ngene-core.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  26. * 02110-1301, USA
  27. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  28. */
  29. #include <linux/module.h>
  30. #include <linux/init.h>
  31. #include <linux/delay.h>
  32. #include <linux/slab.h>
  33. #include <linux/poll.h>
  34. #include <asm/io.h>
  35. #include <asm/div64.h>
  36. #include <linux/pci.h>
  37. #include <linux/pci_ids.h>
  38. #include <linux/smp_lock.h>
  39. #include <linux/timer.h>
  40. #include <linux/version.h>
  41. #include <linux/byteorder/generic.h>
  42. #include <linux/firmware.h>
  43. #include "ngene.h"
  44. #include "stv6110x.h"
  45. #include "stv090x.h"
  46. #include "lnbh24.h"
  47. #ifdef NGENE_COMMAND_API
  48. #include "ngene-ioctls.h"
  49. #endif
  50. static int copy_eeprom;
  51. module_param(copy_eeprom, int, 0444);
  52. MODULE_PARM_DESC(copy_eeprom, "Copy eeprom.");
  53. static int ngene_fw_debug;
  54. module_param(ngene_fw_debug, int, 0444);
  55. MODULE_PARM_DESC(ngene_fw_debug, "Debug firmware.");
  56. static int debug;
  57. module_param(debug, int, 0444);
  58. MODULE_PARM_DESC(debug, "Print debugging information.");
  59. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  60. #define dprintk if (debug) printk
  61. #define DEVICE_NAME "ngene"
  62. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  63. #define ngwritel(dat, adr) writel((dat), (char *)(dev->iomem + (adr)))
  64. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  65. #define ngreadl(adr) readl(dev->iomem + (adr))
  66. #define ngreadb(adr) readb(dev->iomem + (adr))
  67. #define ngcpyto(adr, src, count) memcpy_toio((char *) \
  68. (dev->iomem + (adr)), (src), (count))
  69. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), (char *) \
  70. (dev->iomem + (adr)), (count))
  71. /****************************************************************************/
  72. /* Functions with missing kernel exports ************************************/
  73. /****************************************************************************/
  74. /* yeah, let's throw out all exports which are not used in kernel ... */
  75. void my_dvb_ringbuffer_flush(struct dvb_ringbuffer *rbuf)
  76. {
  77. rbuf->pread = rbuf->pwrite;
  78. rbuf->error = 0;
  79. }
  80. /****************************************************************************/
  81. /* nGene interrupt handler **************************************************/
  82. /****************************************************************************/
  83. static void event_tasklet(unsigned long data)
  84. {
  85. struct ngene *dev = (struct ngene *)data;
  86. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  87. struct EVENT_BUFFER Event =
  88. dev->EventQueue[dev->EventQueueReadIndex];
  89. dev->EventQueueReadIndex =
  90. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  91. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  92. dev->TxEventNotify(dev, Event.TimeStamp);
  93. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  94. dev->RxEventNotify(dev, Event.TimeStamp,
  95. Event.RXCharacter);
  96. }
  97. }
  98. static void demux_tasklet(unsigned long data)
  99. {
  100. struct ngene_channel *chan = (struct ngene_channel *)data;
  101. struct SBufferHeader *Cur = chan->nextBuffer;
  102. spin_lock_irq(&chan->state_lock);
  103. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  104. if (chan->mode & NGENE_IO_TSOUT) {
  105. u32 Flags = chan->DataFormatFlags;
  106. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  107. Flags |= BEF_OVERFLOW;
  108. if (chan->pBufferExchange) {
  109. if (!chan->pBufferExchange(chan,
  110. Cur->Buffer1,
  111. chan->Capture1Length,
  112. Cur->ngeneBuffer.SR.
  113. Clock, Flags)) {
  114. /*
  115. We didn't get data
  116. Clear in service flag to make sure we
  117. get called on next interrupt again.
  118. leave fill/empty (0x80) flag alone
  119. to avoid hardware running out of
  120. buffers during startup, we hold only
  121. in run state ( the source may be late
  122. delivering data )
  123. */
  124. if (chan->HWState == HWSTATE_RUN) {
  125. Cur->ngeneBuffer.SR.Flags &=
  126. ~0x40;
  127. break;
  128. /* Stop proccessing stream */
  129. }
  130. } else {
  131. /* We got a valid buffer,
  132. so switch to run state */
  133. chan->HWState = HWSTATE_RUN;
  134. }
  135. } else {
  136. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  137. if (chan->HWState == HWSTATE_RUN) {
  138. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  139. break; /* Stop proccessing stream */
  140. }
  141. }
  142. if (chan->AudioDTOUpdated) {
  143. printk(KERN_INFO DEVICE_NAME
  144. ": Update AudioDTO = %d\n",
  145. chan->AudioDTOValue);
  146. Cur->ngeneBuffer.SR.DTOUpdate =
  147. chan->AudioDTOValue;
  148. chan->AudioDTOUpdated = 0;
  149. }
  150. } else {
  151. if (chan->HWState == HWSTATE_RUN) {
  152. u32 Flags = 0;
  153. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  154. Flags |= BEF_EVEN_FIELD;
  155. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  156. Flags |= BEF_OVERFLOW;
  157. if (chan->pBufferExchange)
  158. chan->pBufferExchange(chan,
  159. Cur->Buffer1,
  160. chan->
  161. Capture1Length,
  162. Cur->ngeneBuffer.
  163. SR.Clock, Flags);
  164. if (chan->pBufferExchange2)
  165. chan->pBufferExchange2(chan,
  166. Cur->Buffer2,
  167. chan->
  168. Capture2Length,
  169. Cur->ngeneBuffer.
  170. SR.Clock, Flags);
  171. } else if (chan->HWState != HWSTATE_STOP)
  172. chan->HWState = HWSTATE_RUN;
  173. }
  174. Cur->ngeneBuffer.SR.Flags = 0x00;
  175. Cur = Cur->Next;
  176. }
  177. chan->nextBuffer = Cur;
  178. spin_unlock_irq(&chan->state_lock);
  179. }
  180. static irqreturn_t irq_handler(int irq, void *dev_id)
  181. {
  182. struct ngene *dev = (struct ngene *)dev_id;
  183. u32 icounts = 0;
  184. irqreturn_t rc = IRQ_NONE;
  185. u32 i = MAX_STREAM;
  186. u8 *tmpCmdDoneByte;
  187. if (dev->BootFirmware) {
  188. icounts = ngreadl(NGENE_INT_COUNTS);
  189. if (icounts != dev->icounts) {
  190. ngwritel(0, FORCE_NMI);
  191. dev->cmd_done = 1;
  192. wake_up(&dev->cmd_wq);
  193. dev->icounts = icounts;
  194. rc = IRQ_HANDLED;
  195. }
  196. return rc;
  197. }
  198. ngwritel(0, FORCE_NMI);
  199. spin_lock(&dev->cmd_lock);
  200. tmpCmdDoneByte = dev->CmdDoneByte;
  201. if (tmpCmdDoneByte &&
  202. (*tmpCmdDoneByte ||
  203. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  204. dev->CmdDoneByte = NULL;
  205. dev->cmd_done = 1;
  206. wake_up(&dev->cmd_wq);
  207. rc = IRQ_HANDLED;
  208. }
  209. spin_unlock(&dev->cmd_lock);
  210. if (dev->EventBuffer->EventStatus & 0x80) {
  211. u8 nextWriteIndex =
  212. (dev->EventQueueWriteIndex + 1) &
  213. (EVENT_QUEUE_SIZE - 1);
  214. if (nextWriteIndex != dev->EventQueueReadIndex) {
  215. dev->EventQueue[dev->EventQueueWriteIndex] =
  216. *(dev->EventBuffer);
  217. dev->EventQueueWriteIndex = nextWriteIndex;
  218. } else {
  219. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  220. dev->EventQueueOverflowCount += 1;
  221. dev->EventQueueOverflowFlag = 1;
  222. }
  223. dev->EventBuffer->EventStatus &= ~0x80;
  224. tasklet_schedule(&dev->event_tasklet);
  225. rc = IRQ_HANDLED;
  226. }
  227. while (i > 0) {
  228. i--;
  229. spin_lock(&dev->channel[i].state_lock);
  230. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  231. if (dev->channel[i].nextBuffer) {
  232. if ((dev->channel[i].nextBuffer->
  233. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  234. dev->channel[i].nextBuffer->
  235. ngeneBuffer.SR.Flags |= 0x40;
  236. tasklet_schedule(
  237. &dev->channel[i].demux_tasklet);
  238. rc = IRQ_HANDLED;
  239. }
  240. }
  241. spin_unlock(&dev->channel[i].state_lock);
  242. }
  243. return rc;
  244. }
  245. /****************************************************************************/
  246. /* nGene command interface **************************************************/
  247. /****************************************************************************/
  248. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  249. {
  250. int ret;
  251. u8 *tmpCmdDoneByte;
  252. dev->cmd_done = 0;
  253. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  254. dev->BootFirmware = 1;
  255. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  256. ngwritel(0, NGENE_COMMAND);
  257. ngwritel(0, NGENE_COMMAND_HI);
  258. ngwritel(0, NGENE_STATUS);
  259. ngwritel(0, NGENE_STATUS_HI);
  260. ngwritel(0, NGENE_EVENT);
  261. ngwritel(0, NGENE_EVENT_HI);
  262. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  263. u64 fwio = dev->PAFWInterfaceBuffer;
  264. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  265. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  266. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  267. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  268. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  269. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  270. }
  271. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  272. if (dev->BootFirmware)
  273. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  274. spin_lock_irq(&dev->cmd_lock);
  275. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  276. if (!com->out_len)
  277. tmpCmdDoneByte++;
