. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1409. efx->phy_op->fini(efx);
  1410. }
  1411. /* This function will always ensure that the locks acquired in
  1412. * efx_reset_down() are released. A failure return code indicates
  1413. * that we were unable to reinitialise the hardware, and the
  1414. * driver should be disabled. If ok is false, then the rx and tx
  1415. * engines are not restarted, pending a RESET_DISABLE. */
  1416. int efx_reset_up(struct efx_nic *efx, enum reset_type method,
  1417. struct ethtool_cmd *ecmd, bool ok)
  1418. {
  1419. int rc;
  1420. EFX_ASSERT_RESET_SERIALISED(efx);
  1421. rc = falcon_init_nic(efx);
  1422. if (rc) {
  1423. EFX_ERR(efx, "failed to initialise NIC\n");
  1424. ok = false;
  1425. }
  1426. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1427. if (ok) {
  1428. rc = efx->phy_op->init(efx);
  1429. if (rc)
  1430. ok = false;
  1431. }
  1432. if (!ok)
  1433. efx->port_initialized = false;
  1434. }
  1435. if (ok) {
  1436. efx_init_channels(efx);
  1437. if (efx->phy_op->set_settings(efx, ecmd))
  1438. EFX_ERR(efx, "could not restore PHY settings\n");
  1439. }
  1440. mutex_unlock(&efx->spi_lock);
  1441. mutex_unlock(&efx->mac_lock);
  1442. if (ok)
  1443. efx_start_all(efx);
  1444. return rc;
  1445. }
  1446. /* Reset the NIC as transparently as possible. Do not reset the PHY
  1447. * Note that the reset may fail, in which case the card will be left
  1448. * in a most-probably-unusable state.
  1449. *
  1450. * This function will sleep. You cannot reset from within an atomic
  1451. * state; use efx_schedule_reset() instead.
  1452. *
  1453. * Grabs the rtnl_lock.
  1454. */
  1455. static int efx_reset(struct efx_nic *efx)
  1456. {
  1457. struct ethtool_cmd ecmd;
  1458. enum reset_type method = efx->reset_pending;
  1459. int rc = 0;
  1460. /* Serialise with kernel interfaces */
  1461. rtnl_lock();
  1462. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1463. * flag set so that efx_pci_probe_main will be retried */
  1464. if (efx->state != STATE_RUNNING) {
  1465. EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
  1466. goto out_unlock;
  1467. }
  1468. EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
  1469. efx_reset_down(efx, method, &ecmd);
  1470. rc = falcon_reset_hw(efx, method);
  1471. if (rc) {
  1472. EFX_ERR(efx, "failed to reset hardware\n");
  1473. goto out_disable;
  1474. }
  1475. /* Allow resets to be rescheduled. */
  1476. efx->reset_pending = RESET_TYPE_NONE;
  1477. /* Reinitialise bus-mastering, which may have been turned off before
  1478. * the reset was scheduled. This is still appropriate, even in the
  1479. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1480. * can respond to requests. */
  1481. pci_set_master(efx->pci_dev);
  1482. /* Leave device stopped if necessary */
  1483. if (method == RESET_TYPE_DISABLE) {
  1484. efx_reset_up(efx, method, &ecmd, false);
  1485. rc = -EIO;
  1486. } else {
  1487. rc = efx_reset_up(efx, method, &ecmd, true);
  1488. }
  1489. out_disable:
  1490. if (rc) {
  1491. EFX_ERR(efx, "has been disabled\n");
  1492. efx->state = STATE_DISABLED;
  1493. dev_close(efx->net_dev);
  1494. } else {
  1495. EFX_LOG(efx, "reset complete\n");
  1496. }
  1497. out_unlock:
  1498. rtnl_unlock();
  1499. return rc;
  1500. }
  1501. /* The worker thread exists so that code that cannot sleep can
  1502. * schedule a reset for later.
