intelfbhw.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m;
  40. int min_m1, max_m1;
  41. int min_m2, max_m2;
  42. int min_n, max_n;
  43. int min_p, max_p;
  44. int min_p1, max_p1;
  45. int min_vco_freq, max_vco_freq;
  46. int p_transition_clock;
  47. int p_inc_lo, p_inc_hi;
  48. };
  49. #define PLLS_I8xx 0
  50. #define PLLS_I9xx 1
  51. #define PLLS_MAX 2
  52. struct pll_min_max plls[PLLS_MAX] = {
  53. { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
  54. { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 } //I9xx
  55. };
  56. int
  57. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  58. {
  59. u32 tmp;
  60. if (!pdev || !dinfo)
  61. return 1;
  62. switch (pdev->device) {
  63. case PCI_DEVICE_ID_INTEL_830M:
  64. dinfo->name = "Intel(R) 830M";
  65. dinfo->chipset = INTEL_830M;
  66. dinfo->mobile = 1;
  67. dinfo->pll_index = PLLS_I8xx;
  68. return 0;
  69. case PCI_DEVICE_ID_INTEL_845G:
  70. dinfo->name = "Intel(R) 845G";
  71. dinfo->chipset = INTEL_845G;
  72. dinfo->mobile = 0;
  73. dinfo->pll_index = PLLS_I8xx;
  74. return 0;
  75. case PCI_DEVICE_ID_INTEL_85XGM:
  76. tmp = 0;
  77. dinfo->mobile = 1;
  78. dinfo->pll_index = PLLS_I8xx;
  79. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  80. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  81. INTEL_85X_VARIANT_MASK) {
  82. case INTEL_VAR_855GME:
  83. dinfo->name = "Intel(R) 855GME";
  84. dinfo->chipset = INTEL_855GME;
  85. return 0;
  86. case INTEL_VAR_855GM:
  87. dinfo->name = "Intel(R) 855GM";
  88. dinfo->chipset = INTEL_855GM;
  89. return 0;
  90. case INTEL_VAR_852GME:
  91. dinfo->name = "Intel(R) 852GME";
  92. dinfo->chipset = INTEL_852GME;
  93. return 0;
  94. case INTEL_VAR_852GM:
  95. dinfo->name = "Intel(R) 852GM";
  96. dinfo->chipset = INTEL_852GM;
  97. return 0;
  98. default:
  99. dinfo->name = "Intel(R) 852GM/855GM";
  100. dinfo->chipset = INTEL_85XGM;
  101. return 0;
  102. }
  103. break;
  104. case PCI_DEVICE_ID_INTEL_865G:
  105. dinfo->name = "Intel(R) 865G";
  106. dinfo->chipset = INTEL_865G;
  107. dinfo->mobile = 0;
  108. dinfo->pll_index = PLLS_I8xx;
  109. return 0;
  110. case PCI_DEVICE_ID_INTEL_915G:
  111. dinfo->name = "Intel(R) 915G";
  112. dinfo->chipset = INTEL_915G;
  113. dinfo->mobile = 0;
  114. dinfo->pll_index = PLLS_I9xx;
  115. return 0;
  116. case PCI_DEVICE_ID_INTEL_915GM:
  117. dinfo->name = "Intel(R) 915GM";
  118. dinfo->chipset = INTEL_915GM;
  119. dinfo->mobile = 1;
  120. dinfo->pll_index = PLLS_I9xx;
  121. return 0;
  122. case PCI_DEVICE_ID_INTEL_945G:
  123. dinfo->name = "Intel(R) 945G";
  124. dinfo->chipset = INTEL_945G;
  125. dinfo->mobile = 0;
  126. dinfo->pll_index = PLLS_I9xx;
  127. return 0;
  128. default:
  129. return 1;
  130. }
  131. }
  132. int
  133. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  134. int *stolen_size)
  135. {
  136. struct pci_dev *bridge_dev;
  137. u16 tmp;
  138. if (!pdev || !aperture_size || !stolen_size)
  139. return 1;
  140. /* Find the bridge device. It is always 0:0.0 */
  141. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  142. ERR_MSG("cannot find bridge device\n");
  143. return 1;
  144. }
  145. /* Get the fb aperture size and "stolen" memory amount. */
  146. tmp = 0;
  147. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  148. switch (pdev->device) {
  149. case PCI_DEVICE_ID_INTEL_830M:
  150. case PCI_DEVICE_ID_INTEL_845G:
  151. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  152. *aperture_size = MB(64);
  153. else
  154. *aperture_size = MB(128);
  155. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  156. case INTEL_830_GMCH_GMS_STOLEN_512:
  157. *stolen_size = KB(512) - KB(132);
  158. return 0;
  159. case INTEL_830_GMCH_GMS_STOLEN_1024:
  160. *stolen_size = MB(1) - KB(132);
  161. return 0;
  162. case INTEL_830_GMCH_GMS_STOLEN_8192:
  163. *stolen_size = MB(8) - KB(132);
  164. return 0;
  165. case INTEL_830_GMCH_GMS_LOCAL:
  166. ERR_MSG("only local memory found\n");
  167. return 1;
  168. case INTEL_830_GMCH_GMS_DISABLED:
  169. ERR_MSG("video memory is disabled\n");
  170. return 1;
  171. default:
  172. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  173. tmp & INTEL_830_GMCH_GMS_MASK);
  174. return 1;
  175. }
  176. break;
  177. default:
  178. *aperture_size = MB(128);
  179. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  180. case INTEL_855_GMCH_GMS_STOLEN_1M:
  181. *stolen_size = MB(1) - KB(132);