  278. *tmpCmdDoneByte = 0;
  279. dev->ngenetohost[0] = 0;
  280. dev->ngenetohost[1] = 0;
  281. dev->CmdDoneByte = tmpCmdDoneByte;
  282. spin_unlock_irq(&dev->cmd_lock);
  283. /* Notify 8051. */
  284. ngwritel(1, FORCE_INT);
  285. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  286. if (!ret) {
  287. /*ngwritel(0, FORCE_NMI);*/
  288. printk(KERN_ERR DEVICE_NAME
  289. ": Command timeout cmd=%02x prev=%02x\n",
  290. com->cmd.hdr.Opcode, dev->prev_cmd);
  291. return -1;
  292. }
  293. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  294. dev->BootFirmware = 0;
  295. dev->prev_cmd = com->cmd.hdr.Opcode;
  296. msleep(10);
  297. if (!com->out_len)
  298. return 0;
  299. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  300. return 0;
  301. }
  302. static int ngene_command(struct ngene *dev, struct ngene_command *com)
  303. {
  304. int result;
  305. down(&dev->cmd_mutex);
  306. result = ngene_command_mutex(dev, com);
  307. up(&dev->cmd_mutex);
  308. return result;
  309. }
  310. int ngene_command_nop(struct ngene *dev)
  311. {
  312. struct ngene_command com;
  313. com.cmd.hdr.Opcode = CMD_NOP;
  314. com.cmd.hdr.Length = 0;
  315. com.in_len = 0;
  316. com.out_len = 0;
  317. return ngene_command(dev, &com);
  318. }
  319. int ngene_command_i2c_read(struct ngene *dev, u8 adr,
  320. u8 *out, u8 outlen, u8 *in, u8 inlen, int flag)
  321. {
  322. struct ngene_command com;
  323. com.cmd.hdr.Opcode = CMD_I2C_READ;
  324. com.cmd.hdr.Length = outlen + 3;
  325. com.cmd.I2CRead.Device = adr << 1;
  326. memcpy(com.cmd.I2CRead.Data, out, outlen);
  327. com.cmd.I2CRead.Data[outlen] = inlen;
  328. com.cmd.I2CRead.Data[outlen + 1] = 0;
  329. com.in_len = outlen + 3;
  330. com.out_len = inlen + 1;
  331. if (ngene_command(dev, &com) < 0)
  332. return -EIO;
  333. if ((com.cmd.raw8[0] >> 1) != adr)
  334. return -EIO;
  335. if (flag)
  336. memcpy(in, com.cmd.raw8, inlen + 1);
  337. else
  338. memcpy(in, com.cmd.raw8 + 1, inlen);
  339. return 0;
  340. }
  341. int ngene_command_i2c_write(struct ngene *dev, u8 adr, u8 *out, u8 outlen)
  342. {
  343. struct ngene_command com;
  344. com.cmd.hdr.Opcode = CMD_I2C_WRITE;
  345. com.cmd.hdr.Length = outlen + 1;
  346. com.cmd.I2CRead.Device = adr << 1;
  347. memcpy(com.cmd.I2CRead.Data, out, outlen);
  348. com.in_len = outlen + 1;
  349. com.out_len = 1;
  350. if (ngene_command(dev, &com) < 0)
  351. return -EIO;
  352. if (com.cmd.raw8[0] == 1)
  353. return -EIO;
  354. return 0;
  355. }
  356. static int ngene_command_load_firmware(struct ngene *dev,
  357. u8 *ngene_fw, u32 size)
  358. {
  359. #define FIRSTCHUNK (1024)
  360. u32 cleft;
  361. struct ngene_command com;
  362. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  363. com.cmd.hdr.Length = 0;
  364. com.in_len = 0;
  365. com.out_len = 0;
  366. ngene_command(dev, &com);
  367. cleft = (size + 3) & ~3;
  368. if (cleft > FIRSTCHUNK) {
  369. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  370. cleft - FIRSTCHUNK);
  371. cleft = FIRSTCHUNK;
  372. }
  373. ngene_fw[FW_DEBUG_DEFAULT - PROGRAM_SRAM] = ngene_fw_debug;
  374. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  375. memset(&com, 0, sizeof(struct ngene_command));
  376. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  377. com.cmd.hdr.Length = 4;
  378. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  379. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  380. com.in_len = 4;
  381. com.out_len = 0;
  382. return ngene_command(dev, &com);
  383. }
  384. int ngene_command_imem_read(struct ngene *dev, u8 adr, u8 *data, int type)
  385. {
  386. struct ngene_command com;
  387. com.cmd.hdr.Opcode = type ? CMD_SFR_READ : CMD_IRAM_READ;
  388. com.cmd.hdr.Length = 1;
  389. com.cmd.SfrIramRead.address = adr;
  390. com.in_len = 1;
  391. com.out_len = 2;
  392. if (ngene_command(dev, &com) < 0)
  393. return -EIO;
  394. *data = com.cmd.raw8[1];
  395. return 0;
  396. }
  397. int ngene_command_imem_write(struct ngene *dev, u8 adr, u8 data, int type)
  398. {
  399. struct ngene_command com;
  400. com.cmd.hdr.Opcode = type ? CMD_SFR_WRITE : CMD_IRAM_WRITE;
  401. com.cmd.hdr.Length = 2;
  402. com.cmd.SfrIramWrite.address = adr;
  403. com.cmd.SfrIramWrite.data = data;
  404. com.in_len = 2;
  405. com.out_len = 1;
  406. if (ngene_command(dev, &com) < 0)
  407. return -EIO;
  408. return 0;
  409. }
  410. static int ngene_command_config_uart(struct ngene *dev, u8 config,
  411. tx_cb_t *tx_cb, rx_cb_t *rx_cb)
  412. {
  413. struct ngene_command com;
  414. com.cmd.hdr.Opcode = CMD_CONFIGURE_UART;
  415. com.cmd.hdr.Length = sizeof(struct FW_CONFIGURE_UART) - 2;
  416. com.cmd.ConfigureUart.UartControl = config;
  417. com.in_len = sizeof(struct FW_CONFIGURE_UART);
  418. com.out_len = 0;
  419. if (ngene_command(dev, &com) < 0)
  420. return -EIO;
  421. dev->TxEventNotify = tx_cb;
  422. dev->RxEventNotify = rx_cb;
  423. dprintk(KERN_DEBUG DEVICE_NAME ": Set UART config %02x.\n", config);
  424. return 0;
  425. }
  426. static void tx_cb(struct ngene *dev, u32 ts)
  427. {
  428. dev->tx_busy = 0;
  429. wake_up_interruptible(&dev->tx_wq);
  430. }
  431. static void rx_cb(struct ngene *dev, u32 ts, u8 c)
  432. {
  433. int rp = dev->uart_rp;
  434. int nwp, wp = dev->uart_wp;
  435. /* dprintk(KERN_DEBUG DEVICE_NAME ": %c\n", c); */
  436. nwp = (wp + 1) % (UART_RBUF_LEN);
  437. if (nwp == rp)
  438. return;
  439. dev->uart_rbuf[wp] = c;
  440. dev->uart_wp = nwp;
  441. wake_up_interruptible(&dev->rx_wq);
  442. }
  443. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  444. {
  445. struct ngene_command com;
  446. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  447. com.cmd.hdr.Length = 1;
  448. com.cmd.ConfigureBuffers.config = config;
  449. com.in_len = 1;
  450. com.out_len = 0;
  451. if (ngene_command(dev, &com) < 0)
  452. return -EIO;
  453. return 0;
  454. }
  455. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  456. {
  457. struct ngene_command com;
  458. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  459. com.cmd.hdr.Length = 6;
  460. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  461. com.in_len = 6;
  462. com.out_len = 0;
  463. if (ngene_command(dev, &com) < 0)
  464. return -EIO;
  465. return 0;
  466. }
  467. static int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  468. {
  469. struct ngene_command com;
  470. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  471. com.cmd.hdr.Length = 1;
  472. com.cmd.SetGpioPin.select = select | (level << 7);
  473. com.in_len = 1;
  474. com.out_len = 0;
  475. return ngene_command(dev, &com);
  476. }
  477. /* The reset is only wired to GPIO4 on MicRacer Revision 1.10 !
  478. Also better set bootdelay to 1 in nvram or less. */
  479. static void ngene_reset_decypher(struct ngene *dev)
  480. {
  481. printk(KERN_INFO DEVICE_NAME ": Resetting Decypher.\n");
  482. ngene_command_gpio_set(dev, 4, 0);
  483. msleep(1);
  484. ngene_command_gpio_set(dev, 4, 1);
  485. msleep(2000);
  486. }
  487. /*
  488. 02000640 is sample on rising edge.
  489. 02000740 is sample on falling edge.
  490. 02000040 is ignore "valid" signal
  491. 0: FD_CTL1 Bit 7,6 must be 0,1
  492. 7 disable(fw controlled)
  493. 6 0-AUX,1-TS
  494. 5 0-par,1-ser
  495. 4 0-lsb/1-msb
  496. 3,2 reserved
  497. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  498. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  499. 2: FD_STA is read-only. 0-sync
  500. 3: FD_INSYNC is number of 47s to trigger "in sync".
  501. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  502. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  503. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  504. 7: Top byte is unused.
  505. */
  506. /****************************************************************************/
  507. static u8 TSFeatureDecoderSetup[8 * 4] = {
  508. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  509. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  510. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  511. 0x72, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  512. };
  513. /* Set NGENE I2S Config to 16 bit packed */
  514. static u8 I2SConfiguration[] = {
  515. 0x00, 0x10, 0x00, 0x00,
  516. 0x80, 0x10, 0x00, 0x00,
  517. };
  518. static u8 SPDIFConfiguration[10] = {
  519. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  520. };
  521. /* Set NGENE I2S Config to transport stream compatible mode */
  522. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x1A, 0x00, 0x00 }; /*3e 18 00 00 ?*/
  523. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x20, 0x00, 0x00 };
  524. static u8 ITUDecoderSetup[4][16] = {
  525. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  526. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  527. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  528. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  529. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  530. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  531. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  532. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  533. };
  534. /*
  535. * 50 48 60 gleich
  536. * 27p50 9f 00 22 80 42 69 18 ...
  537. * 27p60 93 00 22 80 82 69 1c ...
