ide-io.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/kernel.h>
  29. #include <linux/timer.h>
  30. #include <linux/mm.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/major.h>
  33. #include <linux/errno.h>
  34. #include <linux/genhd.h>
  35. #include <linux/blkpg.h>
  36. #include <linux/slab.h>
  37. #include <linux/init.h>
  38. #include <linux/pci.h>
  39. #include <linux/delay.h>
  40. #include <linux/ide.h>
  41. #include <linux/completion.h>
  42. #include <linux/reboot.h>
  43. #include <linux/cdrom.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/device.h>
  46. #include <linux/kmod.h>
  47. #include <linux/scatterlist.h>
  48. #include <asm/byteorder.h>
  49. #include <asm/irq.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/io.h>
  52. #include <asm/bitops.h>
  53. static int __ide_end_request(ide_drive_t *drive, struct request *rq,
  54. int uptodate, int nr_sectors)
  55. {
  56. int ret = 1;
  57. /*
  58. * if failfast is set on a request, override number of sectors and
  59. * complete the whole request right now
  60. */
  61. if (blk_noretry_request(rq) && end_io_error(uptodate))
  62. nr_sectors = rq->hard_nr_sectors;
  63. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  64. rq->errors = -EIO;
  65. /*
  66. * decide whether to reenable DMA -- 3 is a random magic for now,
  67. * if we DMA timeout more than 3 times, just stay in PIO
  68. */
  69. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  70. drive->state = 0;
  71. HWGROUP(drive)->hwif->ide_dma_on(drive);
  72. }
  73. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  74. add_disk_randomness(rq->rq_disk);
  75. if (!list_empty(&rq->queuelist))
  76. blkdev_dequeue_request(rq);
  77. HWGROUP(drive)->rq = NULL;
  78. end_that_request_last(rq, uptodate);
  79. ret = 0;
  80. }
  81. return ret;
  82. }
  83. /**
  84. * ide_end_request - complete an IDE I/O
  85. * @drive: IDE device for the I/O
  86. * @uptodate:
  87. * @nr_sectors: number of sectors completed
  88. *
  89. * This is our end_request wrapper function. We complete the I/O
  90. * update random number input and dequeue the request, which if
  91. * it was tagged may be out of order.
  92. */
  93. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  94. {
  95. struct request *rq;
  96. unsigned long flags;
  97. int ret = 1;
  98. /*
  99. * room for locking improvements here, the calls below don't
  100. * need the queue lock held at all
  101. */
  102. spin_lock_irqsave(&ide_lock, flags);
  103. rq = HWGROUP(drive)->rq;
  104. if (!nr_sectors)
  105. nr_sectors = rq->hard_cur_sectors;
  106. ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
  107. spin_unlock_irqrestore(&ide_lock, flags);
  108. return ret;
  109. }
  110. EXPORT_SYMBOL(ide_end_request);
  111. /*
  112. * Power Management state machine. This one is rather trivial for now,
  113. * we should probably add more, like switching back to PIO on suspend
  114. * to help some BIOSes, re-do the door locking on resume, etc...
  115. */
  116. enum {
  117. ide_pm_flush_cache = ide_pm_state_start_suspend,
  118. idedisk_pm_standby,
  119. idedisk_pm_restore_pio = ide_pm_state_start_resume,
  120. idedisk_pm_idle,
  121. ide_pm_restore_dma,
  122. };
  123. static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
  124. {
  125. struct request_pm_state *pm = rq->data;
  126. if (drive->media != ide_disk)
  127. return;
  128. switch (pm->pm_step) {
  129. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
  130. if (pm->pm_state == PM_EVENT_FREEZE)
  131. pm->pm_step = ide_pm_state_completed;
  132. else
  133. pm->pm_step = idedisk_pm_standby;
  134. break;
  135. case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
  136. pm->pm_step = ide_pm_state_completed;
  137. break;
  138. case idedisk_pm_restore_pio: /* Resume step 1 complete */
  139. pm->pm_step = idedisk_pm_idle;
  140. break;
  141. case idedisk_pm_idle: /* Resume step 2 (idle) complete */
  142. pm->pm_step = ide_pm_restore_dma;
  143. break;
  144. }
  145. }
  146. static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
  147. {
  148. struct request_pm_state *pm = rq->data;
  149. ide_task_t *args = rq->special;
  150. memset(args, 0, sizeof(*args));
  151. if (drive->media != ide_disk) {
  152. /*
  153. * skip idedisk_pm_restore_pio and idedisk_pm_idle for ATAPI
  154. * devices
  155. */
  156. if (pm->pm_step == idedisk_pm_restore_pio)
  157. pm->pm_step = ide_pm_restore_dma;
  158. }
  159. switch (pm->pm_step) {
  160. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
  161. if (drive->media != ide_disk)
  162. break;
  163. /* Not supported? Switch to next step now. */
  164. if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
  165. ide_complete_power_step(drive, rq, 0, 0);
  166. return ide_stopped;
  167. }
  168. if (ide_id_has_flush_cache_ext(drive->id))
  169. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
  170. else
  171. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
  172. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  173. args->handler = &task_no_data_intr;
  174. return do_rw_taskfile(drive, args);
  175. case idedisk_pm_standby: /* Suspend step 2 (standby) */
  176. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
  177. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  178. args->handler = &task_no_data_intr;
  179. return do_rw_taskfile(drive, args);
  180. case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
  181. if (drive->hwif->tuneproc != NULL)
  182. drive->hwif->tuneproc(drive, 255);
  183. ide_complete_power_step(drive, rq, 0, 0);
  184. return ide_stopped;
  185. case idedisk_pm_idle: /* Resume step 2 (idle) */
  186. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
  187. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  188. args->handler = task_no_data_intr;
  189. return do_rw_taskfile(drive, args);
  190. case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
  191. /*
  192. * Right now, all we do is call hwif->ide_dma_check(drive),
  193. * we could be smarter and check for current xfer_speed
  194. * in struct drive etc...
  195. */
  196. if ((drive->id->capability & 1) == 0)
  197. break;
  198. if (drive->hwif->ide_dma_check == NULL)
  199. break;
  200. ide_set_dma(drive);
  201. break;
  202. }
  203. pm->pm_step = ide_pm_state_completed;
  204. return ide_stopped;
  205. }
  206. /**
  207. * ide_end_dequeued_request - complete an IDE I/O
  208. * @drive: IDE device for the I/O
  209. * @uptodate:
  210. * @nr_sectors: number of sectors completed
  211. *
  212. * Complete an I/O that is no longer on the request queue. This
  213. * typically occurs when we pull the request and issue a REQUEST_SENSE.
  214. * We must still finish the old request but we must not tamper with the
  215. * queue in the meantime.
  216. *
  217. * NOTE: This path does not handle barrier, but barrier is not supported
  218. * on ide-cd anyway.