  182. return 0;
  183. case INTEL_855_GMCH_GMS_STOLEN_4M:
  184. *stolen_size = MB(4) - KB(132);
  185. return 0;
  186. case INTEL_855_GMCH_GMS_STOLEN_8M:
  187. *stolen_size = MB(8) - KB(132);
  188. return 0;
  189. case INTEL_855_GMCH_GMS_STOLEN_16M:
  190. *stolen_size = MB(16) - KB(132);
  191. return 0;
  192. case INTEL_855_GMCH_GMS_STOLEN_32M:
  193. *stolen_size = MB(32) - KB(132);
  194. return 0;
  195. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  196. *stolen_size = MB(48) - KB(132);
  197. return 0;
  198. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  199. *stolen_size = MB(64) - KB(132);
  200. return 0;
  201. case INTEL_855_GMCH_GMS_DISABLED:
  202. ERR_MSG("video memory is disabled\n");
  203. return 0;
  204. default:
  205. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  206. tmp & INTEL_855_GMCH_GMS_MASK);
  207. return 1;
  208. }
  209. }
  210. }
  211. int
  212. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  213. {
  214. int dvo = 0;
  215. if (INREG(LVDS) & PORT_ENABLE)
  216. dvo |= LVDS_PORT;
  217. if (INREG(DVOA) & PORT_ENABLE)
  218. dvo |= DVOA_PORT;
  219. if (INREG(DVOB) & PORT_ENABLE)
  220. dvo |= DVOB_PORT;
  221. if (INREG(DVOC) & PORT_ENABLE)
  222. dvo |= DVOC_PORT;
  223. return dvo;
  224. }
  225. const char *
  226. intelfbhw_dvo_to_string(int dvo)
  227. {
  228. if (dvo & DVOA_PORT)
  229. return "DVO port A";
  230. else if (dvo & DVOB_PORT)
  231. return "DVO port B";
  232. else if (dvo & DVOC_PORT)
  233. return "DVO port C";
  234. else if (dvo & LVDS_PORT)
  235. return "LVDS port";
  236. else
  237. return NULL;
  238. }
  239. int
  240. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  241. struct fb_var_screeninfo *var)
  242. {
  243. int bytes_per_pixel;
  244. int tmp;
  245. #if VERBOSE > 0
  246. DBG_MSG("intelfbhw_validate_mode\n");
  247. #endif
  248. bytes_per_pixel = var->bits_per_pixel / 8;
  249. if (bytes_per_pixel == 3)
  250. bytes_per_pixel = 4;
  251. /* Check if enough video memory. */
  252. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  253. if (tmp > dinfo->fb.size) {
  254. WRN_MSG("Not enough video ram for mode "
  255. "(%d KByte vs %d KByte).\n",
  256. BtoKB(tmp), BtoKB(dinfo->fb.size));
  257. return 1;
  258. }
  259. /* Check if x/y limits are OK. */
  260. if (var->xres - 1 > HACTIVE_MASK) {
  261. WRN_MSG("X resolution too large (%d vs %d).\n",
  262. var->xres, HACTIVE_MASK + 1);
  263. return 1;
  264. }
  265. if (var->yres - 1 > VACTIVE_MASK) {
  266. WRN_MSG("Y resolution too large (%d vs %d).\n",
  267. var->yres, VACTIVE_MASK + 1);
  268. return 1;
  269. }
  270. /* Check for interlaced/doublescan modes. */
  271. if (var->vmode & FB_VMODE_INTERLACED) {
  272. WRN_MSG("Mode is interlaced.\n");
  273. return 1;
  274. }
  275. if (var->vmode & FB_VMODE_DOUBLE) {
  276. WRN_MSG("Mode is double-scan.\n");
  277. return 1;
  278. }
  279. /* Check if clock is OK. */
  280. tmp = 1000000000 / var->pixclock;
  281. if (tmp < MIN_CLOCK) {
  282. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  283. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  284. return 1;
  285. }
  286. if (tmp > MAX_CLOCK) {
  287. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  288. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  289. return 1;
  290. }
  291. return 0;
  292. }
  293. int
  294. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  295. {
  296. struct intelfb_info *dinfo = GET_DINFO(info);
  297. u32 offset, xoffset, yoffset;
  298. #if VERBOSE > 0
  299. DBG_MSG("intelfbhw_pan_display\n");
  300. #endif
  301. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  302. yoffset = var->yoffset;
  303. if ((xoffset + var->xres > var->xres_virtual) ||
  304. (yoffset + var->yres > var->yres_virtual))
  305. return -EINVAL;
  306. offset = (yoffset * dinfo->pitch) +
  307. (xoffset * var->bits_per_pixel) / 8;
  308. offset += dinfo->fb.offset << 12;
  309. OUTREG(DSPABASE, offset);
  310. return 0;
  311. }
  312. /* Blank the screen. */
  313. void
  314. intelfbhw_do_blank(int blank, struct fb_info *info)
  315. {
  316. struct intelfb_info *dinfo = GET_DINFO(info);
  317. u32 tmp;
  318. #if VERBOSE > 0
  319. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  320. #endif
  321. /* Turn plane A on or off */
  322. tmp = INREG(DSPACNTR);
  323. if (blank)
  324. tmp &= ~DISPPLANE_PLANE_ENABLE;
  325. else
  326. tmp |= DISPPLANE_PLANE_ENABLE;