  538. */
  539. /* Maxbyte to 1144 (for raw data) */
  540. static u8 ITUFeatureDecoderSetup[8] = {
  541. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  542. };
  543. static void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  544. {
  545. u32 *ptr = Buffer;
  546. memset(Buffer, Length, 0xff);
  547. while (Length > 0) {
  548. if (Flags & DF_SWAP32)
  549. *ptr = 0x471FFF10;
  550. else
  551. *ptr = 0x10FF1F47;
  552. ptr += (188 / 4);
  553. Length -= 188;
  554. }
  555. }
  556. static void flush_buffers(struct ngene_channel *chan)
  557. {
  558. u8 val;
  559. do {
  560. msleep(1);
  561. spin_lock_irq(&chan->state_lock);
  562. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  563. spin_unlock_irq(&chan->state_lock);
  564. } while (val);
  565. }
  566. static void clear_buffers(struct ngene_channel *chan)
  567. {
  568. struct SBufferHeader *Cur = chan->nextBuffer;
  569. do {
  570. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  571. if (chan->mode & NGENE_IO_TSOUT)
  572. FillTSBuffer(Cur->Buffer1,
  573. chan->Capture1Length,
  574. chan->DataFormatFlags);
  575. Cur = Cur->Next;
  576. } while (Cur != chan->nextBuffer);
  577. if (chan->mode & NGENE_IO_TSOUT) {
  578. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  579. chan->AudioDTOValue;
  580. chan->AudioDTOUpdated = 0;
  581. Cur = chan->TSIdleBuffer.Head;
  582. do {
  583. memset(&Cur->ngeneBuffer.SR, 0,
  584. sizeof(Cur->ngeneBuffer.SR));
  585. FillTSBuffer(Cur->Buffer1,
  586. chan->Capture1Length,
  587. chan->DataFormatFlags);
  588. Cur = Cur->Next;
  589. } while (Cur != chan->TSIdleBuffer.Head);
  590. }
  591. }
  592. int ngene_command_stream_control(struct ngene *dev, u8 stream, u8 control,
  593. u8 mode, u8 flags)
  594. {
  595. struct ngene_channel *chan = &dev->channel[stream];
  596. struct ngene_command com;
  597. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  598. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  599. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  600. u16 BsSDO = 0x9B00;
  601. /* down(&dev->stream_mutex); */
  602. while (down_trylock(&dev->stream_mutex)) {
  603. printk(KERN_INFO DEVICE_NAME ": SC locked\n");
  604. msleep(1);
  605. }
  606. memset(&com, 0, sizeof(com));
  607. com.cmd.hdr.Opcode = CMD_CONTROL;
  608. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  609. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  610. if (chan->mode & NGENE_IO_TSOUT)
  611. com.cmd.StreamControl.Stream |= 0x07;
  612. com.cmd.StreamControl.Control = control |
  613. (flags & SFLAG_ORDER_LUMA_CHROMA);
  614. com.cmd.StreamControl.Mode = mode;
  615. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  616. com.out_len = 0;
  617. printk(KERN_INFO DEVICE_NAME ": Stream=%02x, Control=%02x, Mode=%02x\n",
  618. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  619. com.cmd.StreamControl.Mode);
  620. chan->Mode = mode;
  621. if (!(control & 0x80)) {
  622. spin_lock_irq(&chan->state_lock);
  623. if (chan->State == KSSTATE_RUN) {
  624. chan->State = KSSTATE_ACQUIRE;
  625. chan->HWState = HWSTATE_STOP;
  626. spin_unlock_irq(&chan->state_lock);
  627. if (ngene_command(dev, &com) < 0) {
  628. up(&dev->stream_mutex);
  629. return -1;
  630. }
  631. /* clear_buffers(chan); */
  632. flush_buffers(chan);
  633. up(&dev->stream_mutex);
  634. return 0;
  635. }
  636. spin_unlock_irq(&chan->state_lock);
  637. up(&dev->stream_mutex);
  638. return 0;
  639. }
  640. if (mode & SMODE_AUDIO_CAPTURE) {
  641. com.cmd.StreamControl.CaptureBlockCount =
  642. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  643. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  644. } else if (mode & SMODE_TRANSPORT_STREAM) {
  645. com.cmd.StreamControl.CaptureBlockCount =
  646. chan->Capture1Length / TS_BLOCK_SIZE;
  647. com.cmd.StreamControl.MaxLinesPerField =
  648. chan->Capture1Length / TS_BLOCK_SIZE;
  649. com.cmd.StreamControl.Buffer_Address =
  650. chan->TSRingBuffer.PAHead;
  651. if (chan->mode & NGENE_IO_TSOUT) {
  652. com.cmd.StreamControl.BytesPerVBILine =
  653. chan->Capture1Length / TS_BLOCK_SIZE;
  654. com.cmd.StreamControl.Stream |= 0x07;
  655. }
  656. } else {
  657. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  658. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  659. com.cmd.StreamControl.MinLinesPerField = 100;
  660. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  661. if (mode & SMODE_VBI_CAPTURE) {
  662. com.cmd.StreamControl.MaxVBILinesPerField =
  663. chan->nVBILines;
  664. com.cmd.StreamControl.MinVBILinesPerField = 0;
  665. com.cmd.StreamControl.BytesPerVBILine =
  666. chan->nBytesPerVBILine;
  667. }
  668. if (flags & SFLAG_COLORBAR)
  669. com.cmd.StreamControl.Stream |= 0x04;
  670. }
  671. spin_lock_irq(&chan->state_lock);
  672. if (mode & SMODE_AUDIO_CAPTURE) {
  673. chan->nextBuffer = chan->RingBuffer.Head;
  674. if (mode & SMODE_AUDIO_SPDIF) {
  675. com.cmd.StreamControl.SetupDataLen =
  676. sizeof(SPDIFConfiguration);
  677. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  678. memcpy(com.cmd.StreamControl.SetupData,
  679. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  680. } else {
  681. com.cmd.StreamControl.SetupDataLen = 4;
  682. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  683. memcpy(com.cmd.StreamControl.SetupData,
  684. I2SConfiguration +
  685. 4 * dev->card_info->i2s[stream], 4);
  686. }
  687. } else if (mode & SMODE_TRANSPORT_STREAM) {
  688. chan->nextBuffer = chan->TSRingBuffer.Head;
  689. if (stream >= STREAM_AUDIOIN1) {
  690. if (chan->mode & NGENE_IO_TSOUT) {
  691. com.cmd.StreamControl.SetupDataLen =
  692. sizeof(TS_I2SOutConfiguration);
  693. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  694. memcpy(com.cmd.StreamControl.SetupData,
  695. TS_I2SOutConfiguration,
  696. sizeof(TS_I2SOutConfiguration));
  697. } else {
  698. com.cmd.StreamControl.SetupDataLen =
  699. sizeof(TS_I2SConfiguration);
  700. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  701. memcpy(com.cmd.StreamControl.SetupData,
  702. TS_I2SConfiguration,
  703. sizeof(TS_I2SConfiguration));
  704. }
  705. } else {
  706. com.cmd.StreamControl.SetupDataLen = 8;
  707. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  708. memcpy(com.cmd.StreamControl.SetupData,
  709. TSFeatureDecoderSetup +
  710. 8 * dev->card_info->tsf[stream], 8);
  711. }
  712. } else {
  713. chan->nextBuffer = chan->RingBuffer.Head;
  714. com.cmd.StreamControl.SetupDataLen =
  715. 16 + sizeof(ITUFeatureDecoderSetup);
  716. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  717. memcpy(com.cmd.StreamControl.SetupData,
  718. ITUDecoderSetup[chan->itumode], 16);
  719. memcpy(com.cmd.StreamControl.SetupData + 16,
  720. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  721. }
  722. clear_buffers(chan);
  723. chan->State = KSSTATE_RUN;
  724. if (mode & SMODE_TRANSPORT_STREAM)
  725. chan->HWState = HWSTATE_RUN;
  726. else
  727. chan->HWState = HWSTATE_STARTUP;
  728. spin_unlock_irq(&chan->state_lock);
  729. if (ngene_command(dev, &com) < 0) {
  730. up(&dev->stream_mutex);
  731. return -1;
  732. }
  733. up(&dev->stream_mutex);
  734. return 0;
  735. }
  736. int ngene_stream_control(struct ngene *dev, u8 stream, u8 control, u8 mode,
  737. u16 lines, u16 bpl, u16 vblines, u16 vbibpl)
  738. {
  739. if (!(mode & SMODE_TRANSPORT_STREAM))
  740. return -EINVAL;
  741. if (lines * bpl > MAX_VIDEO_BUFFER_SIZE)
  742. return -EINVAL;
  743. if ((mode & SMODE_TRANSPORT_STREAM) && (((bpl * lines) & 0xff) != 0))
  744. return -EINVAL;
  745. if ((mode & SMODE_VIDEO_CAPTURE) && (bpl & 7) != 0)
  746. return -EINVAL;
  747. return ngene_command_stream_control(dev, stream, control, mode, 0);
  748. }
  749. /****************************************************************************/
  750. /* I2C **********************************************************************/
  751. /****************************************************************************/
  752. static void ngene_i2c_set_bus(struct ngene *dev, int bus)
  753. {
  754. if (!(dev->card_info->i2c_access & 2))
  755. return;
  756. if (dev->i2c_current_bus == bus)
  757. return;
  758. switch (bus) {
  759. case 0:
  760. ngene_command_gpio_set(dev, 3, 0);
  761. ngene_command_gpio_set(dev, 2, 1);
  762. break;
  763. case 1:
  764. ngene_command_gpio_set(dev, 2, 0);
  765. ngene_command_gpio_set(dev, 3, 1);
  766. break;
  767. }
  768. dev->i2c_current_bus = bus;
  769. }
  770. static int ngene_i2c_master_xfer(struct i2c_adapter *adapter,
  771. struct i2c_msg msg[], int num)
  772. {
  773. struct ngene_channel *chan =
  774. (struct ngene_channel *)i2c_get_adapdata(adapter);
  775. struct ngene *dev = chan->dev;
  776. down(&dev->i2c_switch_mutex);
  777. ngene_i2c_set_bus(dev, chan->number);
  778. if (num == 2 && msg[1].flags & I2C_M_RD && !(msg[0].flags & I2C_M_RD))
  779. if (!ngene_command_i2c_read(dev, msg[0].addr,
  780. msg[0].buf, msg[0].len,
  781. msg[1].buf, msg[1].len, 0))
  782. goto done;
  783. if (num == 1 && !(msg[0].flags & I2C_M_RD))
  784. if (!ngene_command_i2c_write(dev, msg[0].addr,
  785. msg[0].buf, msg[0].len))
  786. goto done;
  787. if (num == 1 && (msg[0].flags & I2C_M_RD))
  788. if (!ngene_command_i2c_read(dev, msg[0].addr, 0, 0,
  789. msg[0].buf, msg[0].len, 0))
  790. goto done;
  791. up(&dev->i2c_switch_mutex);
  792. return -EIO;
  793. done:
  794. up(&dev->i2c_switch_mutex);
  795. return num;
  796. }
  797. static u32 ngene_i2c_functionality(struct i2c_adapter *adap)
  798. {
  799. return I2C_FUNC_SMBUS_EMUL;
  800. }
  801. struct i2c_algorithm ngene_i2c_algo = {
  802. .master_xfer = ngene_i2c_master_xfer,
  803. .functionality = ngene_i2c_functionality,
  804. };
  805. static int ngene_i2c_init(struct ngene *dev, int dev_nr)
  806. {
  807. struct i2c_adapter *adap = &(dev->channel[dev_nr].i2c_adapter);
  808. i2c_set_adapdata(adap, &(dev->channel[dev_nr]));
  809. #ifdef I2C_ADAP_CLASS_TV_DIGITAL
  810. adap->class = I2C_ADAP_CLASS_TV_DIGITAL | I2C_CLASS_TV_ANALOG;
  811. #else
  812. adap->class = I2C_CLASS_TV_ANALOG;
  813. #endif
  814. strcpy(adap->name, "nGene");
  815. adap->id = I2C_HW_SAA7146;
  816. adap->algo = &ngene_i2c_algo;
  817. adap->algo_data = (void *)&(dev->channel[dev_nr]);
  818. mutex_init(&adap->bus_lock);
  819. return i2c_add_adapter(adap);
  820. }
  821. int i2c_write(struct i2c_adapter *adapter, u8 adr, u8 data)
  822. {
  823. u8 m[1] = {data};
  824. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 1};
  825. if (i2c_transfer(adapter, &msg, 1) != 1) {
  826. printk(KERN_ERR DEVICE_NAME
  827. ": Failed to write to I2C adr %02x!\n", adr);