  219. */
  220. int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
  221. int uptodate, int nr_sectors)
  222. {
  223. unsigned long flags;
  224. int ret = 1;
  225. spin_lock_irqsave(&ide_lock, flags);
  226. BUG_ON(!blk_rq_started(rq));
  227. /*
  228. * if failfast is set on a request, override number of sectors and
  229. * complete the whole request right now
  230. */
  231. if (blk_noretry_request(rq) && end_io_error(uptodate))
  232. nr_sectors = rq->hard_nr_sectors;
  233. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  234. rq->errors = -EIO;
  235. /*
  236. * decide whether to reenable DMA -- 3 is a random magic for now,
  237. * if we DMA timeout more than 3 times, just stay in PIO
  238. */
  239. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  240. drive->state = 0;
  241. HWGROUP(drive)->hwif->ide_dma_on(drive);
  242. }
  243. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  244. add_disk_randomness(rq->rq_disk);
  245. if (blk_rq_tagged(rq))
  246. blk_queue_end_tag(drive->queue, rq);
  247. end_that_request_last(rq, uptodate);
  248. ret = 0;
  249. }
  250. spin_unlock_irqrestore(&ide_lock, flags);
  251. return ret;
  252. }
  253. EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
  254. /**
  255. * ide_complete_pm_request - end the current Power Management request
  256. * @drive: target drive
  257. * @rq: request
  258. *
  259. * This function cleans up the current PM request and stops the queue
  260. * if necessary.
  261. */
  262. static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
  263. {
  264. unsigned long flags;
  265. #ifdef DEBUG_PM
  266. printk("%s: completing PM request, %s\n", drive->name,
  267. blk_pm_suspend_request(rq) ? "suspend" : "resume");
  268. #endif
  269. spin_lock_irqsave(&ide_lock, flags);
  270. if (blk_pm_suspend_request(rq)) {
  271. blk_stop_queue(drive->queue);
  272. } else {
  273. drive->blocked = 0;
  274. blk_start_queue(drive->queue);
  275. }
  276. blkdev_dequeue_request(rq);
  277. HWGROUP(drive)->rq = NULL;
  278. end_that_request_last(rq, 1);
  279. spin_unlock_irqrestore(&ide_lock, flags);
  280. }
  281. /*
  282. * FIXME: probably move this somewhere else, name is bad too :)
  283. */
  284. u64 ide_get_error_location(ide_drive_t *drive, char *args)
  285. {
  286. u32 high, low;
  287. u8 hcyl, lcyl, sect;
  288. u64 sector;
  289. high = 0;
  290. hcyl = args[5];
  291. lcyl = args[4];
  292. sect = args[3];
  293. if (ide_id_has_flush_cache_ext(drive->id)) {
  294. low = (hcyl << 16) | (lcyl << 8) | sect;
  295. HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  296. high = ide_read_24(drive);
  297. } else {
  298. u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
  299. if (cur & 0x40) {
  300. high = cur & 0xf;
  301. low = (hcyl << 16) | (lcyl << 8) | sect;
  302. } else {
  303. low = hcyl * drive->head * drive->sect;
  304. low += lcyl * drive->sect;
  305. low += sect - 1;
  306. }
  307. }
  308. sector = ((u64) high << 24) | low;
  309. return sector;
  310. }
  311. EXPORT_SYMBOL(ide_get_error_location);
  312. /**
  313. * ide_end_drive_cmd - end an explicit drive command
  314. * @drive: command
  315. * @stat: status bits
  316. * @err: error bits
  317. *
  318. * Clean up after success/failure of an explicit drive command.
  319. * These get thrown onto the queue so they are synchronized with
  320. * real I/O operations on the drive.
  321. *
  322. * In LBA48 mode we have to read the register set twice to get
  323. * all the extra information out.
  324. */
  325. void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
  326. {
  327. ide_hwif_t *hwif = HWIF(drive);
  328. unsigned long flags;
  329. struct request *rq;
  330. spin_lock_irqsave(&ide_lock, flags);
  331. rq = HWGROUP(drive)->rq;
  332. spin_unlock_irqrestore(&ide_lock, flags);
  333. if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  334. u8 *args = (u8 *) rq->buffer;
  335. if (rq->errors == 0)
  336. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  337. if (args) {
  338. args[0] = stat;
  339. args[1] = err;
  340. args[2] = hwif->INB(IDE_NSECTOR_REG);
  341. }
  342. } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
  343. u8 *args = (u8 *) rq->buffer;
  344. if (rq->errors == 0)
  345. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  346. if (args) {
  347. args[0] = stat;
  348. args[1] = err;
  349. args[2] = hwif->INB(IDE_NSECTOR_REG);
  350. args[3] = hwif->INB(IDE_SECTOR_REG);
  351. args[4] = hwif->INB(IDE_LCYL_REG);
  352. args[5] = hwif->INB(IDE_HCYL_REG);
  353. args[6] = hwif->INB(IDE_SELECT_REG);
  354. }
  355. } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  356. ide_task_t *args = (ide_task_t *) rq->special;
  357. if (rq->errors == 0)
  358. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  359. if (args) {
  360. if (args->tf_in_flags.b.data) {
  361. u16 data = hwif->INW(IDE_DATA_REG);
  362. args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
  363. args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
  364. }
  365. args->tfRegister[IDE_ERROR_OFFSET] = err;
  366. /* be sure we're looking at the low order bits */
  367. hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
  368. args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  369. args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  370. args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  371. args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  372. args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
  373. args->tfRegister[IDE_STATUS_OFFSET] = stat;
  374. if (drive->addressing == 1) {
  375. hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  376. args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
  377. args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  378. args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  379. args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  380. args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  381. }
  382. }
  383. } else if (blk_pm_request(rq)) {
  384. struct request_pm_state *pm = rq->data;
  385. #ifdef DEBUG_PM
  386. printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
  387. drive->name, rq->pm->pm_step, stat, err);
  388. #endif
  389. ide_complete_power_step(drive, rq, stat, err);
  390. if (pm->pm_step == ide_pm_state_completed)
  391. ide_complete_pm_request(drive, rq);
  392. return;
  393. }
  394. spin_lock_irqsave(&ide_lock, flags);
  395. blkdev_dequeue_request(rq);
  396. HWGROUP(drive)->rq = NULL;
  397. rq->errors = err;
  398. end_that_request_last(rq, !rq->errors);
  399. spin_unlock_irqrestore(&ide_lock, flags);
  400. }
  401. EXPORT_SYMBOL(ide_end_drive_cmd);
  402. /**
  403. * try_to_flush_leftover_data - flush junk
  404. * @drive: drive to flush
  405. *
  406. * try_to_flush_leftover_data() is invoked in response to a drive
  407. * unexpectedly having its DRQ_STAT bit set. As an alternative to
  408. * resetting the drive, this routine tries to clear the condition
  409. * by read a sector's worth of data from the drive. Of course,
  410. * this may not help if the drive is *waiting* for data from *us*.