  327. OUTREG(DSPACNTR, tmp);
  328. /* Flush */
  329. tmp = INREG(DSPABASE);
  330. OUTREG(DSPABASE, tmp);
  331. /* Turn off/on the HW cursor */
  332. #if VERBOSE > 0
  333. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  334. #endif
  335. if (dinfo->cursor_on) {
  336. if (blank) {
  337. intelfbhw_cursor_hide(dinfo);
  338. } else {
  339. intelfbhw_cursor_show(dinfo);
  340. }
  341. dinfo->cursor_on = 1;
  342. }
  343. dinfo->cursor_blanked = blank;
  344. /* Set DPMS level */
  345. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  346. switch (blank) {
  347. case FB_BLANK_UNBLANK:
  348. case FB_BLANK_NORMAL:
  349. tmp |= ADPA_DPMS_D0;
  350. break;
  351. case FB_BLANK_VSYNC_SUSPEND:
  352. tmp |= ADPA_DPMS_D1;
  353. break;
  354. case FB_BLANK_HSYNC_SUSPEND:
  355. tmp |= ADPA_DPMS_D2;
  356. break;
  357. case FB_BLANK_POWERDOWN:
  358. tmp |= ADPA_DPMS_D3;
  359. break;
  360. }
  361. OUTREG(ADPA, tmp);
  362. return;
  363. }
  364. void
  365. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  366. unsigned red, unsigned green, unsigned blue,
  367. unsigned transp)
  368. {
  369. #if VERBOSE > 0
  370. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  371. regno, red, green, blue);
  372. #endif
  373. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  374. PALETTE_A : PALETTE_B;
  375. OUTREG(palette_reg + (regno << 2),
  376. (red << PALETTE_8_RED_SHIFT) |
  377. (green << PALETTE_8_GREEN_SHIFT) |
  378. (blue << PALETTE_8_BLUE_SHIFT));
  379. }
  380. int
  381. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  382. int flag)
  383. {
  384. int i;
  385. #if VERBOSE > 0
  386. DBG_MSG("intelfbhw_read_hw_state\n");
  387. #endif
  388. if (!hw || !dinfo)
  389. return -1;
  390. /* Read in as much of the HW state as possible. */
  391. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  392. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  393. hw->vga_pd = INREG(VGAPD);
  394. hw->dpll_a = INREG(DPLL_A);
  395. hw->dpll_b = INREG(DPLL_B);
  396. hw->fpa0 = INREG(FPA0);
  397. hw->fpa1 = INREG(FPA1);
  398. hw->fpb0 = INREG(FPB0);
  399. hw->fpb1 = INREG(FPB1);
  400. if (flag == 1)
  401. return flag;
  402. #if 0
  403. /* This seems to be a problem with the 852GM/855GM */
  404. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  405. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  406. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  407. }
  408. #endif
  409. if (flag == 2)
  410. return flag;
  411. hw->htotal_a = INREG(HTOTAL_A);
  412. hw->hblank_a = INREG(HBLANK_A);
  413. hw->hsync_a = INREG(HSYNC_A);
  414. hw->vtotal_a = INREG(VTOTAL_A);
  415. hw->vblank_a = INREG(VBLANK_A);
  416. hw->vsync_a = INREG(VSYNC_A);
  417. hw->src_size_a = INREG(SRC_SIZE_A);
  418. hw->bclrpat_a = INREG(BCLRPAT_A);
  419. hw->htotal_b = INREG(HTOTAL_B);
  420. hw->hblank_b = INREG(HBLANK_B);
  421. hw->hsync_b = INREG(HSYNC_B);
  422. hw->vtotal_b = INREG(VTOTAL_B);
  423. hw->vblank_b = INREG(VBLANK_B);
  424. hw->vsync_b = INREG(VSYNC_B);
  425. hw->src_size_b = INREG(SRC_SIZE_B);
  426. hw->bclrpat_b = INREG(BCLRPAT_B);
  427. if (flag == 3)
  428. return flag;
  429. hw->adpa = INREG(ADPA);
  430. hw->dvoa = INREG(DVOA);
  431. hw->dvob = INREG(DVOB);
  432. hw->dvoc = INREG(DVOC);
  433. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  434. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  435. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  436. hw->lvds = INREG(LVDS);
  437. if (flag == 4)
  438. return flag;
  439. hw->pipe_a_conf = INREG(PIPEACONF);
  440. hw->pipe_b_conf = INREG(PIPEBCONF);
  441. hw->disp_arb = INREG(DISPARB);
  442. if (flag == 5)
  443. return flag;
  444. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  445. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  446. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  447. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  448. if (flag == 6)
  449. return flag;
  450. for (i = 0; i < 4; i++) {
  451. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  452. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  453. }
  454. if (flag == 7)
  455. return flag;
  456. hw->cursor_size = INREG(CURSOR_SIZE);
  457. if (flag == 8)
  458. return flag;
  459. hw->disp_a_ctrl = INREG(DSPACNTR);
  460. hw->disp_b_ctrl = INREG(DSPBCNTR);
  461. hw->disp_a_base = INREG(DSPABASE);
  462. hw->disp_b_base = INREG(DSPBBASE);
  463. hw->disp_a_stride = INREG(DSPASTRIDE);