  828. return -1;
  829. }
  830. return 0;
  831. }
  832. static int i2c_write_read(struct i2c_adapter *adapter,
  833. u8 adr, u8 *w, u8 wlen, u8 *r, u8 rlen)
  834. {
  835. struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  836. .buf = w, .len = wlen},
  837. {.addr = adr, .flags = I2C_M_RD,
  838. .buf = r, .len = rlen} };
  839. if (i2c_transfer(adapter, msgs, 2) != 2) {
  840. printk(KERN_ERR DEVICE_NAME ": error in i2c_write_read\n");
  841. return -1;
  842. }
  843. return 0;
  844. }
  845. static int test_dec_i2c(struct i2c_adapter *adapter, int reg)
  846. {
  847. u8 data[256] = { reg, 0x00, 0x93, 0x78, 0x43, 0x45 };
  848. u8 data2[256];
  849. int i;
  850. memset(data2, 0, 256);
  851. i2c_write_read(adapter, 0x66, data, 2, data2, 4);
  852. for (i = 0; i < 4; i++)
  853. printk("%02x ", data2[i]);
  854. printk("\n");
  855. return 0;
  856. }
  857. /****************************************************************************/
  858. /* EEPROM TAGS **************************************************************/
  859. /****************************************************************************/
  860. #define MICNG_EE_START 0x0100
  861. #define MICNG_EE_END 0x0FF0
  862. #define MICNG_EETAG_END0 0x0000
  863. #define MICNG_EETAG_END1 0xFFFF
  864. /* 0x0001 - 0x000F reserved for housekeeping */
  865. /* 0xFFFF - 0xFFFE reserved for housekeeping */
  866. /* Micronas assigned tags
  867. EEProm tags for hardware support */
  868. #define MICNG_EETAG_DRXD1_OSCDEVIATION 0x1000 /* 2 Bytes data */
  869. #define MICNG_EETAG_DRXD2_OSCDEVIATION 0x1001 /* 2 Bytes data */
  870. #define MICNG_EETAG_MT2060_1_1STIF 0x1100 /* 2 Bytes data */
  871. #define MICNG_EETAG_MT2060_2_1STIF 0x1101 /* 2 Bytes data */
  872. /* Tag range for OEMs */
  873. #define MICNG_EETAG_OEM_FIRST 0xC000
  874. #define MICNG_EETAG_OEM_LAST 0xFFEF
  875. static int i2c_write_eeprom(struct i2c_adapter *adapter,
  876. u8 adr, u16 reg, u8 data)
  877. {
  878. u8 m[3] = {(reg >> 8), (reg & 0xff), data};
  879. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m,
  880. .len = sizeof(m)};
  881. if (i2c_transfer(adapter, &msg, 1) != 1) {
  882. dprintk(KERN_DEBUG DEVICE_NAME ": Error writing EEPROM!\n");
  883. return -EIO;
  884. }
  885. return 0;
  886. }
  887. static int i2c_read_eeprom(struct i2c_adapter *adapter,
  888. u8 adr, u16 reg, u8 *data, int len)
  889. {
  890. u8 msg[2] = {(reg >> 8), (reg & 0xff)};
  891. struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  892. .buf = msg, .len = 2 },
  893. {.addr = adr, .flags = I2C_M_RD,
  894. .buf = data, .len = len} };
  895. if (i2c_transfer(adapter, msgs, 2) != 2) {
  896. dprintk(KERN_DEBUG DEVICE_NAME ": Error reading EEPROM\n");
  897. return -EIO;
  898. }
  899. return 0;
  900. }
  901. static int i2c_dump_eeprom(struct i2c_adapter *adapter, u8 adr)
  902. {
  903. u8 buf[64];
  904. int i;
  905. if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
  906. printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
  907. return -1;
  908. }
  909. for (i = 0; i < sizeof(buf); i++) {
  910. if (!(i & 15))
  911. printk("\n");
  912. printk("%02x ", buf[i]);
  913. }
  914. printk("\n");
  915. return 0;
  916. }
  917. static int i2c_copy_eeprom(struct i2c_adapter *adapter, u8 adr, u8 adr2)
  918. {
  919. u8 buf[64];
  920. int i;
  921. if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
  922. printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
  923. return -1;
  924. }
  925. buf[36] = 0xc3;
  926. buf[39] = 0xab;
  927. for (i = 0; i < sizeof(buf); i++) {
  928. i2c_write_eeprom(adapter, adr2, i, buf[i]);
  929. msleep(10);
  930. }
  931. return 0;
  932. }
  933. /****************************************************************************/
  934. /* COMMAND API interface ****************************************************/
  935. /****************************************************************************/
  936. #ifdef NGENE_COMMAND_API
  937. static int command_do_ioctl(struct inode *inode, struct file *file,
  938. unsigned int cmd, void *parg)
  939. {
  940. struct dvb_device *dvbdev = file->private_data;
  941. struct ngene_channel *chan = dvbdev->priv;
  942. struct ngene *dev = chan->dev;
  943. int err = 0;
  944. switch (cmd) {
  945. case IOCTL_MIC_NO_OP:
  946. err = ngene_command_nop(dev);
  947. break;
  948. case IOCTL_MIC_DOWNLOAD_FIRMWARE:
  949. break;
  950. case IOCTL_MIC_I2C_READ:
  951. {
  952. MIC_I2C_READ *msg = parg;
  953. err = ngene_command_i2c_read(dev, msg->I2CAddress >> 1,
  954. msg->OutData, msg->OutLength,
  955. msg->OutData, msg->InLength, 1);
  956. break;
  957. }
  958. case IOCTL_MIC_I2C_WRITE:
  959. {
  960. MIC_I2C_WRITE *msg = parg;
  961. err = ngene_command_i2c_write(dev, msg->I2CAddress >> 1,
  962. msg->Data, msg->Length);
  963. break;
  964. }
  965. case IOCTL_MIC_TEST_GETMEM:
  966. {
  967. MIC_MEM *m = parg;
  968. if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
  969. return -EINVAL;
  970. /* WARNING, only use this on x86,
  971. other archs may not swallow this */
  972. err = copy_to_user(m->Data, dev->iomem + m->Start, m->Length);
  973. break;
  974. }
  975. case IOCTL_MIC_TEST_SETMEM:
  976. {
  977. MIC_MEM *m = parg;
  978. if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
  979. return -EINVAL;
  980. err = copy_from_user(dev->iomem + m->Start, m->Data, m->Length);
  981. break;
  982. }
  983. case IOCTL_MIC_SFR_READ:
  984. {
  985. MIC_IMEM *m = parg;
  986. err = ngene_command_imem_read(dev, m->Address, &m->Data, 1);
  987. break;
  988. }
  989. case IOCTL_MIC_SFR_WRITE:
  990. {
  991. MIC_IMEM *m = parg;
  992. err = ngene_command_imem_write(dev, m->Address, m->Data, 1);
  993. break;
  994. }
  995. case IOCTL_MIC_IRAM_READ:
  996. {
  997. MIC_IMEM *m = parg;
  998. err = ngene_command_imem_read(dev, m->Address, &m->Data, 0);
  999. break;
  1000. }
  1001. case IOCTL_MIC_IRAM_WRITE:
  1002. {
  1003. MIC_IMEM *m = parg;
  1004. err = ngene_command_imem_write(dev, m->Address, m->Data, 0);
  1005. break;
  1006. }
  1007. case IOCTL_MIC_STREAM_CONTROL:
  1008. {
  1009. MIC_STREAM_CONTROL *m = parg;
  1010. err = ngene_stream_control(dev, m->Stream, m->Control, m->Mode,
  1011. m->nLines, m->nBytesPerLine,
  1012. m->nVBILines, m->nBytesPerVBILine);
  1013. break;
  1014. }
  1015. default:
  1016. err = -EINVAL;
  1017. break;
  1018. }
  1019. return err;
  1020. }
  1021. static int command_ioctl(struct inode *inode, struct file *file,
  1022. unsigned int cmd, unsigned long arg)
  1023. {
  1024. void *parg = (void *)arg, *pbuf = NULL;
  1025. char buf[64];
  1026. int res = -EFAULT;
  1027. if (_IOC_DIR(cmd) & _IOC_WRITE) {
  1028. parg = buf;
  1029. if (_IOC_SIZE(cmd) > sizeof(buf)) {
  1030. pbuf = kmalloc(_IOC_SIZE(cmd), GFP_KERNEL);
  1031. if (!pbuf)
  1032. return -ENOMEM;
  1033. parg = pbuf;
  1034. }
  1035. if (copy_from_user(parg, (void __user *)arg, _IOC_SIZE(cmd)))
  1036. goto error;
  1037. }
  1038. res = command_do_ioctl(inode, file, cmd, parg);
  1039. if (res < 0)
  1040. goto error;
  1041. if (_IOC_DIR(cmd) & _IOC_READ)
  1042. if (copy_to_user((void __user *)arg, parg, _IOC_SIZE(cmd)))
  1043. res = -EFAULT;
  1044. error:
  1045. kfree(pbuf);
  1046. return res;
  1047. }
  1048. struct page *ngene_nopage(struct vm_area_struct *vma,
  1049. unsigned long address, int *type)
  1050. {
  1051. return 0;
  1052. }
  1053. static int ngene_mmap(struct file *file, struct vm_area_struct *vma)
  1054. {
  1055. struct dvb_device *dvbdev = file->private_data;
  1056. struct ngene_channel *chan = dvbdev->priv;
  1057. struct ngene *dev = chan->dev;
  1058. unsigned long size = vma->vm_end - vma->vm_start;
  1059. unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
  1060. unsigned long padr = pci_resource_start(dev->pci_dev, 0) + off;
  1061. unsigned long psize = pci_resource_len(dev->pci_dev, 0) - off;
  1062. if (size > psize)
  1063. return -EINVAL;
  1064. if (io_remap_pfn_range(vma, vma->vm_start, padr >> PAGE_SHIFT, size,
  1065. vma->vm_page_prot))
  1066. return -EAGAIN;
  1067. return 0;
  1068. }
  1069. static int write_uart(struct ngene *dev, u8 *data, int len)
  1070. {
  1071. struct ngene_command com;
  1072. com.cmd.hdr.Opcode = CMD_WRITE_UART;
  1073. com.cmd.hdr.Length = len;
  1074. memcpy(com.cmd.WriteUart.Data, data, len);
  1075. com.cmd.WriteUart.Data[len] = 0;
  1076. com.cmd.WriteUart.Data[len + 1] = 0;
  1077. com.in_len = len;
  1078. com.out_len = 0;
  1079. if (ngene_command(dev, &com) < 0)
  1080. return -EIO;
  1081. return 0;
  1082. }
  1083. static int send_cli(struct ngene *dev, char *cmd)
  1084. {
  1085. /* printk(KERN_INFO DEVICE_NAME ": %s", cmd); */
  1086. return write_uart(dev, cmd, strlen(cmd));
  1087. }
  1088. static int send_cli_val(struct ngene *dev, char *cmd, u32 val)
  1089. {
  1090. char s[32];
  1091. snprintf(s, 32, "%s %d\n", cmd, val);
  1092. /* printk(KERN_INFO DEVICE_NAME ": %s", s); */
  1093. return write_uart(dev, s, strlen(s));
  1094. }
  1095. static int ngene_command_write_uart_user(struct ngene *dev,
  1096. const u8 *data, int len)
  1097. {
  1098. struct ngene_command com;
  1099. dev->tx_busy = 1;
  1100. com.cmd.hdr.Opcode = CMD_WRITE_UART;
  1101. com.cmd.hdr.Length = len;
  1102. if (copy_from_user(com.cmd.WriteUart.Data, data, len))
  1103. return -EFAULT;
  1104. com.in_len = len;
  1105. com.out_len = 0;
  1106. if (ngene_command(dev, &com) < 0)
  1107. return -EIO;
  1108. return 0;
  1109. }
  1110. static ssize_t uart_write(struct file *file, const char *buf,
  1111. size_t count, loff_t *ppos)
  1112. {
  1113. struct dvb_device *dvbdev = file->private_data;
  1114. struct ngene_channel *chan = dvbdev->priv;
  1115. struct ngene *dev = chan->dev;
  1116. int len, ret = 0;
  1117. size_t left = count;
  1118. while (left) {
  1119. len = left;
  1120. if (len > 250)
  1121. len = 250;
  1122. ret = wait_event_interruptible(dev->tx_wq, dev->tx_busy == 0);
  1123. if (ret < 0)
  1124. return ret;
  1125. ngene_command_write_uart_user(dev, buf, len);
  1126. left -= len;
  1127. buf += len;
  1128. }
  1129. return count;
  1130. }
  1131. static ssize_t ts_write(struct file *file, const char *buf,
  1132. size_t count, loff_t *ppos)
  1133. {
  1134. struct dvb_device *dvbdev = file->private_data;
  1135. struct ngene_channel *chan = dvbdev->priv;
  1136. struct ngene *dev = chan->dev;
  1137. if (wait_event_interruptible(dev->tsout_rbuf.queue,
  1138. dvb_ringbuffer_free
  1139. (&dev->tsout_rbuf) >= count) < 0)
  1140. return 0;
  1141. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, count);
  1142. return count;