  411. */
  412. static void try_to_flush_leftover_data (ide_drive_t *drive)
  413. {
  414. int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
  415. if (drive->media != ide_disk)
  416. return;
  417. while (i > 0) {
  418. u32 buffer[16];
  419. u32 wcount = (i > 16) ? 16 : i;
  420. i -= wcount;
  421. HWIF(drive)->ata_input_data(drive, buffer, wcount);
  422. }
  423. }
  424. static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  425. {
  426. if (rq->rq_disk) {
  427. ide_driver_t *drv;
  428. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  429. drv->end_request(drive, 0, 0);
  430. } else
  431. ide_end_request(drive, 0, 0);
  432. }
  433. static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  434. {
  435. ide_hwif_t *hwif = drive->hwif;
  436. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  437. /* other bits are useless when BUSY */
  438. rq->errors |= ERROR_RESET;
  439. } else if (stat & ERR_STAT) {
  440. /* err has different meaning on cdrom and tape */
  441. if (err == ABRT_ERR) {
  442. if (drive->select.b.lba &&
  443. /* some newer drives don't support WIN_SPECIFY */
  444. hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
  445. return ide_stopped;
  446. } else if ((err & BAD_CRC) == BAD_CRC) {
  447. /* UDMA crc error, just retry the operation */
  448. drive->crc_count++;
  449. } else if (err & (BBD_ERR | ECC_ERR)) {
  450. /* retries won't help these */
  451. rq->errors = ERROR_MAX;
  452. } else if (err & TRK0_ERR) {
  453. /* help it find track zero */
  454. rq->errors |= ERROR_RECAL;
  455. }
  456. }
  457. if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
  458. try_to_flush_leftover_data(drive);
  459. if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
  460. ide_kill_rq(drive, rq);
  461. return ide_stopped;
  462. }
  463. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  464. rq->errors |= ERROR_RESET;
  465. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  466. ++rq->errors;
  467. return ide_do_reset(drive);
  468. }
  469. if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
  470. drive->special.b.recalibrate = 1;
  471. ++rq->errors;
  472. return ide_stopped;
  473. }
  474. static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  475. {
  476. ide_hwif_t *hwif = drive->hwif;
  477. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  478. /* other bits are useless when BUSY */
  479. rq->errors |= ERROR_RESET;
  480. } else {
  481. /* add decoding error stuff */
  482. }
  483. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  484. /* force an abort */
  485. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  486. if (rq->errors >= ERROR_MAX) {
  487. ide_kill_rq(drive, rq);
  488. } else {
  489. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  490. ++rq->errors;
  491. return ide_do_reset(drive);
  492. }
  493. ++rq->errors;
  494. }
  495. return ide_stopped;
  496. }
  497. ide_startstop_t
  498. __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  499. {
  500. if (drive->media == ide_disk)
  501. return ide_ata_error(drive, rq, stat, err);
  502. return ide_atapi_error(drive, rq, stat, err);
  503. }
  504. EXPORT_SYMBOL_GPL(__ide_error);
  505. /**
  506. * ide_error - handle an error on the IDE
  507. * @drive: drive the error occurred on
  508. * @msg: message to report
  509. * @stat: status bits
  510. *
  511. * ide_error() takes action based on the error returned by the drive.
  512. * For normal I/O that may well include retries. We deal with
  513. * both new-style (taskfile) and old style command handling here.
  514. * In the case of taskfile command handling there is work left to
  515. * do
  516. */
  517. ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
  518. {
  519. struct request *rq;
  520. u8 err;
  521. err = ide_dump_status(drive, msg, stat);
  522. if ((rq = HWGROUP(drive)->rq) == NULL)
  523. return ide_stopped;
  524. /* retry only "normal" I/O: */
  525. if (!blk_fs_request(rq)) {
  526. rq->errors = 1;
  527. ide_end_drive_cmd(drive, stat, err);
  528. return ide_stopped;
  529. }
  530. if (rq->rq_disk) {
  531. ide_driver_t *drv;
  532. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  533. return drv->error(drive, rq, stat, err);
  534. } else
  535. return __ide_error(drive, rq, stat, err);
  536. }
  537. EXPORT_SYMBOL_GPL(ide_error);
  538. ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
  539. {
  540. if (drive->media != ide_disk)
  541. rq->errors |= ERROR_RESET;
  542. ide_kill_rq(drive, rq);
  543. return ide_stopped;
  544. }
  545. EXPORT_SYMBOL_GPL(__ide_abort);
  546. /**
  547. * ide_abort - abort pending IDE operations
  548. * @drive: drive the error occurred on
  549. * @msg: message to report
  550. *
  551. * ide_abort kills and cleans up when we are about to do a
  552. * host initiated reset on active commands. Longer term we
  553. * want handlers to have sensible abort handling themselves
  554. *
  555. * This differs fundamentally from ide_error because in
  556. * this case the command is doing just fine when we
  557. * blow it away.
  558. */
  559. ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
  560. {
  561. struct request *rq;
  562. if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
  563. return ide_stopped;
  564. /* retry only "normal" I/O: */
  565. if (!blk_fs_request(rq)) {
  566. rq->errors = 1;
  567. ide_end_drive_cmd(drive, BUSY_STAT, 0);
  568. return ide_stopped;
  569. }
  570. if (rq->rq_disk) {
  571. ide_driver_t *drv;
  572. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  573. return drv->abort(drive, rq);
  574. } else
  575. return __ide_abort(drive, rq);
  576. }
  577. /**
  578. * ide_cmd - issue a simple drive command
  579. * @drive: drive the command is for
  580. * @cmd: command byte
  581. * @nsect: sector byte
  582. * @handler: handler for the command completion
  583. *
  584. * Issue a simple drive command with interrupts.
  585. * The drive must be selected beforehand.
  586. */
  587. static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
  588. ide_handler_t *handler)
  589. {
  590. ide_hwif_t *hwif = HWIF(drive);
  591. if (IDE_CONTROL_REG)
  592. hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
  593. SELECT_MASK(drive,0);
  594. hwif->OUTB(nsect,IDE_NSECTOR_REG);
  595. ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
  596. }
  597. /**
  598. * drive_cmd_intr - drive command completion interrupt
  599. * @drive: drive the completion interrupt occurred on
  600. *
  601. * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
  602. * We do any necessary data reading and then wait for the drive to
  603. * go non busy. At that point we may read the error data and complete
  604. * the request
  605. */
  606. static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
  607. {
  608. struct request *rq = HWGROUP(drive)->rq;
  609. ide_hwif_t *hwif = HWIF(drive);
  610. u8 *args = (u8 *) rq->buffer;
  611. u8 stat = hwif->INB(IDE_STATUS_REG);
  612. int retries = 10;
  613. local_irq_enable_in_hardirq();
  614. if ((stat & DRQ_STAT) && args && args[3]) {
  615. u8 io_32bit = drive->io_32bit;
  616. drive->io_32bit = 0;
  617. hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
  618. drive->io_32bit = io_32bit;
  619. while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
  620. udelay(100);
  621. }
  622. if (!OK_STAT(stat, READY_STAT, BAD_STAT))
  623. return ide_error(drive, "drive_cmd", stat);
  624. /* calls ide_end_drive_cmd */
  625. ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
  626. return ide_stopped;
  627. }
  628. static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
  629. {
  630. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  631. task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
  632. task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
  633. task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
  634. task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
  635. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
  636. task->handler = &set_geometry_intr;
  637. }
  638. static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
  639. {
  640. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  641. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
  642. task->handler = &recal_intr;
  643. }
  644. static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
  645. {
  646. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
  647. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
  648. task->handler = &set_multmode_intr;
  649. }
  650. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  651. {
  652. special_t *s = &drive->special;
  653. ide_task_t args;
  654. memset(&args, 0, sizeof(ide_task_t));
  655. args.command_type = IDE_DRIVE_TASK_NO_DATA;
  656. if (s->b.set_geometry) {
  657. s->b.set_geometry = 0;
  658. ide_init_specify_cmd(drive, &args);
  659. } else if (s->b.recalibrate) {
  660. s->b.recalibrate = 0;
  661. ide_init_restore_cmd(drive, &args);
  662. } else if (s->b.set_multmode) {
  663. s->b.set_multmode = 0;
  664. if (drive->mult_req > drive->id->max_multsect)
  665. drive->mult_req = drive->id->max_multsect;
  666. ide_init_setmult_cmd(drive, &args);
  667. } else if (s->all) {
  668. int special = s->all;
  669. s->all = 0;
  670. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  671. return ide_stopped;
  672. }
  673. do_rw_taskfile(drive, &args);
  674. return ide_started;
  675. }
  676. /**
  677. * do_special - issue some special commands
  678. * @drive: drive the command is for
  679. *
  680. * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
  681. * commands to a drive. It used to do much more, but has been scaled
  682. * back.