  1503. */
  1504. static void efx_reset_work(struct work_struct *data)
  1505. {
  1506. struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
  1507. efx_reset(nic);
  1508. }
  1509. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1510. {
  1511. enum reset_type method;
  1512. if (efx->reset_pending != RESET_TYPE_NONE) {
  1513. EFX_INFO(efx, "quenching already scheduled reset\n");
  1514. return;
  1515. }
  1516. switch (type) {
  1517. case RESET_TYPE_INVISIBLE:
  1518. case RESET_TYPE_ALL:
  1519. case RESET_TYPE_WORLD:
  1520. case RESET_TYPE_DISABLE:
  1521. method = type;
  1522. break;
  1523. case RESET_TYPE_RX_RECOVERY:
  1524. case RESET_TYPE_RX_DESC_FETCH:
  1525. case RESET_TYPE_TX_DESC_FETCH:
  1526. case RESET_TYPE_TX_SKIP:
  1527. method = RESET_TYPE_INVISIBLE;
  1528. break;
  1529. default:
  1530. method = RESET_TYPE_ALL;
  1531. break;
  1532. }
  1533. if (method != type)
  1534. EFX_LOG(efx, "scheduling %s reset for %s\n",
  1535. RESET_TYPE(method), RESET_TYPE(type));
  1536. else
  1537. EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
  1538. efx->reset_pending = method;
  1539. queue_work(reset_workqueue, &efx->reset_work);
  1540. }
  1541. /**************************************************************************
  1542. *
  1543. * List of NICs we support
  1544. *
  1545. **************************************************************************/
  1546. /* PCI device ID table */
  1547. static struct pci_device_id efx_pci_table[] __devinitdata = {
  1548. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1549. .driver_data = (unsigned long) &falcon_a_nic_type},
  1550. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1551. .driver_data = (unsigned long) &falcon_b_nic_type},
  1552. {0} /* end of list */
  1553. };
  1554. /**************************************************************************
  1555. *
  1556. * Dummy PHY/MAC operations
  1557. *
  1558. * Can be used for some unimplemented operations
  1559. * Needed so all function pointers are valid and do not have to be tested
  1560. * before use
  1561. *
  1562. **************************************************************************/
  1563. int efx_port_dummy_op_int(struct efx_nic *efx)
  1564. {
  1565. return 0;
  1566. }
  1567. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1568. void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  1569. {
  1570. }
  1571. static struct efx_mac_operations efx_dummy_mac_operations = {
  1572. .reconfigure = efx_port_dummy_op_void,
  1573. };
  1574. static struct efx_phy_operations efx_dummy_phy_operations = {
  1575. .init = efx_port_dummy_op_int,
  1576. .reconfigure = efx_port_dummy_op_void,
  1577. .poll = efx_port_dummy_op_void,
  1578. .fini = efx_port_dummy_op_void,
  1579. .clear_interrupt = efx_port_dummy_op_void,
  1580. };
  1581. /**************************************************************************
  1582. *
  1583. * Data housekeeping
  1584. *
  1585. **************************************************************************/
  1586. /* This zeroes out and then fills in the invariants in a struct
  1587. * efx_nic (including all sub-structures).
  1588. */
  1589. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1590. struct pci_dev *pci_dev, struct net_device *net_dev)
  1591. {
  1592. struct efx_channel *channel;
  1593. struct efx_tx_queue *tx_queue;
  1594. struct efx_rx_queue *rx_queue;
  1595. int i;
  1596. /* Initialise common structures */
  1597. memset(efx, 0, sizeof(*efx));
  1598. spin_lock_init(&efx->biu_lock);
  1599. spin_lock_init(&efx->phy_lock);
  1600. mutex_init(&efx->spi_lock);
  1601. INIT_WORK(&efx->reset_work, efx_reset_work);
  1602. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1603. efx->pci_dev = pci_dev;
  1604. efx->state = STATE_INIT;
  1605. efx->reset_pending = RESET_TYPE_NONE;
  1606. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1607. efx->net_dev = net_dev;
  1608. efx->rx_checksum_enabled = true;
  1609. spin_lock_init(&efx->netif_stop_lock);
  1610. spin_lock_init(&efx->stats_lock);
  1611. mutex_init(&efx->mac_lock);
  1612. efx->mac_op = &efx_dummy_mac_operations;
  1613. efx->phy_op = &efx_dummy_phy_operations;
  1614. efx->mdio.dev = net_dev;
  1615. INIT_WORK(&efx->phy_work, efx_phy_work);
  1616. INIT_WORK(&efx->mac_work, efx_mac_work);
  1617. atomic_set(&efx->netif_stop_count, 1);
  1618. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1619. channel = &efx->channel[i];
  1620. channel->efx = efx;
  1621. channel->channel = i;
  1622. channel->work_pending = false;
  1623. }
  1624. for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
  1625. tx_queue = &efx->tx_queue[i];
  1626. tx_queue->efx = efx;
  1627. tx_queue->queue = i;
  1628. tx_queue->buffer = NULL;
  1629. tx_queue->channel = &efx->channel[0]; /* for safety */
  1630. tx_queue->tso_headers_free = NULL;
  1631. }
  1632. for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
  1633. rx_queue = &efx->rx_queue[i];
  1634. rx_queue->efx = efx;
  1635. rx_queue->queue = i;
  1636. rx_queue->channel = &efx->channel[0]; /* for safety */
  1637. rx_queue->buffer = NULL;
  1638. spin_lock_init(&rx_queue->add_lock);
  1639. INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
  1640. }
  1641. efx->type = type;
  1642. /* As close as we can get to guaranteeing that we don't overflow */
  1643. BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
  1644. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1645. /* Higher numbered interrupt modes are less capable! */
  1646. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1647. interrupt_mode);
  1648. /* Would be good to use the net_dev name, but we're too early */
  1649. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1650. pci_name(pci_dev));
  1651. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1652. if (!efx->workqueue)
  1653. return -ENOMEM;
  1654. return 0;
  1655. }
  1656. static void efx_fini_struct(struct efx_nic *efx)
  1657. {
  1658. if (efx->workqueue) {
  1659. destroy_workqueue(efx->workqueue);
  1660. efx->workqueue = NULL;
  1661. }
  1662. }
  1663. /**************************************************************************
  1664. *
  1665. * PCI interface
  1666. *
  1667. **************************************************************************/
  1668. /* Main body of final NIC shutdown code
  1669. * This is called only at module unload (or hotplug removal).