  464. hw->disp_b_stride = INREG(DSPBSTRIDE);
  465. if (flag == 9)
  466. return flag;
  467. hw->vgacntrl = INREG(VGACNTRL);
  468. if (flag == 10)
  469. return flag;
  470. hw->add_id = INREG(ADD_ID);
  471. if (flag == 11)
  472. return flag;
  473. for (i = 0; i < 7; i++) {
  474. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  475. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  476. if (i < 3)
  477. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  478. }
  479. for (i = 0; i < 8; i++)
  480. hw->fence[i] = INREG(FENCE + (i << 2));
  481. hw->instpm = INREG(INSTPM);
  482. hw->mem_mode = INREG(MEM_MODE);
  483. hw->fw_blc_0 = INREG(FW_BLC_0);
  484. hw->fw_blc_1 = INREG(FW_BLC_1);
  485. return 0;
  486. }
  487. static int calc_vclock3(int index, int m, int n, int p)
  488. {
  489. if (p == 0 || n == 0)
  490. return 0;
  491. return PLL_REFCLK * m / n / p;
  492. }
  493. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
  494. {
  495. switch(index)
  496. {
  497. case PLLS_I9xx:
  498. if (p1 == 0)
  499. return 0;
  500. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  501. ((p1)) * (p2 ? 10 : 5)));
  502. case PLLS_I8xx:
  503. default:
  504. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  505. ((p1+2) * (1 << (p2 + 1)))));
  506. }
  507. }
  508. void
  509. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  510. {
  511. #if REGDUMP
  512. int i, m1, m2, n, p1, p2;
  513. int index = dinfo->pll_index;
  514. DBG_MSG("intelfbhw_print_hw_state\n");
  515. if (!hw || !dinfo)
  516. return;
  517. /* Read in as much of the HW state as possible. */
  518. printk("hw state dump start\n");
  519. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  520. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  521. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  522. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  523. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  524. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  525. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  526. p1 = 0;
  527. else
  528. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  529. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  530. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  531. m1, m2, n, p1, p2);
  532. printk(" VGA0: clock is %d\n",
  533. calc_vclock(index, m1, m2, n, p1, p2));
  534. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  535. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  536. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  537. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  538. p1 = 0;
  539. else
  540. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  541. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  542. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  543. m1, m2, n, p1, p2);
  544. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  545. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  546. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  547. printk(" FPA0: 0x%08x\n", hw->fpa0);
  548. printk(" FPA1: 0x%08x\n", hw->fpa1);
  549. printk(" FPB0: 0x%08x\n", hw->fpb0);
  550. printk(" FPB1: 0x%08x\n", hw->fpb1);
  551. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  552. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  553. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  554. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  555. p1 = 0;
  556. else
  557. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  558. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  559. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  560. m1, m2, n, p1, p2);
  561. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  562. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  563. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  564. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  565. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  566. p1 = 0;
  567. else
  568. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  569. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  570. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  571. m1, m2, n, p1, p2);
  572. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  573. #if 0
  574. printk(" PALETTE_A:\n");
  575. for (i = 0; i < PALETTE_8_ENTRIES)
  576. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  577. printk(" PALETTE_B:\n");
  578. for (i = 0; i < PALETTE_8_ENTRIES)