  683. */
  684. static ide_startstop_t do_special (ide_drive_t *drive)
  685. {
  686. special_t *s = &drive->special;
  687. #ifdef DEBUG
  688. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  689. #endif
  690. if (s->b.set_tune) {
  691. s->b.set_tune = 0;
  692. if (HWIF(drive)->tuneproc != NULL)
  693. HWIF(drive)->tuneproc(drive, drive->tune_req);
  694. return ide_stopped;
  695. } else {
  696. if (drive->media == ide_disk)
  697. return ide_disk_special(drive);
  698. s->all = 0;
  699. drive->mult_req = 0;
  700. return ide_stopped;
  701. }
  702. }
  703. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  704. {
  705. ide_hwif_t *hwif = drive->hwif;
  706. struct scatterlist *sg = hwif->sg_table;
  707. if (hwif->sg_mapped) /* needed by ide-scsi */
  708. return;
  709. if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
  710. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  711. } else {
  712. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  713. hwif->sg_nents = 1;
  714. }
  715. }
  716. EXPORT_SYMBOL_GPL(ide_map_sg);
  717. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  718. {
  719. ide_hwif_t *hwif = drive->hwif;
  720. hwif->nsect = hwif->nleft = rq->nr_sectors;
  721. hwif->cursg = hwif->cursg_ofs = 0;
  722. }
  723. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  724. /**
  725. * execute_drive_command - issue special drive command
  726. * @drive: the drive to issue the command on
  727. * @rq: the request structure holding the command
  728. *
  729. * execute_drive_cmd() issues a special drive command, usually
  730. * initiated by ioctl() from the external hdparm program. The
  731. * command can be a drive command, drive task or taskfile
  732. * operation. Weirdly you can call it with NULL to wait for
  733. * all commands to finish. Don't do this as that is due to change
  734. */
  735. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  736. struct request *rq)
  737. {
  738. ide_hwif_t *hwif = HWIF(drive);
  739. if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  740. ide_task_t *args = rq->special;
  741. if (!args)
  742. goto done;
  743. hwif->data_phase = args->data_phase;
  744. switch (hwif->data_phase) {
  745. case TASKFILE_MULTI_OUT:
  746. case TASKFILE_OUT:
  747. case TASKFILE_MULTI_IN:
  748. case TASKFILE_IN:
  749. ide_init_sg_cmd(drive, rq);
  750. ide_map_sg(drive, rq);
  751. default:
  752. break;
  753. }
  754. if (args->tf_out_flags.all != 0)
  755. return flagged_taskfile(drive, args);
  756. return do_rw_taskfile(drive, args);
  757. } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
  758. u8 *args = rq->buffer;
  759. u8 sel;
  760. if (!args)
  761. goto done;
  762. #ifdef DEBUG
  763. printk("%s: DRIVE_TASK_CMD ", drive->name);
  764. printk("cmd=0x%02x ", args[0]);
  765. printk("fr=0x%02x ", args[1]);
  766. printk("ns=0x%02x ", args[2]);
  767. printk("sc=0x%02x ", args[3]);
  768. printk("lcyl=0x%02x ", args[4]);
  769. printk("hcyl=0x%02x ", args[5]);
  770. printk("sel=0x%02x\n", args[6]);
  771. #endif
  772. hwif->OUTB(args[1], IDE_FEATURE_REG);
  773. hwif->OUTB(args[3], IDE_SECTOR_REG);
  774. hwif->OUTB(args[4], IDE_LCYL_REG);
  775. hwif->OUTB(args[5], IDE_HCYL_REG);
  776. sel = (args[6] & ~0x10);
  777. if (drive->select.b.unit)
  778. sel |= 0x10;
  779. hwif->OUTB(sel, IDE_SELECT_REG);
  780. ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
  781. return ide_started;
  782. } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  783. u8 *args = rq->buffer;
  784. if (!args)
  785. goto done;
  786. #ifdef DEBUG
  787. printk("%s: DRIVE_CMD ", drive->name);
  788. printk("cmd=0x%02x ", args[0]);
  789. printk("sc=0x%02x ", args[1]);
  790. printk("fr=0x%02x ", args[2]);
  791. printk("xx=0x%02x\n", args[3]);
  792. #endif
  793. if (args[0] == WIN_SMART) {
  794. hwif->OUTB(0x4f, IDE_LCYL_REG);
  795. hwif->OUTB(0xc2, IDE_HCYL_REG);
  796. hwif->OUTB(args[2],IDE_FEATURE_REG);
  797. hwif->OUTB(args[1],IDE_SECTOR_REG);
  798. ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
  799. return ide_started;
  800. }
  801. hwif->OUTB(args[2],IDE_FEATURE_REG);
  802. ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
  803. return ide_started;
  804. }
  805. done:
  806. /*
  807. * NULL is actually a valid way of waiting for
  808. * all current requests to be flushed from the queue.
  809. */
  810. #ifdef DEBUG
  811. printk("%s: DRIVE_CMD (null)\n", drive->name);
  812. #endif
  813. ide_end_drive_cmd(drive,
  814. hwif->INB(IDE_STATUS_REG),
  815. hwif->INB(IDE_ERROR_REG));
  816. return ide_stopped;
  817. }
  818. static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
  819. {
  820. struct request_pm_state *pm = rq->data;
  821. if (blk_pm_suspend_request(rq) &&
  822. pm->pm_step == ide_pm_state_start_suspend)
  823. /* Mark drive blocked when starting the suspend sequence. */
  824. drive->blocked = 1;
  825. else if (blk_pm_resume_request(rq) &&
  826. pm->pm_step == ide_pm_state_start_resume) {
  827. /*
  828. * The first thing we do on wakeup is to wait for BSY bit to
  829. * go away (with a looong timeout) as a drive on this hwif may
  830. * just be POSTing itself.
  831. * We do that before even selecting as the "other" device on
  832. * the bus may be broken enough to walk on our toes at this
  833. * point.