  1670. */
  1671. static void efx_pci_remove_main(struct efx_nic *efx)
  1672. {
  1673. falcon_fini_interrupt(efx);
  1674. efx_fini_channels(efx);
  1675. efx_fini_port(efx);
  1676. efx_fini_napi(efx);
  1677. efx_remove_all(efx);
  1678. }
  1679. /* Final NIC shutdown
  1680. * This is called only at module unload (or hotplug removal).
  1681. */
  1682. static void efx_pci_remove(struct pci_dev *pci_dev)
  1683. {
  1684. struct efx_nic *efx;
  1685. efx = pci_get_drvdata(pci_dev);
  1686. if (!efx)
  1687. return;
  1688. /* Mark the NIC as fini, then stop the interface */
  1689. rtnl_lock();
  1690. efx->state = STATE_FINI;
  1691. dev_close(efx->net_dev);
  1692. /* Allow any queued efx_resets() to complete */
  1693. rtnl_unlock();
  1694. efx_unregister_netdev(efx);
  1695. efx_mtd_remove(efx);
  1696. /* Wait for any scheduled resets to complete. No more will be
  1697. * scheduled from this point because efx_stop_all() has been
  1698. * called, we are no longer registered with driverlink, and
  1699. * the net_device's have been removed. */
  1700. cancel_work_sync(&efx->reset_work);
  1701. efx_pci_remove_main(efx);
  1702. efx_fini_io(efx);
  1703. EFX_LOG(efx, "shutdown successful\n");
  1704. pci_set_drvdata(pci_dev, NULL);
  1705. efx_fini_struct(efx);
  1706. free_netdev(efx->net_dev);
  1707. };
  1708. /* Main body of NIC initialisation
  1709. * This is called at module load (or hotplug insertion, theoretically).
  1710. */
  1711. static int efx_pci_probe_main(struct efx_nic *efx)
  1712. {
  1713. int rc;
  1714. /* Do start-of-day initialisation */
  1715. rc = efx_probe_all(efx);
  1716. if (rc)
  1717. goto fail1;
  1718. rc = efx_init_napi(efx);
  1719. if (rc)
  1720. goto fail2;
  1721. rc = falcon_init_nic(efx);
  1722. if (rc) {
  1723. EFX_ERR(efx, "failed to initialise NIC\n");
  1724. goto fail3;
  1725. }
  1726. rc = efx_init_port(efx);
  1727. if (rc) {
  1728. EFX_ERR(efx, "failed to initialise port\n");
  1729. goto fail4;
  1730. }
  1731. efx_init_channels(efx);
  1732. rc = falcon_init_interrupt(efx);
  1733. if (rc)
  1734. goto fail5;
  1735. return 0;
  1736. fail5:
  1737. efx_fini_channels(efx);
  1738. efx_fini_port(efx);
  1739. fail4:
  1740. fail3:
  1741. efx_fini_napi(efx);
  1742. fail2:
  1743. efx_remove_all(efx);
  1744. fail1:
  1745. return rc;
  1746. }
  1747. /* NIC initialisation
  1748. *
  1749. * This is called at module load (or hotplug insertion,
  1750. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1751. * sets up and registers the network devices with the kernel and hooks
  1752. * the interrupt service routine. It does not prepare the device for
  1753. * transmission; this is left to the first time one of the network
  1754. * interfaces is brought up (i.e. efx_net_open).