  579. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  580. #endif
  581. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  582. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  583. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  584. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  585. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  586. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  587. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  588. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  589. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  590. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  591. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  592. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  593. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  594. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  595. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  596. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  597. printk(" ADPA: 0x%08x\n", hw->adpa);
  598. printk(" DVOA: 0x%08x\n", hw->dvoa);
  599. printk(" DVOB: 0x%08x\n", hw->dvob);
  600. printk(" DVOC: 0x%08x\n", hw->dvoc);
  601. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  602. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  603. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  604. printk(" LVDS: 0x%08x\n", hw->lvds);
  605. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  606. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  607. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  608. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  609. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  610. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  611. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  612. printk(" CURSOR_A_PALETTE: ");
  613. for (i = 0; i < 4; i++) {
  614. printk("0x%08x", hw->cursor_a_palette[i]);
  615. if (i < 3)
  616. printk(", ");
  617. }
  618. printk("\n");
  619. printk(" CURSOR_B_PALETTE: ");
  620. for (i = 0; i < 4; i++) {
  621. printk("0x%08x", hw->cursor_b_palette[i]);
  622. if (i < 3)
  623. printk(", ");
  624. }
  625. printk("\n");
  626. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  627. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  628. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  629. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  630. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  631. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  632. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  633. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  634. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  635. for (i = 0; i < 7; i++) {
  636. printk(" SWF0%d 0x%08x\n", i,
  637. hw->swf0x[i]);
  638. }
  639. for (i = 0; i < 7; i++) {
  640. printk(" SWF1%d 0x%08x\n", i,
  641. hw->swf1x[i]);
  642. }
  643. for (i = 0; i < 3; i++) {
  644. printk(" SWF3%d 0x%08x\n", i,
  645. hw->swf3x[i]);
  646. }
  647. for (i = 0; i < 8; i++)
  648. printk(" FENCE%d 0x%08x\n", i,
  649. hw->fence[i]);
  650. printk(" INSTPM 0x%08x\n", hw->instpm);
  651. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  652. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  653. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  654. printk("hw state dump end\n");
  655. #endif
  656. }
  657. /* Split the M parameter into M1 and M2. */
  658. static int
  659. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  660. {
  661. int m1, m2;
  662. int testm;
  663. /* no point optimising too much - brute force m */
  664. for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
  665. {
  666. for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
  667. {
  668. testm = ( 5 * ( m1 + 2 )) + (m2 + 2);
  669. if (testm == m)
  670. {
  671. *retm1 = (unsigned int)m1;
  672. *retm2 = (unsigned int)m2;
  673. return 0;
  674. }
  675. }
  676. }
  677. return 1;
  678. }
  679. /* Split the P parameter into P1 and P2. */
  680. static int
  681. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  682. {
  683. int p1, p2;
  684. if (index == PLLS_I9xx)
  685. {
  686. switch (p) {
  687. case 10:
  688. p1 = 2;
  689. p2 = 0;
  690. break;
  691. case 20:
  692. p1 = 1;
  693. p2 = 0;
  694. break;
  695. default:
  696. p1 = (p / 10) + 1;
  697. p2 = 0;
  698. break;
  699. }
  700. *retp1 = (unsigned int)p1;
  701. *retp2 = (unsigned int)p2;