  834. */
  835. int rc;
  836. #ifdef DEBUG_PM
  837. printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
  838. #endif
  839. rc = ide_wait_not_busy(HWIF(drive), 35000);
  840. if (rc)
  841. printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
  842. SELECT_DRIVE(drive);
  843. HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
  844. rc = ide_wait_not_busy(HWIF(drive), 100000);
  845. if (rc)
  846. printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
  847. }
  848. }
  849. /**
  850. * start_request - start of I/O and command issuing for IDE
  851. *
  852. * start_request() initiates handling of a new I/O request. It
  853. * accepts commands and I/O (read/write) requests. It also does
  854. * the final remapping for weird stuff like EZDrive. Once
  855. * device mapper can work sector level the EZDrive stuff can go away
  856. *
  857. * FIXME: this function needs a rename
  858. */
  859. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  860. {
  861. ide_startstop_t startstop;
  862. sector_t block;
  863. BUG_ON(!blk_rq_started(rq));
  864. #ifdef DEBUG
  865. printk("%s: start_request: current=0x%08lx\n",
  866. HWIF(drive)->name, (unsigned long) rq);
  867. #endif
  868. /* bail early if we've exceeded max_failures */
  869. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  870. goto kill_rq;
  871. }
  872. block = rq->sector;
  873. if (blk_fs_request(rq) &&
  874. (drive->media == ide_disk || drive->media == ide_floppy)) {
  875. block += drive->sect0;
  876. }
  877. /* Yecch - this will shift the entire interval,
  878. possibly killing some innocent following sector */
  879. if (block == 0 && drive->remap_0_to_1 == 1)
  880. block = 1; /* redirect MBR access to EZ-Drive partn table */
  881. if (blk_pm_request(rq))
  882. ide_check_pm_state(drive, rq);
  883. SELECT_DRIVE(drive);
  884. if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
  885. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  886. return startstop;
  887. }
  888. if (!drive->special.all) {
  889. ide_driver_t *drv;
  890. /*
  891. * We reset the drive so we need to issue a SETFEATURES.
  892. * Do it _after_ do_special() restored device parameters.
  893. */
  894. if (drive->current_speed == 0xff)
  895. ide_config_drive_speed(drive, drive->desired_speed);
  896. if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
  897. rq->cmd_type == REQ_TYPE_ATA_TASK ||
  898. rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
  899. return execute_drive_cmd(drive, rq);
  900. else if (blk_pm_request(rq)) {
  901. struct request_pm_state *pm = rq->data;
  902. #ifdef DEBUG_PM
  903. printk("%s: start_power_step(step: %d)\n",
  904. drive->name, rq->pm->pm_step);
  905. #endif
  906. startstop = ide_start_power_step(drive, rq);
  907. if (startstop == ide_stopped &&
  908. pm->pm_step == ide_pm_state_completed)
  909. ide_complete_pm_request(drive, rq);
  910. return startstop;
  911. }
  912. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  913. return drv->do_request(drive, rq, block);
  914. }
  915. return do_special(drive);
  916. kill_rq:
  917. ide_kill_rq(drive, rq);
  918. return ide_stopped;
  919. }
  920. /**
  921. * ide_stall_queue - pause an IDE device
  922. * @drive: drive to stall
  923. * @timeout: time to stall for (jiffies)
  924. *
  925. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  926. * to the hwgroup by sleeping for timeout jiffies.
  927. */
  928. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  929. {
  930. if (timeout > WAIT_WORSTCASE)
  931. timeout = WAIT_WORSTCASE;
  932. drive->sleep = timeout + jiffies;
  933. drive->sleeping = 1;
  934. }
  935. EXPORT_SYMBOL(ide_stall_queue);
  936. #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
  937. /**
  938. * choose_drive - select a drive to service
  939. * @hwgroup: hardware group to select on
  940. *
  941. * choose_drive() selects the next drive which will be serviced.
  942. * This is necessary because the IDE layer can't issue commands
  943. * to both drives on the same cable, unlike SCSI.
  944. */
  945. static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
  946. {
  947. ide_drive_t *drive, *best;
  948. repeat:
  949. best = NULL;
  950. drive = hwgroup->drive;
  951. /*
  952. * drive is doing pre-flush, ordered write, post-flush sequence. even
  953. * though that is 3 requests, it must be seen as a single transaction.
  954. * we must not preempt this drive until that is complete
  955. */
  956. if (blk_queue_flushing(drive->queue)) {
  957. /*
  958. * small race where queue could get replugged during
  959. * the 3-request flush cycle, just yank the plug since
  960. * we want it to finish asap
  961. */
  962. blk_remove_plug(drive->queue);
  963. return drive;
  964. }
  965. do {
  966. if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
  967. && !elv_queue_empty(drive->queue)) {
  968. if (!best
  969. || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
  970. || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
  971. {
  972. if (!blk_queue_plugged(drive->queue))
  973. best = drive;
  974. }
  975. }
  976. } while ((drive = drive->next) != hwgroup->drive);
  977. if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
  978. long t = (signed long)(WAKEUP(best) - jiffies);
  979. if (t >= WAIT_MIN_SLEEP) {
  980. /*
  981. * We *may* have some time to spare, but first let's see if
  982. * someone can potentially benefit from our nice mood today..
  983. */
  984. drive = best->next;
  985. do {
  986. if (!drive->sleeping
  987. && time_before(jiffies - best->service_time, WAKEUP(drive))
  988. && time_before(WAKEUP(drive), jiffies + t))
  989. {
  990. ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
  991. goto repeat;
  992. }
  993. } while ((drive = drive->next) != best);
  994. }
  995. }
  996. return best;
  997. }
  998. /*
  999. * Issue a new request to a drive from hwgroup
  1000. * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
  1001. *
  1002. * A hwgroup is a serialized group of IDE interfaces. Usually there is
  1003. * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
  1004. * may have both interfaces in a single hwgroup to "serialize" access.
  1005. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
  1006. * together into one hwgroup for serialized access.
  1007. *
  1008. * Note also that several hwgroups can end up sharing a single IRQ,
  1009. * possibly along with many other devices. This is especially common in
  1010. * PCI-based systems with off-board IDE controller cards.
  1011. *
  1012. * The IDE driver uses the single global ide_lock spinlock to protect
  1013. * access to the request queues, and to protect the hwgroup->busy flag.
  1014. *
  1015. * The first thread into the driver for a particular hwgroup sets the
  1016. * hwgroup->busy flag to indicate that this hwgroup is now active,
  1017. * and then initiates processing of the top request from the request queue.
  1018. *
  1019. * Other threads attempting entry notice the busy setting, and will simply
  1020. * queue their new requests and exit immediately. Note that hwgroup->busy
  1021. * remains set even when the driver is merely awaiting the next interrupt.
  1022. * Thus, the meaning is "this hwgroup is busy processing a request".
  1023. *
  1024. * When processing of a request completes, the completing thread or IRQ-handler
  1025. * will start the next request from the queue. If no more work remains,
  1026. * the driver will clear the hwgroup->busy flag and exit.
  1027. *
  1028. * The ide_lock (spinlock) is used to protect all access to the
  1029. * hwgroup->busy flag, but is otherwise not needed for most processing in
  1030. * the driver. This makes the driver much more friendlier to shared IRQs
  1031. * than previous designs, while remaining 100% (?) SMP safe and capable.
  1032. */
  1033. static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
  1034. {
  1035. ide_drive_t *drive;
  1036. ide_hwif_t *hwif;
  1037. struct request *rq;
  1038. ide_startstop_t startstop;
  1039. int loops = 0;
  1040. /* for atari only: POSSIBLY BROKEN HERE(?) */
  1041. ide_get_lock(ide_intr, hwgroup);
  1042. /* caller must own ide_lock */
  1043. BUG_ON(!irqs_disabled());
  1044. while (!hwgroup->busy) {
  1045. hwgroup->busy = 1;
  1046. drive = choose_drive(hwgroup);
  1047. if (drive == NULL) {
  1048. int sleeping = 0;
  1049. unsigned long sleep = 0; /* shut up, gcc */
  1050. hwgroup->rq = NULL;
  1051. drive = hwgroup->drive;
  1052. do {
  1053. if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
  1054. sleeping = 1;
  1055. sleep = drive->sleep;
  1056. }
  1057. } while ((drive = drive->next) != hwgroup->drive);
  1058. if (sleeping) {
  1059. /*
  1060. * Take a short snooze, and then wake up this hwgroup again.