  1755. */
  1756. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1757. const struct pci_device_id *entry)
  1758. {
  1759. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1760. struct net_device *net_dev;
  1761. struct efx_nic *efx;
  1762. int i, rc;
  1763. /* Allocate and initialise a struct net_device and struct efx_nic */
  1764. net_dev = alloc_etherdev(sizeof(*efx));
  1765. if (!net_dev)
  1766. return -ENOMEM;
  1767. net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
  1768. NETIF_F_HIGHDMA | NETIF_F_TSO |
  1769. NETIF_F_GRO);
  1770. /* Mask for features that also apply to VLAN devices */
  1771. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1772. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1773. efx = netdev_priv(net_dev);
  1774. pci_set_drvdata(pci_dev, efx);
  1775. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  1776. if (rc)
  1777. goto fail1;
  1778. EFX_INFO(efx, "Solarflare Communications NIC detected\n");
  1779. /* Set up basic I/O (BAR mappings etc) */
  1780. rc = efx_init_io(efx);
  1781. if (rc)
  1782. goto fail2;
  1783. /* No serialisation is required with the reset path because
  1784. * we're in STATE_INIT. */
  1785. for (i = 0; i < 5; i++) {
  1786. rc = efx_pci_probe_main(efx);
  1787. /* Serialise against efx_reset(). No more resets will be
  1788. * scheduled since efx_stop_all() has been called, and we
  1789. * have not and never have been registered with either
  1790. * the rtnetlink or driverlink layers. */
  1791. cancel_work_sync(&efx->reset_work);
  1792. if (rc == 0) {
  1793. if (efx->reset_pending != RESET_TYPE_NONE) {
  1794. /* If there was a scheduled reset during
  1795. * probe, the NIC is probably hosed anyway */
  1796. efx_pci_remove_main(efx);
  1797. rc = -EIO;
  1798. } else {
  1799. break;
  1800. }
  1801. }
  1802. /* Retry if a recoverably reset event has been scheduled */
  1803. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  1804. (efx->reset_pending != RESET_TYPE_ALL))
  1805. goto fail3;
  1806. efx->reset_pending = RESET_TYPE_NONE;
  1807. }
  1808. if (rc) {
  1809. EFX_ERR(efx, "Could not reset NIC\n");
  1810. goto fail4;
  1811. }
  1812. /* Switch to the running state before we expose the device to the OS,
  1813. * so that dev_open()|efx_start_all() will actually start the device */
  1814. efx->state = STATE_RUNNING;
  1815. rc = efx_register_netdev(efx);
  1816. if (rc)
  1817. goto fail5;
  1818. EFX_LOG(efx, "initialisation successful\n");
  1819. rtnl_lock();
  1820. efx_mtd_probe(efx); /* allowed to fail */
  1821. rtnl_unlock();
  1822. return 0;
  1823. fail5:
  1824. efx_pci_remove_main(efx);
  1825. fail4:
  1826. fail3:
  1827. efx_fini_io(efx);
  1828. fail2:
  1829. efx_fini_struct(efx);
  1830. fail1:
  1831. EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
  1832. free_netdev(net_dev);
  1833. return rc;
  1834. }
  1835. static struct pci_driver efx_pci_driver = {
  1836. .name = EFX_DRIVER_NAME,
  1837. .id_table = efx_pci_table,
  1838. .probe = efx_pci_probe,
  1839. .remove = efx_pci_remove,
  1840. };
  1841. /**************************************************************************
  1842. *
  1843. * Kernel module interface
  1844. *
  1845. *************************************************************************/
  1846. module_param(interrupt_mode, uint, 0444);
  1847. MODULE_PARM_DESC(interrupt_mode,
  1848. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  1849. static int __init efx_init_module(void)
  1850. {
  1851. int rc;
  1852. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  1853. rc = register_netdevice_notifier(&efx_netdev_notifier);
  1854. if (rc)
  1855. goto err_notifier;
  1856. refill_workqueue = create_workqueue("sfc_refill");
  1857. if (!refill_workqueue) {
  1858. rc = -ENOMEM;
  1859. goto err_refill;
  1860. }
  1861. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  1862. if (!reset_workqueue) {
  1863. rc = -ENOMEM;
  1864. goto err_reset;
  1865. }
  1866. rc = pci_register_driver(&efx_pci_driver);
  1867. if (rc < 0)
  1868. goto err_pci;
  1869. return 0;
  1870. err_pci:
  1871. destroy_workqueue(reset_workqueue);
  1872. err_reset:
  1873. destroy_workqueue(refill_workqueue);
  1874. err_refill:
  1875. unregister_netdevice_notifier(&efx_netdev_notifier);
  1876. err_notifier:
  1877. return rc;
  1878. }
  1879. static void __exit efx_exit_module(void)
  1880. {
  1881. printk(KERN_INFO "Solarflare NET driver unloading\n");
  1882. pci_unregister_driver(&efx_pci_driver);
  1883. destroy_workqueue(reset_workqueue);
  1884. destroy_workqueue(refill_workqueue);
  1885. unregister_netdevice_notifier(&efx_netdev_notifier);
  1886. }
  1887. module_init(efx_init_module);
  1888. module_exit(efx_exit_module);
  1889. MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
  1890. "Solarflare Communications");
  1891. MODULE_DESCRIPTION("Solarflare Communications network driver");
  1892. MODULE_LICENSE("GPL");
  1893. MODULE_DEVICE_TABLE(pci, efx_pci_table);