  702. return 0;
  703. }
  704. if (index == PLLS_I8xx)
  705. {
  706. if (p % 4 == 0)
  707. p2 = 1;
  708. else
  709. p2 = 0;
  710. p1 = (p / (1 << (p2 + 1))) - 2;
  711. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  712. p2 = 0;
  713. p1 = (p / (1 << (p2 + 1))) - 2;
  714. }
  715. if (p1 < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
  716. return 1;
  717. } else {
  718. *retp1 = (unsigned int)p1;
  719. *retp2 = (unsigned int)p2;
  720. return 0;
  721. }
  722. }
  723. return 1;
  724. }
  725. static int
  726. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  727. u32 *retp2, u32 *retclock)
  728. {
  729. u32 m1, m2, n, p1, p2, n1, testm;
  730. u32 f_vco, p, p_best = 0, m, f_out = 0;
  731. u32 err_max, err_target, err_best = 10000000;
  732. u32 n_best = 0, m_best = 0, f_best, f_err;
  733. u32 p_min, p_max, p_inc, div_min, div_max;
  734. /* Accept 0.5% difference, but aim for 0.1% */
  735. err_max = 5 * clock / 1000;
  736. err_target = clock / 1000;
  737. DBG_MSG("Clock is %d\n", clock);
  738. div_max = plls[index].max_vco_freq / clock;
  739. if (index == PLLS_I9xx)
  740. div_min = 5;
  741. else
  742. div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
  743. if (clock <= plls[index].p_transition_clock)
  744. p_inc = plls[index].p_inc_lo;
  745. else
  746. p_inc = plls[index].p_inc_hi;
  747. p_min = ROUND_UP_TO(div_min, p_inc);
  748. p_max = ROUND_DOWN_TO(div_max, p_inc);
  749. if (p_min < plls[index].min_p)
  750. p_min = plls[index].min_p;
  751. if (p_max > plls[index].max_p)
  752. p_max = plls[index].max_p;
  753. if (clock < PLL_REFCLK && index==PLLS_I9xx)
  754. {
  755. p_min = 10;
  756. p_max = 20;
  757. /* this makes 640x480 work it really shouldn't
  758. - SOMEONE WITHOUT DOCS WOZ HERE */
  759. if (clock < 30000)
  760. clock *= 4;
  761. }
  762. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  763. p = p_min;
  764. do {
  765. if (splitp(index, p, &p1, &p2)) {
  766. WRN_MSG("cannot split p = %d\n", p);
  767. p += p_inc;
  768. continue;
  769. }
  770. n = plls[index].min_n;
  771. f_vco = clock * p;
  772. do {
  773. m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
  774. if (m < plls[index].min_m)
  775. m = plls[index].min_m + 1;
  776. if (m > plls[index].max_m)
  777. m = plls[index].max_m - 1;
  778. for (testm = m - 1; testm <= m; testm++) {
  779. f_out = calc_vclock3(index, m, n, p);
  780. if (splitm(index, m, &m1, &m2)) {
  781. WRN_MSG("cannot split m = %d\n", m);
  782. n++;
  783. continue;
  784. }
  785. if (clock > f_out)
  786. f_err = clock - f_out;
  787. else/* slightly bias the error for bigger clocks */
  788. f_err = f_out - clock + 1;
  789. if (f_err < err_best) {
  790. m_best = m;
  791. n_best = n;
  792. p_best = p;
  793. f_best = f_out;
  794. err_best = f_err;
  795. }
  796. }
  797. n++;
  798. } while ((n <= plls[index].max_n) && (f_out >= clock));
  799. p += p_inc;
  800. } while ((p <= p_max));
  801. if (!m_best) {
  802. WRN_MSG("cannot find parameters for clock %d\n", clock);
  803. return 1;
  804. }
  805. m = m_best;
  806. n = n_best;
  807. p = p_best;
  808. splitm(index, m, &m1, &m2);
  809. splitp(index, p, &p1, &p2);
  810. n1 = n - 2;
  811. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  812. "f: %d (%d), VCO: %d\n",
  813. m, m1, m2, n, n1, p, p1, p2,
  814. calc_vclock3(index, m, n, p),
  815. calc_vclock(index, m1, m2, n1, p1, p2),
  816. calc_vclock3(index, m, n, p) * p);
  817. *retm1 = m1;
  818. *retm2 = m2;
  819. *retn = n1;
  820. *retp1 = p1;
  821. *retp2 = p2;
  822. *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
  823. return 0;
  824. }
  825. static __inline__ int
  826. check_overflow(u32 value, u32 limit, const char *description)
  827. {
  828. if (value > limit) {
  829. WRN_MSG("%s value %d exceeds limit %d\n",
  830. description, value, limit);
  831. return 1;
  832. }
  833. return 0;
  834. }
  835. /* It is assumed that hw is filled in with the initial state information. */
  836. int
  837. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  838. struct fb_var_screeninfo *var)
  839. {
  840. int pipe = PIPE_A;
  841. u32 *dpll, *fp0, *fp1;
  842. u32 m1, m2, n, p1, p2, clock_target, clock;
  843. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  844. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  845. u32 vsync_pol, hsync_pol;
  846. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  847. DBG_MSG("intelfbhw_mode_to_hw\n");