  1061. * This gives other hwgroups on the same a chance to
  1062. * play fairly with us, just in case there are big differences
  1063. * in relative throughputs.. don't want to hog the cpu too much.
  1064. */
  1065. if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
  1066. sleep = jiffies + WAIT_MIN_SLEEP;
  1067. #if 1
  1068. if (timer_pending(&hwgroup->timer))
  1069. printk(KERN_CRIT "ide_set_handler: timer already active\n");
  1070. #endif
  1071. /* so that ide_timer_expiry knows what to do */
  1072. hwgroup->sleeping = 1;
  1073. hwgroup->req_gen_timer = hwgroup->req_gen;
  1074. mod_timer(&hwgroup->timer, sleep);
  1075. /* we purposely leave hwgroup->busy==1
  1076. * while sleeping */
  1077. } else {
  1078. /* Ugly, but how can we sleep for the lock
  1079. * otherwise? perhaps from tq_disk?
  1080. */
  1081. /* for atari only */
  1082. ide_release_lock();
  1083. hwgroup->busy = 0;
  1084. }
  1085. /* no more work for this hwgroup (for now) */
  1086. return;
  1087. }
  1088. again:
  1089. hwif = HWIF(drive);
  1090. if (hwgroup->hwif->sharing_irq &&
  1091. hwif != hwgroup->hwif &&
  1092. hwif->io_ports[IDE_CONTROL_OFFSET]) {
  1093. /* set nIEN for previous hwif */
  1094. SELECT_INTERRUPT(drive);
  1095. }
  1096. hwgroup->hwif = hwif;
  1097. hwgroup->drive = drive;
  1098. drive->sleeping = 0;
  1099. drive->service_start = jiffies;
  1100. if (blk_queue_plugged(drive->queue)) {
  1101. printk(KERN_ERR "ide: huh? queue was plugged!\n");
  1102. break;
  1103. }
  1104. /*
  1105. * we know that the queue isn't empty, but this can happen
  1106. * if the q->prep_rq_fn() decides to kill a request
  1107. */
  1108. rq = elv_next_request(drive->queue);
  1109. if (!rq) {
  1110. hwgroup->busy = 0;
  1111. break;
  1112. }
  1113. /*
  1114. * Sanity: don't accept a request that isn't a PM request
  1115. * if we are currently power managed. This is very important as
  1116. * blk_stop_queue() doesn't prevent the elv_next_request()
  1117. * above to return us whatever is in the queue. Since we call
  1118. * ide_do_request() ourselves, we end up taking requests while
  1119. * the queue is blocked...
  1120. *
  1121. * We let requests forced at head of queue with ide-preempt
  1122. * though. I hope that doesn't happen too much, hopefully not
  1123. * unless the subdriver triggers such a thing in its own PM
  1124. * state machine.
  1125. *
  1126. * We count how many times we loop here to make sure we service
  1127. * all drives in the hwgroup without looping for ever
  1128. */
  1129. if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
  1130. drive = drive->next ? drive->next : hwgroup->drive;
  1131. if (loops++ < 4 && !blk_queue_plugged(drive->queue))
  1132. goto again;
  1133. /* We clear busy, there should be no pending ATA command at this point. */
  1134. hwgroup->busy = 0;
  1135. break;
  1136. }
  1137. hwgroup->rq = rq;
  1138. /*
  1139. * Some systems have trouble with IDE IRQs arriving while
  1140. * the driver is still setting things up. So, here we disable
  1141. * the IRQ used by this interface while the request is being started.
  1142. * This may look bad at first, but pretty much the same thing
  1143. * happens anyway when any interrupt comes in, IDE or otherwise
  1144. * -- the kernel masks the IRQ while it is being handled.
  1145. */
  1146. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1147. disable_irq_nosync(hwif->irq);
  1148. spin_unlock(&ide_lock);
  1149. local_irq_enable_in_hardirq();
  1150. /* allow other IRQs while we start this request */
  1151. startstop = start_request(drive, rq);
  1152. spin_lock_irq(&ide_lock);
  1153. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1154. enable_irq(hwif->irq);
  1155. if (startstop == ide_stopped)
  1156. hwgroup->busy = 0;
  1157. }
  1158. }
  1159. /*
  1160. * Passes the stuff to ide_do_request
  1161. */
  1162. void do_ide_request(request_queue_t *q)
  1163. {
  1164. ide_drive_t *drive = q->queuedata;
  1165. ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
  1166. }
  1167. /*
  1168. * un-busy the hwgroup etc, and clear any pending DMA status. we want to
  1169. * retry the current request in pio mode instead of risking tossing it
  1170. * all away
  1171. */
  1172. static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  1173. {
  1174. ide_hwif_t *hwif = HWIF(drive);
  1175. struct request *rq;
  1176. ide_startstop_t ret = ide_stopped;
  1177. /*
  1178. * end current dma transaction
  1179. */
  1180. if (error < 0) {
  1181. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  1182. (void)HWIF(drive)->ide_dma_end(drive);
  1183. ret = ide_error(drive, "dma timeout error",
  1184. hwif->INB(IDE_STATUS_REG));
  1185. } else {
  1186. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  1187. (void) hwif->ide_dma_timeout(drive);
  1188. }
  1189. /*
  1190. * disable dma for now, but remember that we did so because of
  1191. * a timeout -- we'll reenable after we finish this next request
  1192. * (or rather the first chunk of it) in pio.
  1193. */
  1194. drive->retry_pio++;
  1195. drive->state = DMA_PIO_RETRY;
  1196. hwif->dma_off_quietly(drive);
  1197. /*
  1198. * un-busy drive etc (hwgroup->busy is cleared on return) and
  1199. * make sure request is sane
  1200. */
  1201. rq = HWGROUP(drive)->rq;
  1202. if (!rq)
  1203. goto out;
  1204. HWGROUP(drive)->rq = NULL;
  1205. rq->errors = 0;
  1206. if (!rq->bio)
  1207. goto out;
  1208. rq->sector = rq->bio->bi_sector;
  1209. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  1210. rq->hard_cur_sectors = rq->current_nr_sectors;
  1211. rq->buffer = bio_data(rq->bio);
  1212. out:
  1213. return ret;
  1214. }
  1215. /**
  1216. * ide_timer_expiry - handle lack of an IDE interrupt
  1217. * @data: timer callback magic (hwgroup)
  1218. *
  1219. * An IDE command has timed out before the expected drive return
  1220. * occurred. At this point we attempt to clean up the current
  1221. * mess. If the current handler includes an expiry handler then
  1222. * we invoke the expiry handler, and providing it is happy the
  1223. * work is done. If that fails we apply generic recovery rules
  1224. * invoking the handler and checking the drive DMA status. We
  1225. * have an excessively incestuous relationship with the DMA
  1226. * logic that wants cleaning up.