  1143. }
  1144. static ssize_t uart_read(struct file *file, char *buf,
  1145. size_t count, loff_t *ppos)
  1146. {
  1147. struct dvb_device *dvbdev = file->private_data;
  1148. struct ngene_channel *chan = dvbdev->priv;
  1149. struct ngene *dev = chan->dev;
  1150. int left;
  1151. int wp, rp, avail, len;
  1152. if (!dev->uart_rbuf)
  1153. return -EINVAL;
  1154. if (count > 128)
  1155. count = 128;
  1156. left = count;
  1157. while (left) {
  1158. if (wait_event_interruptible(dev->rx_wq,
  1159. dev->uart_wp != dev->uart_rp) < 0)
  1160. return -EAGAIN;
  1161. wp = dev->uart_wp;
  1162. rp = dev->uart_rp;
  1163. avail = (wp - rp);
  1164. if (avail < 0)
  1165. avail += UART_RBUF_LEN;
  1166. if (avail > left)
  1167. avail = left;
  1168. if (wp < rp) {
  1169. len = UART_RBUF_LEN - rp;
  1170. if (len > avail)
  1171. len = avail;
  1172. if (copy_to_user(buf, dev->uart_rbuf + rp, len))
  1173. return -EFAULT;
  1174. if (len < avail)
  1175. if (copy_to_user(buf + len, dev->uart_rbuf,
  1176. avail - len))
  1177. return -EFAULT;
  1178. } else {
  1179. if (copy_to_user(buf, dev->uart_rbuf + rp, avail))
  1180. return -EFAULT;
  1181. }
  1182. dev->uart_rp = (rp + avail) % UART_RBUF_LEN;
  1183. left -= avail;
  1184. buf += avail;
  1185. }
  1186. return count;
  1187. }
  1188. static const struct file_operations command_fops = {
  1189. .owner = THIS_MODULE,
  1190. .read = uart_read,
  1191. .write = ts_write,
  1192. .ioctl = command_ioctl,
  1193. .open = dvb_generic_open,
  1194. .release = dvb_generic_release,
  1195. .poll = 0,
  1196. .mmap = ngene_mmap,
  1197. };
  1198. static struct dvb_device dvbdev_command = {
  1199. .priv = 0,
  1200. .readers = -1,
  1201. .writers = -1,
  1202. .users = -1,
  1203. .fops = &command_fops,
  1204. };
  1205. #endif
  1206. /****************************************************************************/
  1207. /* DVB functions and API interface ******************************************/
  1208. /****************************************************************************/
  1209. static void swap_buffer(u32 *p, u32 len)
  1210. {
  1211. while (len) {
  1212. *p = swab32(*p);
  1213. p++;
  1214. len -= 4;
  1215. }
  1216. }
  1217. static void *tsin_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
  1218. {
  1219. struct ngene_channel *chan = priv;
  1220. dvb_dmx_swfilter(&chan->demux, buf, len);
  1221. return 0;
  1222. }
  1223. u8 fill_ts[188] = { 0x47, 0x1f, 0xff, 0x10 };
  1224. static void *tsout_exchange(void *priv, void *buf, u32 len,
  1225. u32 clock, u32 flags)
  1226. {
  1227. struct ngene_channel *chan = priv;
  1228. struct ngene *dev = chan->dev;
  1229. u32 alen;
  1230. alen = dvb_ringbuffer_avail(&dev->tsout_rbuf);
  1231. alen -= alen % 188;
  1232. if (alen < len)
  1233. FillTSBuffer(buf + alen, len - alen, flags);
  1234. else
  1235. alen = len;
  1236. dvb_ringbuffer_read(&dev->tsout_rbuf, buf, alen);
  1237. if (flags & DF_SWAP32)
  1238. swap_buffer((u32 *)buf, alen);
  1239. wake_up_interruptible(&dev->tsout_rbuf.queue);
  1240. return buf;
  1241. }
  1242. static void set_transfer(struct ngene_channel *chan, int state)
  1243. {
  1244. u8 control = 0, mode = 0, flags = 0;
  1245. struct ngene *dev = chan->dev;
  1246. int ret;
  1247. /*
  1248. if (chan->running)
  1249. return;
  1250. */
  1251. /*
  1252. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  1253. msleep(100);
  1254. */
  1255. if (state) {
  1256. if (chan->running) {
  1257. printk(KERN_INFO DEVICE_NAME ": already running\n");
  1258. return;
  1259. }
  1260. } else {
  1261. if (!chan->running) {
  1262. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  1263. return;
  1264. }
  1265. }
  1266. if (dev->card_info->switch_ctrl)
  1267. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  1268. if (state) {
  1269. spin_lock_irq(&chan->state_lock);
  1270. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  1271. ngreadl(0x9310)); */
  1272. my_dvb_ringbuffer_flush(&dev->tsout_rbuf);
  1273. control = 0x80;
  1274. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1275. chan->Capture1Length = 512 * 188;
  1276. mode = SMODE_TRANSPORT_STREAM;
  1277. }
  1278. if (chan->mode & NGENE_IO_TSOUT) {
  1279. chan->pBufferExchange = tsout_exchange;
  1280. /* 0x66666666 = 50MHz *2^33 /250MHz */
  1281. chan->AudioDTOValue = 0x66666666;
  1282. /* set_dto(chan, 38810700+1000); */
  1283. /* set_dto(chan, 19392658); */
  1284. }
  1285. if (chan->mode & NGENE_IO_TSIN)
  1286. chan->pBufferExchange = tsin_exchange;
  1287. /* ngwritel(0, 0x9310); */
  1288. spin_unlock_irq(&chan->state_lock);
  1289. } else
  1290. ;/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  1291. ngreadl(0x9310)); */
  1292. ret = ngene_command_stream_control(dev, chan->number,
  1293. control, mode, flags);
  1294. if (!ret)
  1295. chan->running = state;
  1296. else
  1297. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  1298. state);
  1299. if (!state) {
  1300. spin_lock_irq(&chan->state_lock);
  1301. chan->pBufferExchange = 0;
  1302. my_dvb_ringbuffer_flush(&dev->tsout_rbuf);
  1303. spin_unlock_irq(&chan->state_lock);
  1304. }
  1305. }
  1306. static int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed)
  1307. {
  1308. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  1309. struct ngene_channel *chan = dvbdmx->priv;
  1310. #ifdef NGENE_COMMAND_API
  1311. struct ngene *dev = chan->dev;
  1312. if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
  1313. switch (dvbdmxfeed->pes_type) {
  1314. case DMX_TS_PES_VIDEO:
  1315. send_cli_val(dev, "vpid", dvbdmxfeed->pid);
  1316. send_cli(dev, "res 1080i50\n");
  1317. /* send_cli(dev, "vdec mpeg2\n"); */
  1318. break;
  1319. case DMX_TS_PES_AUDIO:
  1320. send_cli_val(dev, "apid", dvbdmxfeed->pid);
  1321. send_cli(dev, "start\n");
  1322. break;
  1323. case DMX_TS_PES_PCR:
  1324. send_cli_val(dev, "pcrpid", dvbdmxfeed->pid);
  1325. break;
  1326. default:
  1327. break;
  1328. }
  1329. }
  1330. #endif
  1331. if (chan->users == 0) {
  1332. set_transfer(chan, 1);
  1333. /* msleep(10); */
  1334. }
  1335. return ++chan->users;
  1336. }
  1337. static int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
  1338. {
  1339. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  1340. struct ngene_channel *chan = dvbdmx->priv;
  1341. #ifdef NGENE_COMMAND_API
  1342. struct ngene *dev = chan->dev;
  1343. if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
  1344. switch (dvbdmxfeed->pes_type) {
  1345. case DMX_TS_PES_VIDEO:
  1346. send_cli(dev, "stop\n");
  1347. break;
  1348. case DMX_TS_PES_AUDIO:
  1349. break;
  1350. case DMX_TS_PES_PCR:
  1351. break;
  1352. default:
  1353. break;
  1354. }
  1355. }
  1356. #endif
  1357. if (--chan->users)
  1358. return chan->users;
  1359. set_transfer(chan, 0);
  1360. return 0;
  1361. }
  1362. static int write_to_decoder(struct dvb_demux_feed *feed,
  1363. const u8 *buf, size_t len)
  1364. {
  1365. struct dvb_demux *dvbdmx = feed->demux;
  1366. struct ngene_channel *chan = dvbdmx->priv;
  1367. struct ngene *dev = chan->dev;
  1368. if (wait_event_interruptible(dev->tsout_rbuf.queue,
  1369. dvb_ringbuffer_free
  1370. (&dev->tsout_rbuf) >= len) < 0)
  1371. return 0;
  1372. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
  1373. return len;
  1374. }
  1375. static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id,
  1376. int (*start_feed)(struct dvb_demux_feed *),
  1377. int (*stop_feed)(struct dvb_demux_feed *),
  1378. void *priv)
  1379. {
  1380. dvbdemux->priv = priv;
  1381. dvbdemux->filternum = 256;
  1382. dvbdemux->feednum = 256;
  1383. dvbdemux->start_feed = start_feed;
  1384. dvbdemux->stop_feed = stop_feed;
  1385. dvbdemux->write_to_decoder = 0;
  1386. dvbdemux->dmx.capabilities = (DMX_TS_FILTERING |
  1387. DMX_SECTION_FILTERING |
  1388. DMX_MEMORY_BASED_FILTERING);
  1389. return dvb_dmx_init(dvbdemux);
  1390. }
  1391. static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev,
  1392. struct dvb_demux *dvbdemux,
  1393. struct dmx_frontend *hw_frontend,
  1394. struct dmx_frontend *mem_frontend,
  1395. struct dvb_adapter *dvb_adapter)
  1396. {
  1397. int ret;
  1398. dmxdev->filternum = 256;
  1399. dmxdev->demux = &dvbdemux->dmx;
  1400. dmxdev->capabilities = 0;
  1401. ret = dvb_dmxdev_init(dmxdev, dvb_adapter);
  1402. if (ret < 0)
  1403. return ret;
  1404. hw_frontend->source = DMX_FRONTEND_0;
  1405. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend);
  1406. mem_frontend->source = DMX_MEMORY_FE;
  1407. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend);
  1408. return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend);
  1409. }
  1410. /****************************************************************************/
  1411. /* Decypher firmware loading ************************************************/
  1412. /****************************************************************************/
  1413. #define DECYPHER_FW "decypher.fw"
  1414. static int dec_ts_send(struct ngene *dev, u8 *buf, u32 len)
  1415. {
  1416. while (dvb_ringbuffer_free(&dev->tsout_rbuf) < len)
  1417. msleep(1);
  1418. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
  1419. return len;
  1420. }
  1421. u8 dec_fw_fill_ts[188] = { 0x47, 0x09, 0x0e, 0x10, 0xff, 0xff, 0x00, 0x00 };
  1422. int dec_fw_send(struct ngene *dev, u8 *fw, u32 size)
  1423. {
  1424. struct ngene_channel *chan = &dev->channel[4];
  1425. u32 len = 180, cc = 0;
  1426. u8 buf[8] = { 0x47, 0x09, 0x0e, 0x10, 0x00, 0x00, 0x00, 0x00 };
  1427. set_transfer(chan, 1);
  1428. msleep(100);
  1429. while (size) {
  1430. len = 180;
  1431. if (len > size)
  1432. len = size;
  1433. buf[3] = 0x10 | (cc & 0x0f);
  1434. buf[4] = (cc >> 8);
  1435. buf[5] = cc & 0xff;
  1436. buf[6] = len;
  1437. dec_ts_send(dev, buf, 8);
  1438. dec_ts_send(dev, fw, len);
  1439. if (len < 180)
  1440. dec_ts_send(dev, dec_fw_fill_ts + len + 8, 180 - len);
  1441. cc++;
  1442. size -= len;
  1443. fw += len;
  1444. }
  1445. for (len = 0; len < 512; len++)
  1446. dec_ts_send(dev, dec_fw_fill_ts, 188);
  1447. while (dvb_ringbuffer_avail(&dev->tsout_rbuf))
  1448. msleep(10);
  1449. msleep(100);
  1450. set_transfer(chan, 0);
  1451. return 0;
  1452. }
  1453. int dec_fw_boot(struct ngene *dev)
  1454. {
  1455. u32 size;
  1456. const struct firmware *fw = NULL;
  1457. u8 *dec_fw;
  1458. if (request_firmware(&fw, DECYPHER_FW, &dev->pci_dev->dev) < 0) {
  1459. printk(KERN_ERR DEVICE_NAME
  1460. ": %s not found. Check hotplug directory.\n",
  1461. DECYPHER_FW);
  1462. return -1;
  1463. }