  848. /* Disable VGA */
  849. hw->vgacntrl |= VGA_DISABLE;
  850. /* Check whether pipe A or pipe B is enabled. */
  851. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  852. pipe = PIPE_A;
  853. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  854. pipe = PIPE_B;
  855. /* Set which pipe's registers will be set. */
  856. if (pipe == PIPE_B) {
  857. dpll = &hw->dpll_b;
  858. fp0 = &hw->fpb0;
  859. fp1 = &hw->fpb1;
  860. hs = &hw->hsync_b;
  861. hb = &hw->hblank_b;
  862. ht = &hw->htotal_b;
  863. vs = &hw->vsync_b;
  864. vb = &hw->vblank_b;
  865. vt = &hw->vtotal_b;
  866. ss = &hw->src_size_b;
  867. pipe_conf = &hw->pipe_b_conf;
  868. } else {
  869. dpll = &hw->dpll_a;
  870. fp0 = &hw->fpa0;
  871. fp1 = &hw->fpa1;
  872. hs = &hw->hsync_a;
  873. hb = &hw->hblank_a;
  874. ht = &hw->htotal_a;
  875. vs = &hw->vsync_a;
  876. vb = &hw->vblank_a;
  877. vt = &hw->vtotal_a;
  878. ss = &hw->src_size_a;
  879. pipe_conf = &hw->pipe_a_conf;
  880. }
  881. /* Use ADPA register for sync control. */
  882. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  883. /* sync polarity */
  884. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  885. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  886. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  887. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  888. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  889. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  890. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  891. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  892. /* Connect correct pipe to the analog port DAC */
  893. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  894. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  895. /* Set DPMS state to D0 (on) */
  896. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  897. hw->adpa |= ADPA_DPMS_D0;
  898. hw->adpa |= ADPA_DAC_ENABLE;
  899. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  900. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  901. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  902. /* Desired clock in kHz */
  903. clock_target = 1000000000 / var->pixclock;
  904. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
  905. WRN_MSG("calc_pll_params failed\n");
  906. return 1;
  907. }
  908. /* Check for overflow. */
  909. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  910. return 1;
  911. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  912. return 1;
  913. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  914. return 1;
  915. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  916. return 1;
  917. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  918. return 1;
  919. *dpll &= ~DPLL_P1_FORCE_DIV2;
  920. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  921. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  922. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  923. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  924. (m1 << FP_M1_DIVISOR_SHIFT) |
  925. (m2 << FP_M2_DIVISOR_SHIFT);
  926. *fp1 = *fp0;
  927. hw->dvob &= ~PORT_ENABLE;
  928. hw->dvoc &= ~PORT_ENABLE;
  929. /* Use display plane A. */
  930. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  931. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  932. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  933. switch (intelfb_var_to_depth(var)) {
  934. case 8:
  935. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  936. break;
  937. case 15:
  938. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  939. break;
  940. case 16:
  941. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  942. break;
  943. case 24:
  944. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  945. break;
  946. }
  947. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  948. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  949. /* Set CRTC registers. */
  950. hactive = var->xres;
  951. hsync_start = hactive + var->right_margin;
  952. hsync_end = hsync_start + var->hsync_len;
  953. htotal = hsync_end + var->left_margin;
  954. hblank_start = hactive;
  955. hblank_end = htotal;
  956. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  957. hactive, hsync_start, hsync_end, htotal, hblank_start,
  958. hblank_end);
  959. vactive = var->yres;
  960. vsync_start = vactive + var->lower_margin;
  961. vsync_end = vsync_start + var->vsync_len;