  1227. */
  1228. void ide_timer_expiry (unsigned long data)
  1229. {
  1230. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
  1231. ide_handler_t *handler;
  1232. ide_expiry_t *expiry;
  1233. unsigned long flags;
  1234. unsigned long wait = -1;
  1235. spin_lock_irqsave(&ide_lock, flags);
  1236. if (((handler = hwgroup->handler) == NULL) ||
  1237. (hwgroup->req_gen != hwgroup->req_gen_timer)) {
  1238. /*
  1239. * Either a marginal timeout occurred
  1240. * (got the interrupt just as timer expired),
  1241. * or we were "sleeping" to give other devices a chance.
  1242. * Either way, we don't really want to complain about anything.
  1243. */
  1244. if (hwgroup->sleeping) {
  1245. hwgroup->sleeping = 0;
  1246. hwgroup->busy = 0;
  1247. }
  1248. } else {
  1249. ide_drive_t *drive = hwgroup->drive;
  1250. if (!drive) {
  1251. printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
  1252. hwgroup->handler = NULL;
  1253. } else {
  1254. ide_hwif_t *hwif;
  1255. ide_startstop_t startstop = ide_stopped;
  1256. if (!hwgroup->busy) {
  1257. hwgroup->busy = 1; /* paranoia */
  1258. printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
  1259. }
  1260. if ((expiry = hwgroup->expiry) != NULL) {
  1261. /* continue */
  1262. if ((wait = expiry(drive)) > 0) {
  1263. /* reset timer */
  1264. hwgroup->timer.expires = jiffies + wait;
  1265. hwgroup->req_gen_timer = hwgroup->req_gen;
  1266. add_timer(&hwgroup->timer);
  1267. spin_unlock_irqrestore(&ide_lock, flags);
  1268. return;
  1269. }
  1270. }
  1271. hwgroup->handler = NULL;
  1272. /*
  1273. * We need to simulate a real interrupt when invoking
  1274. * the handler() function, which means we need to
  1275. * globally mask the specific IRQ:
  1276. */
  1277. spin_unlock(&ide_lock);
  1278. hwif = HWIF(drive);
  1279. #if DISABLE_IRQ_NOSYNC
  1280. disable_irq_nosync(hwif->irq);
  1281. #else
  1282. /* disable_irq_nosync ?? */
  1283. disable_irq(hwif->irq);
  1284. #endif /* DISABLE_IRQ_NOSYNC */
  1285. /* local CPU only,
  1286. * as if we were handling an interrupt */
  1287. local_irq_disable();
  1288. if (hwgroup->polling) {
  1289. startstop = handler(drive);
  1290. } else if (drive_is_ready(drive)) {
  1291. if (drive->waiting_for_dma)
  1292. (void) hwgroup->hwif->ide_dma_lostirq(drive);
  1293. (void)ide_ack_intr(hwif);
  1294. printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
  1295. startstop = handler(drive);
  1296. } else {
  1297. if (drive->waiting_for_dma) {
  1298. startstop = ide_dma_timeout_retry(drive, wait);
  1299. } else
  1300. startstop =
  1301. ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
  1302. }
  1303. drive->service_time = jiffies - drive->service_start;
  1304. spin_lock_irq(&ide_lock);
  1305. enable_irq(hwif->irq);
  1306. if (startstop == ide_stopped)
  1307. hwgroup->busy = 0;
  1308. }
  1309. }
  1310. ide_do_request(hwgroup, IDE_NO_IRQ);
  1311. spin_unlock_irqrestore(&ide_lock, flags);
  1312. }
  1313. /**
  1314. * unexpected_intr - handle an unexpected IDE interrupt
  1315. * @irq: interrupt line
  1316. * @hwgroup: hwgroup being processed
  1317. *
  1318. * There's nothing really useful we can do with an unexpected interrupt,
  1319. * other than reading the status register (to clear it), and logging it.
  1320. * There should be no way that an irq can happen before we're ready for it,
  1321. * so we needn't worry much about losing an "important" interrupt here.
  1322. *
  1323. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  1324. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  1325. * looks "good", we just ignore the interrupt completely.
  1326. *
  1327. * This routine assumes __cli() is in effect when called.
  1328. *
  1329. * If an unexpected interrupt happens on irq15 while we are handling irq14
  1330. * and if the two interfaces are "serialized" (CMD640), then it looks like
  1331. * we could screw up by interfering with a new request being set up for
  1332. * irq15.
  1333. *
  1334. * In reality, this is a non-issue. The new command is not sent unless
  1335. * the drive is ready to accept one, in which case we know the drive is
  1336. * not trying to interrupt us. And ide_set_handler() is always invoked
  1337. * before completing the issuance of any new drive command, so we will not
  1338. * be accidentally invoked as a result of any valid command completion
  1339. * interrupt.
  1340. *
  1341. * Note that we must walk the entire hwgroup here. We know which hwif
  1342. * is doing the current command, but we don't know which hwif burped
  1343. * mysteriously.
  1344. */
  1345. static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
  1346. {
  1347. u8 stat;
  1348. ide_hwif_t *hwif = hwgroup->hwif;
  1349. /*
  1350. * handle the unexpected interrupt
  1351. */
  1352. do {
  1353. if (hwif->irq == irq) {
  1354. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1355. if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
  1356. /* Try to not flood the console with msgs */
  1357. static unsigned long last_msgtime, count;
  1358. ++count;
  1359. if (time_after(jiffies, last_msgtime + HZ)) {
  1360. last_msgtime = jiffies;
  1361. printk(KERN_ERR "%s%s: unexpected interrupt, "
  1362. "status=0x%02x, count=%ld\n",
  1363. hwif->name,
  1364. (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
  1365. }
  1366. }
  1367. }
  1368. } while ((hwif = hwif->next) != hwgroup->hwif);
  1369. }
  1370. /**
  1371. * ide_intr - default IDE interrupt handler
  1372. * @irq: interrupt number
  1373. * @dev_id: hwif group
  1374. * @regs: unused weirdness from the kernel irq layer
  1375. *
  1376. * This is the default IRQ handler for the IDE layer. You should
  1377. * not need to override it. If you do be aware it is subtle in
  1378. * places
  1379. *
  1380. * hwgroup->hwif is the interface in the group currently performing
  1381. * a command. hwgroup->drive is the drive and hwgroup->handler is
  1382. * the IRQ handler to call. As we issue a command the handlers
  1383. * step through multiple states, reassigning the handler to the
  1384. * next step in the process. Unlike a smart SCSI controller IDE
  1385. * expects the main processor to sequence the various transfer
  1386. * stages. We also manage a poll timer to catch up with most
  1387. * timeout situations. There are still a few where the handlers
  1388. * don't ever decide to give up.
  1389. *
  1390. * The handler eventually returns ide_stopped to indicate the
  1391. * request completed. At this point we issue the next request
  1392. * on the hwgroup and the process begins again.
  1393. */
  1394. irqreturn_t ide_intr (int irq, void *dev_id)
  1395. {
  1396. unsigned long flags;
  1397. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
  1398. ide_hwif_t *hwif;
  1399. ide_drive_t *drive;
  1400. ide_handler_t *handler;
  1401. ide_startstop_t startstop;
  1402. spin_lock_irqsave(&ide_lock, flags);
  1403. hwif = hwgroup->hwif;
  1404. if (!ide_ack_intr(hwif)) {
  1405. spin_unlock_irqrestore(&ide_lock, flags);
  1406. return IRQ_NONE;
  1407. }
  1408. if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
  1409. /*
  1410. * Not expecting an interrupt from this drive.