  1464. printk(KERN_INFO DEVICE_NAME ": Booting decypher firmware file %s\n",
  1465. DECYPHER_FW);
  1466. size = fw->size;
  1467. dec_fw = (u8 *)fw->data;
  1468. dec_fw_send(dev, dec_fw, size);
  1469. release_firmware(fw);
  1470. return 0;
  1471. }
  1472. /****************************************************************************/
  1473. /* nGene hardware init and release functions ********************************/
  1474. /****************************************************************************/
  1475. void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  1476. {
  1477. struct SBufferHeader *Cur = rb->Head;
  1478. u32 j;
  1479. if (!Cur)
  1480. return;
  1481. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  1482. if (Cur->Buffer1)
  1483. pci_free_consistent(dev->pci_dev,
  1484. rb->Buffer1Length,
  1485. Cur->Buffer1,
  1486. Cur->scList1->Address);
  1487. if (Cur->Buffer2)
  1488. pci_free_consistent(dev->pci_dev,
  1489. rb->Buffer2Length,
  1490. Cur->Buffer2,
  1491. Cur->scList2->Address);
  1492. }
  1493. if (rb->SCListMem)
  1494. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  1495. rb->SCListMem, rb->PASCListMem);
  1496. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  1497. }
  1498. void free_idlebuffer(struct ngene *dev,
  1499. struct SRingBufferDescriptor *rb,
  1500. struct SRingBufferDescriptor *tb)
  1501. {
  1502. int j;
  1503. struct SBufferHeader *Cur = tb->Head;
  1504. if (!rb->Head)
  1505. return;
  1506. free_ringbuffer(dev, rb);
  1507. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  1508. Cur->Buffer2 = 0;
  1509. Cur->scList2 = 0;
  1510. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  1511. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  1512. }
  1513. }
  1514. void free_common_buffers(struct ngene *dev)
  1515. {
  1516. u32 i;
  1517. struct ngene_channel *chan;
  1518. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1519. chan = &dev->channel[i];
  1520. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  1521. free_ringbuffer(dev, &chan->RingBuffer);
  1522. free_ringbuffer(dev, &chan->TSRingBuffer);
  1523. }
  1524. if (dev->OverflowBuffer)
  1525. pci_free_consistent(dev->pci_dev,
  1526. OVERFLOW_BUFFER_SIZE,
  1527. dev->OverflowBuffer, dev->PAOverflowBuffer);
  1528. if (dev->FWInterfaceBuffer)
  1529. pci_free_consistent(dev->pci_dev,
  1530. 4096,
  1531. dev->FWInterfaceBuffer,
  1532. dev->PAFWInterfaceBuffer);
  1533. }
  1534. /****************************************************************************/
  1535. /* Ring buffer handling *****************************************************/
  1536. /****************************************************************************/
  1537. int create_ring_buffer(struct pci_dev *pci_dev,
  1538. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  1539. {
  1540. dma_addr_t tmp;
  1541. struct SBufferHeader *Head;
  1542. u32 i;
  1543. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  1544. u64 PARingBufferHead;
  1545. u64 PARingBufferCur;
  1546. u64 PARingBufferNext;
  1547. struct SBufferHeader *Cur, *Next;
  1548. descr->Head = 0;
  1549. descr->MemSize = 0;
  1550. descr->PAHead = 0;
  1551. descr->NumBuffers = 0;
  1552. if (MemSize < 4096)
  1553. MemSize = 4096;
  1554. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  1555. PARingBufferHead = tmp;
  1556. if (!Head)
  1557. return -ENOMEM;
  1558. memset(Head, 0, MemSize);
  1559. PARingBufferCur = PARingBufferHead;
  1560. Cur = Head;
  1561. for (i = 0; i < NumBuffers - 1; i++) {
  1562. Next = (struct SBufferHeader *)
  1563. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  1564. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  1565. Cur->Next = Next;
  1566. Cur->ngeneBuffer.Next = PARingBufferNext;
  1567. Cur = Next;
  1568. PARingBufferCur = PARingBufferNext;
  1569. }
  1570. /* Last Buffer points back to first one */
  1571. Cur->Next = Head;
  1572. Cur->ngeneBuffer.Next = PARingBufferHead;
  1573. descr->Head = Head;
  1574. descr->MemSize = MemSize;
  1575. descr->PAHead = PARingBufferHead;
  1576. descr->NumBuffers = NumBuffers;
  1577. return 0;
  1578. }
  1579. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  1580. dma_addr_t of,
  1581. struct SRingBufferDescriptor *pRingBuffer,
  1582. u32 Buffer1Length, u32 Buffer2Length)
  1583. {
  1584. dma_addr_t tmp;
  1585. u32 i, j;
  1586. int status = 0;
  1587. u32 SCListMemSize = pRingBuffer->NumBuffers
  1588. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  1589. NUM_SCATTER_GATHER_ENTRIES)
  1590. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1591. u64 PASCListMem;
  1592. PHW_SCATTER_GATHER_ELEMENT SCListEntry;
  1593. u64 PASCListEntry;
  1594. struct SBufferHeader *Cur;
  1595. void *SCListMem;
  1596. if (SCListMemSize < 4096)
  1597. SCListMemSize = 4096;
  1598. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  1599. PASCListMem = tmp;
  1600. if (SCListMem == NULL)
  1601. return -ENOMEM;
  1602. memset(SCListMem, 0, SCListMemSize);
  1603. pRingBuffer->SCListMem = SCListMem;
  1604. pRingBuffer->PASCListMem = PASCListMem;
  1605. pRingBuffer->SCListMemSize = SCListMemSize;
  1606. pRingBuffer->Buffer1Length = Buffer1Length;
  1607. pRingBuffer->Buffer2Length = Buffer2Length;
  1608. SCListEntry = (PHW_SCATTER_GATHER_ELEMENT) SCListMem;
  1609. PASCListEntry = PASCListMem;
  1610. Cur = pRingBuffer->Head;
  1611. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  1612. u64 PABuffer;
  1613. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  1614. &tmp);
  1615. PABuffer = tmp;
  1616. if (Buffer == NULL)
  1617. return -ENOMEM;
  1618. Cur->Buffer1 = Buffer;
  1619. SCListEntry->Address = PABuffer;
  1620. SCListEntry->Length = Buffer1Length;
  1621. Cur->scList1 = SCListEntry;
  1622. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  1623. Cur->ngeneBuffer.Number_of_entries_1 =
  1624. NUM_SCATTER_GATHER_ENTRIES;
  1625. SCListEntry += 1;
  1626. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1627. #if NUM_SCATTER_GATHER_ENTRIES > 1
  1628. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  1629. SCListEntry->Address = of;
  1630. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  1631. SCListEntry += 1;
  1632. PASCListEntry +=
  1633. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1634. }
  1635. #endif
  1636. if (!Buffer2Length)
  1637. continue;
  1638. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  1639. PABuffer = tmp;
  1640. if (Buffer == NULL)
  1641. return -ENOMEM;
  1642. Cur->Buffer2 = Buffer;
  1643. SCListEntry->Address = PABuffer;
  1644. SCListEntry->Length = Buffer2Length;
  1645. Cur->scList2 = SCListEntry;
  1646. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  1647. Cur->ngeneBuffer.Number_of_entries_2 =
  1648. NUM_SCATTER_GATHER_ENTRIES;
  1649. SCListEntry += 1;
  1650. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1651. #if NUM_SCATTER_GATHER_ENTRIES > 1
  1652. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  1653. SCListEntry->Address = of;
  1654. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  1655. SCListEntry += 1;
  1656. PASCListEntry +=
  1657. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1658. }
  1659. #endif
  1660. }
  1661. return status;
  1662. }
  1663. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  1664. struct SRingBufferDescriptor *pRingBuffer)
  1665. {
  1666. int status = 0;
  1667. /* Copy pointer to scatter gather list in TSRingbuffer
  1668. structure for buffer 2
  1669. Load number of buffer
  1670. */
  1671. u32 n = pRingBuffer->NumBuffers;
  1672. /* Point to first buffer entry */
  1673. struct SBufferHeader *Cur = pRingBuffer->Head;
  1674. int i;
  1675. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  1676. for (i = 0; i < n; i++) {
  1677. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  1678. Cur->scList2 = pIdleBuffer->Head->scList1;
  1679. Cur->ngeneBuffer.Address_of_first_entry_2 =
  1680. pIdleBuffer->Head->ngeneBuffer.
  1681. Address_of_first_entry_1;
  1682. Cur->ngeneBuffer.Number_of_entries_2 =
  1683. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  1684. Cur = Cur->Next;
  1685. }
  1686. return status;
  1687. }
  1688. static u32 RingBufferSizes[MAX_STREAM] = {
  1689. RING_SIZE_VIDEO,
  1690. RING_SIZE_VIDEO,
  1691. RING_SIZE_AUDIO,
  1692. RING_SIZE_AUDIO,
  1693. RING_SIZE_AUDIO,
  1694. };
  1695. static u32 Buffer1Sizes[MAX_STREAM] = {
  1696. MAX_VIDEO_BUFFER_SIZE,
  1697. MAX_VIDEO_BUFFER_SIZE,
  1698. MAX_AUDIO_BUFFER_SIZE,
  1699. MAX_AUDIO_BUFFER_SIZE,
  1700. MAX_AUDIO_BUFFER_SIZE
  1701. };
  1702. static u32 Buffer2Sizes[MAX_STREAM] = {
  1703. MAX_VBI_BUFFER_SIZE,
  1704. MAX_VBI_BUFFER_SIZE,
  1705. 0,
  1706. 0,
  1707. 0
  1708. };
  1709. static int AllocCommonBuffers(struct ngene *dev)
  1710. {
  1711. int status = 0, i;
  1712. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  1713. &dev->PAFWInterfaceBuffer);
  1714. if (!dev->FWInterfaceBuffer)
  1715. return -ENOMEM;
  1716. dev->hosttongene = dev->FWInterfaceBuffer;
  1717. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  1718. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  1719. dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev,
  1720. OVERFLOW_BUFFER_SIZE,
  1721. &dev->PAOverflowBuffer);
  1722. if (!dev->OverflowBuffer)
  1723. return -ENOMEM;
  1724. memset(dev->OverflowBuffer, 0, OVERFLOW_BUFFER_SIZE);
  1725. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1726. int type = dev->card_info->io_type[i];
  1727. dev->channel[i].State = KSSTATE_STOP;
  1728. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  1729. status = create_ring_buffer(dev->pci_dev,
  1730. &dev->channel[i].RingBuffer,
  1731. RingBufferSizes[i]);
  1732. if (status < 0)
  1733. break;
  1734. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  1735. status = AllocateRingBuffers(dev->pci_dev,
  1736. dev->
  1737. PAOverflowBuffer,
  1738. &dev->channel[i].
  1739. RingBuffer,
  1740. Buffer1Sizes[i],
  1741. Buffer2Sizes[i]);
  1742. if (status < 0)
  1743. break;
  1744. } else if (type & NGENE_IO_HDTV) {
  1745. status = AllocateRingBuffers(dev->pci_dev,
  1746. dev->
  1747. PAOverflowBuffer,
  1748. &dev->channel[i].
  1749. RingBuffer,
  1750. MAX_HDTV_BUFFER_SIZE,
  1751. 0);
  1752. if (status < 0)
  1753. break;
  1754. }
  1755. }
  1756. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1757. status = create_ring_buffer(dev->pci_dev,
  1758. &dev->channel[i].
  1759. TSRingBuffer, RING_SIZE_TS);
  1760. if (status < 0)
  1761. break;
  1762. status = AllocateRingBuffers(dev->pci_dev,
  1763. dev->PAOverflowBuffer,
  1764. &dev->channel[i].