  1411. * That means this could be:
  1412. * (1) an interrupt from another PCI device
  1413. * sharing the same PCI INT# as us.
  1414. * or (2) a drive just entered sleep or standby mode,
  1415. * and is interrupting to let us know.
  1416. * or (3) a spurious interrupt of unknown origin.
  1417. *
  1418. * For PCI, we cannot tell the difference,
  1419. * so in that case we just ignore it and hope it goes away.
  1420. *
  1421. * FIXME: unexpected_intr should be hwif-> then we can
  1422. * remove all the ifdef PCI crap
  1423. */
  1424. #ifdef CONFIG_BLK_DEV_IDEPCI
  1425. if (hwif->pci_dev && !hwif->pci_dev->vendor)
  1426. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1427. {
  1428. /*
  1429. * Probably not a shared PCI interrupt,
  1430. * so we can safely try to do something about it:
  1431. */
  1432. unexpected_intr(irq, hwgroup);
  1433. #ifdef CONFIG_BLK_DEV_IDEPCI
  1434. } else {
  1435. /*
  1436. * Whack the status register, just in case
  1437. * we have a leftover pending IRQ.
  1438. */
  1439. (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1440. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1441. }
  1442. spin_unlock_irqrestore(&ide_lock, flags);
  1443. return IRQ_NONE;
  1444. }
  1445. drive = hwgroup->drive;
  1446. if (!drive) {
  1447. /*
  1448. * This should NEVER happen, and there isn't much
  1449. * we could do about it here.
  1450. *
  1451. * [Note - this can occur if the drive is hot unplugged]
  1452. */
  1453. spin_unlock_irqrestore(&ide_lock, flags);
  1454. return IRQ_HANDLED;
  1455. }
  1456. if (!drive_is_ready(drive)) {
  1457. /*
  1458. * This happens regularly when we share a PCI IRQ with
  1459. * another device. Unfortunately, it can also happen
  1460. * with some buggy drives that trigger the IRQ before
  1461. * their status register is up to date. Hopefully we have
  1462. * enough advance overhead that the latter isn't a problem.
  1463. */
  1464. spin_unlock_irqrestore(&ide_lock, flags);
  1465. return IRQ_NONE;
  1466. }
  1467. if (!hwgroup->busy) {
  1468. hwgroup->busy = 1; /* paranoia */
  1469. printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
  1470. }
  1471. hwgroup->handler = NULL;
  1472. hwgroup->req_gen++;
  1473. del_timer(&hwgroup->timer);
  1474. spin_unlock(&ide_lock);
  1475. /* Some controllers might set DMA INTR no matter DMA or PIO;
  1476. * bmdma status might need to be cleared even for
  1477. * PIO interrupts to prevent spurious/lost irq.
  1478. */
  1479. if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
  1480. /* ide_dma_end() needs bmdma status for error checking.
  1481. * So, skip clearing bmdma status here and leave it
  1482. * to ide_dma_end() if this is dma interrupt.
  1483. */
  1484. hwif->ide_dma_clear_irq(drive);
  1485. if (drive->unmask)
  1486. local_irq_enable_in_hardirq();
  1487. /* service this interrupt, may set handler for next interrupt */
  1488. startstop = handler(drive);
  1489. spin_lock_irq(&ide_lock);
  1490. /*
  1491. * Note that handler() may have set things up for another
  1492. * interrupt to occur soon, but it cannot happen until
  1493. * we exit from this routine, because it will be the
  1494. * same irq as is currently being serviced here, and Linux
  1495. * won't allow another of the same (on any CPU) until we return.
  1496. */
  1497. drive->service_time = jiffies - drive->service_start;
  1498. if (startstop == ide_stopped) {
  1499. if (hwgroup->handler == NULL) { /* paranoia */
  1500. hwgroup->busy = 0;
  1501. ide_do_request(hwgroup, hwif->irq);
  1502. } else {
  1503. printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
  1504. "on exit\n", drive->name);
  1505. }
  1506. }
  1507. spin_unlock_irqrestore(&ide_lock, flags);
  1508. return IRQ_HANDLED;
  1509. }
  1510. /**
  1511. * ide_init_drive_cmd - initialize a drive command request
  1512. * @rq: request object
  1513. *
  1514. * Initialize a request before we fill it in and send it down to
  1515. * ide_do_drive_cmd. Commands must be set up by this function. Right
  1516. * now it doesn't do a lot, but if that changes abusers will have a
  1517. * nasty surprise.
  1518. */
  1519. void ide_init_drive_cmd (struct request *rq)
  1520. {
  1521. memset(rq, 0, sizeof(*rq));
  1522. rq->cmd_type = REQ_TYPE_ATA_CMD;
  1523. rq->ref_count = 1;
  1524. }
  1525. EXPORT_SYMBOL(ide_init_drive_cmd);
  1526. /**
  1527. * ide_do_drive_cmd - issue IDE special command
  1528. * @drive: device to issue command
  1529. * @rq: request to issue
  1530. * @action: action for processing
  1531. *
  1532. * This function issues a special IDE device request
  1533. * onto the request queue.
  1534. *
  1535. * If action is ide_wait, then the rq is queued at the end of the
  1536. * request queue, and the function sleeps until it has been processed.
  1537. * This is for use when invoked from an ioctl handler.
  1538. *
  1539. * If action is ide_preempt, then the rq is queued at the head of
  1540. * the request queue, displacing the currently-being-processed
  1541. * request and this function returns immediately without waiting
  1542. * for the new rq to be completed. This is VERY DANGEROUS, and is
  1543. * intended for careful use by the ATAPI tape/cdrom driver code.
  1544. *
  1545. * If action is ide_end, then the rq is queued at the end of the
  1546. * request queue, and the function returns immediately without waiting
  1547. * for the new rq to be completed. This is again intended for careful
  1548. * use by the ATAPI tape/cdrom driver code.
  1549. */
  1550. int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
  1551. {
  1552. unsigned long flags;
  1553. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  1554. DECLARE_COMPLETION_ONSTACK(wait);
  1555. int where = ELEVATOR_INSERT_BACK, err;
  1556. int must_wait = (action == ide_wait || action == ide_head_wait);
  1557. rq->errors = 0;
  1558. /*
  1559. * we need to hold an extra reference to request for safe inspection
  1560. * after completion
  1561. */
  1562. if (must_wait) {
  1563. rq->ref_count++;
  1564. rq->end_io_data = &wait;
  1565. rq->end_io = blk_end_sync_rq;
  1566. }
  1567. spin_lock_irqsave(&ide_lock, flags);
  1568. if (action == ide_preempt)
  1569. hwgroup->rq = NULL;
  1570. if (action == ide_preempt || action == ide_head_wait) {
  1571. where = ELEVATOR_INSERT_FRONT;
  1572. rq->cmd_flags |= REQ_PREEMPT;
  1573. }
  1574. __elv_add_request(drive->queue, rq, where, 0);
  1575. ide_do_request(hwgroup, IDE_NO_IRQ);
  1576. spin_unlock_irqrestore(&ide_lock, flags);
  1577. err = 0;
  1578. if (must_wait) {
  1579. wait_for_completion(&wait);
  1580. if (rq->errors)
  1581. err = -EIO;
  1582. blk_put_request(rq);
  1583. }
  1584. return err;
  1585. }
  1586. EXPORT_SYMBOL(ide_do_drive_cmd);