  1765. TSRingBuffer,
  1766. MAX_TS_BUFFER_SIZE, 0);
  1767. if (status)
  1768. break;
  1769. }
  1770. if (type & NGENE_IO_TSOUT) {
  1771. status = create_ring_buffer(dev->pci_dev,
  1772. &dev->channel[i].
  1773. TSIdleBuffer, 1);
  1774. if (status < 0)
  1775. break;
  1776. status = AllocateRingBuffers(dev->pci_dev,
  1777. dev->PAOverflowBuffer,
  1778. &dev->channel[i].
  1779. TSIdleBuffer,
  1780. MAX_TS_BUFFER_SIZE, 0);
  1781. if (status)
  1782. break;
  1783. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  1784. &dev->channel[i].TSRingBuffer);
  1785. }
  1786. }
  1787. return status;
  1788. }
  1789. static void ngene_release_buffers(struct ngene *dev)
  1790. {
  1791. if (dev->iomem)
  1792. iounmap(dev->iomem);
  1793. free_common_buffers(dev);
  1794. vfree(dev->tsout_buf);
  1795. vfree(dev->ain_buf);
  1796. vfree(dev->vin_buf);
  1797. vfree(dev);
  1798. }
  1799. static int ngene_get_buffers(struct ngene *dev)
  1800. {
  1801. if (AllocCommonBuffers(dev))
  1802. return -ENOMEM;
  1803. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  1804. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  1805. if (!dev->tsout_buf)
  1806. return -ENOMEM;
  1807. dvb_ringbuffer_init(&dev->tsout_rbuf,
  1808. dev->tsout_buf, TSOUT_BUF_SIZE);
  1809. }
  1810. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1811. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1812. if (!dev->ain_buf)
  1813. return -ENOMEM;
  1814. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1815. }
  1816. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1817. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1818. if (!dev->vin_buf)
  1819. return -ENOMEM;
  1820. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1821. }
  1822. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1823. pci_resource_len(dev->pci_dev, 0));
  1824. if (!dev->iomem)
  1825. return -ENOMEM;
  1826. return 0;
  1827. }
  1828. static void ngene_init(struct ngene *dev)
  1829. {
  1830. int i;
  1831. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1832. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1833. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1834. for (i = 0; i < MAX_STREAM; i++) {
  1835. dev->channel[i].dev = dev;
  1836. dev->channel[i].number = i;
  1837. }
  1838. dev->fw_interface_version = 0;
  1839. ngwritel(0, NGENE_INT_ENABLE);
  1840. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1841. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1842. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1843. dev->device_version);
  1844. }
  1845. static int ngene_load_firm(struct ngene *dev)
  1846. {
  1847. u32 size;
  1848. const struct firmware *fw = NULL;
  1849. u8 *ngene_fw;
  1850. char *fw_name;
  1851. int err, version;
  1852. version = dev->card_info->fw_version;
  1853. switch (version) {
  1854. default:
  1855. case 15:
  1856. version = 15;
  1857. size = 23466;
  1858. fw_name = "ngene_15.fw";
  1859. break;
  1860. case 16:
  1861. size = 23498;
  1862. fw_name = "ngene_16.fw";
  1863. break;
  1864. case 17:
  1865. size = 24446;
  1866. fw_name = "ngene_17.fw";
  1867. break;
  1868. }
  1869. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1870. printk(KERN_ERR DEVICE_NAME
  1871. ": Could not load firmware file %s.\n", fw_name);
  1872. printk(KERN_INFO DEVICE_NAME
  1873. ": Copy %s to your hotplug directory!\n", fw_name);
  1874. return -1;
  1875. }
  1876. if (size != fw->size) {
  1877. printk(KERN_ERR DEVICE_NAME
  1878. ": Firmware %s has invalid size!", fw_name);
  1879. err = -1;
  1880. } else {
  1881. printk(KERN_INFO DEVICE_NAME
  1882. ": Loading firmware file %s.\n", fw_name);
  1883. ngene_fw = (u8 *) fw->data;
  1884. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1885. }
  1886. release_firmware(fw);
  1887. return err;
  1888. }
  1889. static void ngene_stop(struct ngene *dev)
  1890. {
  1891. down(&dev->cmd_mutex);
  1892. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1893. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1894. ngwritel(0, NGENE_INT_ENABLE);
  1895. ngwritel(0, NGENE_COMMAND);
  1896. ngwritel(0, NGENE_COMMAND_HI);
  1897. ngwritel(0, NGENE_STATUS);
  1898. ngwritel(0, NGENE_STATUS_HI);
  1899. ngwritel(0, NGENE_EVENT);
  1900. ngwritel(0, NGENE_EVENT_HI);
  1901. free_irq(dev->pci_dev->irq, dev);
  1902. }
  1903. static int ngene_start(struct ngene *dev)
  1904. {
  1905. int stat;
  1906. int i;
  1907. pci_set_master(dev->pci_dev);
  1908. ngene_init(dev);
  1909. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1910. IRQF_SHARED, "nGene",
  1911. (void *)dev);
  1912. if (stat < 0)
  1913. return stat;
  1914. init_waitqueue_head(&dev->cmd_wq);
  1915. init_waitqueue_head(&dev->tx_wq);
  1916. init_waitqueue_head(&dev->rx_wq);
  1917. sema_init(&dev->cmd_mutex, 1);
  1918. sema_init(&dev->stream_mutex, 1);
  1919. sema_init(&dev->pll_mutex, 1);
  1920. sema_init(&dev->i2c_switch_mutex, 1);
  1921. spin_lock_init(&dev->cmd_lock);
  1922. for (i = 0; i < MAX_STREAM; i++)
  1923. spin_lock_init(&dev->channel[i].state_lock);
  1924. ngwritel(1, TIMESTAMPS);
  1925. ngwritel(1, NGENE_INT_ENABLE);
  1926. stat = ngene_load_firm(dev);
  1927. if (stat < 0)
  1928. goto fail;
  1929. stat = ngene_i2c_init(dev, 0);
  1930. if (stat < 0)
  1931. goto fail;
  1932. stat = ngene_i2c_init(dev, 1);
  1933. if (stat < 0)
  1934. goto fail;
  1935. if (dev->card_info->fw_version == 17) {
  1936. u8 hdtv_config[6] =
  1937. {6144 / 64, 0, 0, 2048 / 64, 2048 / 64, 2048 / 64};
  1938. u8 tsin4_config[6] =
  1939. {3072 / 64, 3072 / 64, 0, 3072 / 64, 3072 / 64, 0};
  1940. u8 default_config[6] =
  1941. {4096 / 64, 4096 / 64, 0, 2048 / 64, 2048 / 64, 0};
  1942. u8 *bconf = default_config;
  1943. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1944. bconf = tsin4_config;
  1945. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1946. bconf = hdtv_config;
  1947. ngene_reset_decypher(dev);
  1948. }
  1949. printk(KERN_INFO DEVICE_NAME ": FW 17 buffer config\n");
  1950. stat = ngene_command_config_free_buf(dev, bconf);
  1951. } else {
  1952. int bconf = BUFFER_CONFIG_4422;
  1953. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1954. bconf = BUFFER_CONFIG_8022;
  1955. ngene_reset_decypher(dev);
  1956. }
  1957. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1958. bconf = BUFFER_CONFIG_3333;
  1959. stat = ngene_command_config_buf(dev, bconf);
  1960. }
  1961. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1962. ngene_command_config_uart(dev, 0xc1, tx_cb, rx_cb);
  1963. test_dec_i2c(&dev->channel[0].i2c_adapter, 0);
  1964. test_dec_i2c(&dev->channel[0].i2c_adapter, 1);
  1965. }
  1966. return stat;
  1967. fail:
  1968. ngwritel(0, NGENE_INT_ENABLE);
  1969. free_irq(dev->pci_dev->irq, dev);
  1970. return stat;
  1971. }
  1972. /****************************************************************************/
  1973. /* Switch control (I2C gates, etc.) *****************************************/
  1974. /****************************************************************************/
  1975. /****************************************************************************/
  1976. /* Demod/tuner attachment ***************************************************/
  1977. /****************************************************************************/
  1978. static int tuner_attach_stv6110(struct ngene_channel *chan)
  1979. {
  1980. struct stv090x_config *feconf = (struct stv090x_config *)
  1981. chan->dev->card_info->fe_config[chan->number];
  1982. struct stv6110x_config *tunerconf = (struct stv6110x_config *)
  1983. chan->dev->card_info->tuner_config[chan->number];
  1984. struct stv6110x_devctl *ctl;
  1985. ctl = dvb_attach(stv6110x_attach, chan->fe, tunerconf,
  1986. &chan->i2c_adapter);
  1987. if (ctl == NULL) {
  1988. printk(KERN_ERR DEVICE_NAME ": No STV6110X found!\n");
  1989. return -ENODEV;
  1990. }
  1991. feconf->tuner_init = ctl->tuner_init;
  1992. feconf->tuner_set_mode = ctl->tuner_set_mode;
  1993. feconf->tuner_set_frequency = ctl->tuner_set_frequency;
  1994. feconf->tuner_get_frequency = ctl->tuner_get_frequency;
  1995. feconf->tuner_set_bandwidth = ctl->tuner_set_bandwidth;
  1996. feconf->tuner_get_bandwidth = ctl->tuner_get_bandwidth;
  1997. feconf->tuner_set_bbgain = ctl->tuner_set_bbgain;
  1998. feconf->tuner_get_bbgain = ctl->tuner_get_bbgain;
  1999. feconf->tuner_set_refclk = ctl->tuner_set_refclk;
  2000. feconf->tuner_get_status = ctl->tuner_get_status;
  2001. return 0;
  2002. }
  2003. static int demod_attach_stv0900(struct ngene_channel *chan)
  2004. {
  2005. struct stv090x_config *feconf = (struct stv090x_config *)
  2006. chan->dev->card_info->fe_config[chan->number];
  2007. chan->fe = dvb_attach(stv090x_attach,
  2008. feconf,
  2009. &chan->i2c_adapter,
  2010. chan->number == 0 ? STV090x_DEMODULATOR_0 :
  2011. STV090x_DEMODULATOR_1);
  2012. if (chan->fe == NULL) {
  2013. printk(KERN_ERR DEVICE_NAME ": No STV0900 found!\n");
  2014. return -ENODEV;
  2015. }
  2016. if (!dvb_attach(lnbh24_attach, chan->fe, &chan->i2c_adapter, 0,
  2017. 0, chan->dev->card_info->lnb[chan->number])) {
  2018. printk(KERN_ERR DEVICE_NAME ": No LNBH24 found!\n");
  2019. dvb_frontend_detach(chan->fe);
  2020. return -ENODEV;
  2021. }
  2022. return 0;
  2023. }
  2024. /****************************************************************************/
  2025. /****************************************************************************/
  2026. /****************************************************************************/
  2027. static void release_channel(struct ngene_channel *chan)
  2028. {
  2029. struct dvb_demux *dvbdemux = &chan->demux;
  2030. struct ngene *dev = chan->dev;
  2031. struct ngene_info *ni = dev->card_info;
  2032. int io = ni->io_type[chan->number];
  2033. tasklet_kill(&chan->demux_tasklet);
  2034. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  2035. #ifdef NGENE_COMMAND_API
  2036. if (chan->command_dev)
  2037. dvb_unregister_device(chan->command_dev);
  2038. #endif
  2039. if (chan->fe) {
  2040. dvb_unregister_frontend(chan->fe);
  2041. /*dvb_frontend_detach(chan->fe); */
  2042. chan->fe = 0;
  2043. }
  2044. dvbdemux->dmx.close(&dvbdemux->dmx);
  2045. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  2046. &chan->hw_frontend);
  2047. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  2048. &chan->mem_frontend);
  2049. dvb_dmxdev_release(&chan->dmxdev);
  2050. dvb_dmx_release(&chan->demux);
  2051. #ifndef ONE_ADAPTER
  2052. dvb_unregister_adapter(&chan->dvb_adapter);
  2053. #endif
  2054. }
  2055. }
  2056. static int init_channel(struct ngene_channel *chan)
  2057. {
  2058. int ret = 0, nr = chan->number;
  2059. struct dvb_adapter *adapter = 0;
  2060. struct dvb_demux *dvbdemux = &chan->demux;
  2061. struct ngene *dev = chan->dev;
  2062. struct ngene_info *ni = dev->card_info;
  2063. int io = ni->io_type[nr];
  2064. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  2065. chan->users = 0;
  2066. chan->type = io;
  2067. chan->mode = chan->type; /* for now only one mode */
  2068. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  2069. if (nr >= STREAM_AUDIOIN1)
  2070. chan->DataFormatFlags = DF_SWAP32;
  2071. if (io & NGENE_IO_TSOUT)
  2072. dec_fw_boot(dev);
  2073. #ifdef ONE_ADAPTER
  2074. adapter = &chan->dev->dvb_adapter;
  2075. #else
  2076. ret = dvb_register_adapter(&chan->dvb_adapter, "nGene",
  2077. THIS_MODULE,
  2078. &chan->dev->pci_dev->dev,
  2079. adapter_nr);
  2080. if (ret < 0)
  2081. return ret;
  2082. adapter = &chan->dvb_adapter;
  2083. #endif
  2084. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  2085. ngene_start_feed,
  2086. ngene_stop_feed, chan);
  2087. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  2088. &chan->hw_frontend,
  2089. &chan->mem_frontend, adapter);
  2090. if (io & NGENE_IO_TSOUT) {
  2091. dvbdemux->write_to_decoder = write_to_decoder;
  2092. }
  2093. #ifdef NGENE_COMMAND_API
  2094. dvb_register_device(adapter, &chan->command_dev,
  2095. &dvbdev_command, (void *)chan,
  2096. DVB_DEVICE_SEC);
  2097. #endif
  2098. }
  2099. if (io & NGENE_IO_TSIN) {
  2100. chan->fe = NULL;
  2101. if (ni->demod_attach[nr])
  2102. ni->demod_attach[nr](chan);
  2103. if (chan->fe) {
  2104. if (dvb_register_frontend(adapter, chan->fe) < 0) {
  2105. if (chan->fe->ops.release)
  2106. chan->fe->ops.release(chan->fe);
  2107. chan->fe = NULL;
  2108. }
  2109. }
  2110. if (chan->fe && ni->tuner_attach[nr])
  2111. if (ni->tuner_attach[nr] (chan) < 0) {
  2112. printk(KERN_ERR DEVICE_NAME
  2113. ": Tuner attach failed on channel %d!\n",
  2114. nr);
  2115. }
  2116. }
  2117. return ret;
  2118. }
  2119. static int init_channels(struct ngene *dev)
  2120. {
  2121. int i, j;
  2122. for (i = 0; i < MAX_STREAM; i++) {
  2123. if (init_channel(&dev->channel[i]) < 0) {
  2124. for (j = 0; j < i; j++)
  2125. release_channel(&dev->channel[j]);
  2126. return -1;
  2127. }
  2128. }
  2129. return 0;
  2130. }
  2131. /****************************************************************************/
  2132. /* device probe/remove calls ************************************************/
  2133. /****************************************************************************/
  2134. static void __devexit ngene_remove(struct pci_dev *pdev)
  2135. {
  2136. struct ngene *dev = (struct ngene *)pci_get_drvdata(pdev);
  2137. int i;
  2138. tasklet_kill(&dev->event_tasklet);
  2139. for (i = 0; i < MAX_STREAM; i++)
  2140. release_channel(&dev->channel[i]);
  2141. #ifdef ONE_ADAPTER
  2142. dvb_unregister_adapter(&dev->dvb_adapter);
  2143. #endif
  2144. ngene_stop(dev);
  2145. ngene_release_buffers(dev);
  2146. pci_set_drvdata(pdev, 0);
  2147. pci_disable_device(pdev);
  2148. }
  2149. static int __devinit ngene_probe(struct pci_dev *pci_dev,
  2150. const struct pci_device_id *id)
  2151. {
  2152. struct ngene *dev;
  2153. int stat = 0;
  2154. if (pci_enable_device(pci_dev) < 0)
  2155. return -ENODEV;
  2156. dev = vmalloc(sizeof(struct ngene));
  2157. if (dev == NULL)
  2158. return -ENOMEM;
  2159. memset(dev, 0, sizeof(struct ngene));
  2160. dev->pci_dev = pci_dev;
  2161. dev->card_info = (struct ngene_info *)id->driver_data;
  2162. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  2163. pci_set_drvdata(pci_dev, dev);
  2164. /* Alloc buffers and start nGene */
  2165. stat = ngene_get_buffers(dev);
  2166. if (stat < 0)
  2167. goto fail1;
  2168. stat = ngene_start(dev);
  2169. if (stat < 0)
  2170. goto fail1;
  2171. dev->i2c_current_bus = -1;
  2172. /* Disable analog TV decoder chips if present */
  2173. if (copy_eeprom) {
  2174. i2c_copy_eeprom(&dev->channel[0].i2c_adapter, 0x50, 0x52);
  2175. i2c_dump_eeprom(&dev->channel[0].i2c_adapter, 0x52);
  2176. }
  2177. /*i2c_check_eeprom(&dev->i2c_adapter);*/
  2178. /* Register DVB adapters and devices for both channels */
  2179. #ifdef ONE_ADAPTER
  2180. if (dvb_register_adapter(&dev->dvb_adapter, "nGene", THIS_MODULE,
  2181. &dev->pci_dev->dev, adapter_nr) < 0)
  2182. goto fail2;
  2183. #endif
  2184. if (init_channels(dev) < 0)
  2185. goto fail2;
  2186. return 0;
  2187. fail2:
  2188. ngene_stop(dev);
  2189. fail1:
  2190. ngene_release_buffers(dev);
  2191. pci_set_drvdata(pci_dev, 0);
  2192. return stat;
  2193. }
  2194. /****************************************************************************/
  2195. /* Card configs *************************************************************/
  2196. /****************************************************************************/
  2197. static struct stv090x_config fe_mps2 = {
  2198. .device = STV0900,
  2199. .demod_mode = STV090x_DUAL,
  2200. .clk_mode = STV090x_CLK_EXT,
  2201. .xtal = 27000000,
  2202. .address = 0x68,
  2203. // .ref_clk = 27000000,
  2204. .ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
  2205. .ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
  2206. .repeater_level = STV090x_RPTLEVEL_16,
  2207. .diseqc_envelope_mode = true,
  2208. .tuner_init = NULL,
  2209. .tuner_set_mode = NULL,
  2210. .tuner_set_frequency = NULL,
  2211. .tuner_get_frequency = NULL,
  2212. .tuner_set_bandwidth = NULL,
  2213. .tuner_get_bandwidth = NULL,
  2214. .tuner_set_bbgain = NULL,
  2215. .tuner_get_bbgain = NULL,
  2216. .tuner_set_refclk = NULL,
  2217. .tuner_get_status = NULL,
  2218. };
  2219. static struct stv6110x_config tuner_mps2_0 = {
  2220. .addr = 0x60,
  2221. .refclk = 27000000,
  2222. };
  2223. static struct stv6110x_config tuner_mps2_1 = {
  2224. .addr = 0x63,
  2225. .refclk = 27000000,
  2226. };
  2227. static struct ngene_info ngene_info_mps2 = {
  2228. .type = NGENE_SIDEWINDER,
  2229. .name = "Media-Pointer MP-S2/CineS2 DVB-S2 Twin Tuner",
  2230. .io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN},
  2231. .demod_attach = {demod_attach_stv0900, demod_attach_stv0900},
  2232. .tuner_attach = {tuner_attach_stv6110, tuner_attach_stv6110},
  2233. .fe_config = {&fe_mps2, &fe_mps2},
  2234. .tuner_config = {&tuner_mps2_0, &tuner_mps2_1},
  2235. .lnb = {0x0b, 0x08},
  2236. .tsf = {3, 3},
  2237. .fw_version = 17,
  2238. };
  2239. /****************************************************************************/
  2240. /****************************************************************************/
  2241. /****************************************************************************/
  2242. /****************************************************************************/
  2243. #define NGENE_ID(_subvend, _subdev, _driverdata) { \
  2244. .vendor = NGENE_VID, .device = NGENE_PID, \
  2245. .subvendor = _subvend, .subdevice = _subdev, \
  2246. .driver_data = (unsigned long) &_driverdata }
  2247. /****************************************************************************/
  2248. static const struct pci_device_id ngene_id_tbl[] __devinitdata = {
  2249. NGENE_ID(0x18c3, 0xabc3, ngene_info_mps2),
  2250. NGENE_ID(0x18c3, 0xabc4, ngene_info_mps2),
  2251. NGENE_ID(0x18c3, 0xdb01, ngene_info_mps2),
  2252. {0}
  2253. };
  2254. MODULE_DEVICE_TABLE(pci, ngene_id_tbl);
  2255. /****************************************************************************/
  2256. /* Init/Exit ****************************************************************/
  2257. /****************************************************************************/
  2258. static pci_ers_result_t ngene_error_detected(struct pci_dev *dev,
  2259. enum pci_channel_state state)
  2260. {
  2261. printk(KERN_ERR DEVICE_NAME ": PCI error\n");
  2262. if (state == pci_channel_io_perm_failure)
  2263. return PCI_ERS_RESULT_DISCONNECT;
  2264. if (state == pci_channel_io_frozen)
  2265. return PCI_ERS_RESULT_NEED_RESET;
  2266. return PCI_ERS_RESULT_CAN_RECOVER;
  2267. }
  2268. static pci_ers_result_t ngene_link_reset(struct pci_dev *dev)
  2269. {
  2270. printk(KERN_INFO DEVICE_NAME ": link reset\n");
  2271. return 0;
  2272. }
  2273. static pci_ers_result_t ngene_slot_reset(struct pci_dev *dev)
  2274. {
  2275. printk(KERN_INFO DEVICE_NAME ": slot reset\n");
  2276. return 0;
  2277. }
  2278. static void ngene_resume(struct pci_dev *dev)
  2279. {
  2280. printk(KERN_INFO DEVICE_NAME ": resume\n");
  2281. }
  2282. static struct pci_error_handlers ngene_errors = {
  2283. .error_detected = ngene_error_detected,
  2284. .link_reset = ngene_link_reset,
  2285. .slot_reset = ngene_slot_reset,
  2286. .resume = ngene_resume,
  2287. };
  2288. static struct pci_driver ngene_pci_driver = {
  2289. .name = "ngene",
  2290. .id_table = ngene_id_tbl,
  2291. .probe = ngene_probe,
  2292. .remove = ngene_remove,
  2293. .err_handler = &ngene_errors,
  2294. };
  2295. static __init int module_init_ngene(void)
  2296. {
  2297. printk(KERN_INFO
  2298. "nGene PCIE bridge driver, Copyright (C) 2005-2007 Micronas\n");
  2299. return pci_register_driver(&ngene_pci_driver);
  2300. }
  2301. static __exit void module_exit_ngene(void)
  2302. {
  2303. pci_unregister_driver(&ngene_pci_driver);
  2304. }
  2305. module_init(module_init_ngene);
  2306. module_exit(module_exit_ngene);
  2307. MODULE_DESCRIPTION("nGene");
  2308. MODULE_AUTHOR("Micronas, Ralph Metzler, Manfred Voelkel");
  2309. MODULE_LICENSE("GPL");