  962. vtotal = vsync_end + var->upper_margin;
  963. vblank_start = vactive;
  964. vblank_end = vtotal;
  965. vblank_end = vsync_end + 1;
  966. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  967. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  968. vblank_end);
  969. /* Adjust for register values, and check for overflow. */
  970. hactive--;
  971. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  972. return 1;
  973. hsync_start--;
  974. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  975. return 1;
  976. hsync_end--;
  977. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  978. return 1;
  979. htotal--;
  980. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  981. return 1;
  982. hblank_start--;
  983. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  984. return 1;
  985. hblank_end--;
  986. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  987. return 1;
  988. vactive--;
  989. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  990. return 1;
  991. vsync_start--;
  992. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  993. return 1;
  994. vsync_end--;
  995. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  996. return 1;
  997. vtotal--;
  998. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  999. return 1;
  1000. vblank_start--;
  1001. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1002. return 1;
  1003. vblank_end--;
  1004. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1005. return 1;
  1006. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1007. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1008. (hblank_end << HSYNCEND_SHIFT);
  1009. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1010. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1011. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1012. (vblank_end << VSYNCEND_SHIFT);
  1013. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1014. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1015. (vactive << SRC_SIZE_VERT_SHIFT);
  1016. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  1017. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1018. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1019. var->xoffset * var->bits_per_pixel / 8;
  1020. hw->disp_a_base += dinfo->fb.offset << 12;
  1021. /* Check stride alignment. */
  1022. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  1023. WRN_MSG("display stride %d has bad alignment %d\n",
  1024. hw->disp_a_stride, STRIDE_ALIGNMENT);
  1025. return 1;
  1026. }
  1027. /* Set the palette to 8-bit mode. */
  1028. *pipe_conf &= ~PIPECONF_GAMMA;
  1029. return 0;
  1030. }
  1031. /* Program a (non-VGA) video mode. */
  1032. int
  1033. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1034. const struct intelfb_hwstate *hw, int blank)
  1035. {
  1036. int pipe = PIPE_A;
  1037. u32 tmp;
  1038. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1039. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1040. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1041. u32 hsync_reg, htotal_reg, hblank_reg;
  1042. u32 vsync_reg, vtotal_reg, vblank_reg;
  1043. u32 src_size_reg;
  1044. u32 count, tmp_val[3];
  1045. /* Assume single pipe, display plane A, analog CRT. */
  1046. #if VERBOSE > 0
  1047. DBG_MSG("intelfbhw_program_mode\n");
  1048. #endif
  1049. /* Disable VGA */
  1050. tmp = INREG(VGACNTRL);
  1051. tmp |= VGA_DISABLE;
  1052. OUTREG(VGACNTRL, tmp);
  1053. /* Check whether pipe A or pipe B is enabled. */
  1054. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1055. pipe = PIPE_A;
  1056. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1057. pipe = PIPE_B;
  1058. dinfo->pipe = pipe;
  1059. if (pipe == PIPE_B) {
  1060. dpll = &hw->dpll_b;
  1061. fp0 = &hw->fpb0;
  1062. fp1 = &hw->fpb1;
  1063. pipe_conf = &hw->pipe_b_conf;
  1064. hs = &hw->hsync_b;
  1065. hb = &hw->hblank_b;
  1066. ht = &hw->htotal_b;
  1067. vs = &hw->vsync_b;
  1068. vb = &hw->vblank_b;
  1069. vt = &hw->vtotal_b;
  1070. ss = &hw->src_size_b;
  1071. dpll_reg = DPLL_B;
  1072. fp0_reg = FPB0;
  1073. fp1_reg = FPB1;
  1074. pipe_conf_reg = PIPEBCONF;
  1075. hsync_reg = HSYNC_B;
  1076. htotal_reg = HTOTAL_B;
  1077. hblank_reg = HBLANK_B;
  1078. vsync_reg = VSYNC_B;
  1079. vtotal_reg = VTOTAL_B;
  1080. vblank_reg = VBLANK_B;
  1081. src_size_reg = SRC_SIZE_B;
  1082. } else {
  1083. dpll = &hw->dpll_a;
  1084. fp0 = &hw->fpa0;
  1085. fp1 = &hw->fpa1;
  1086. pipe_conf = &hw->pipe_a_conf;
  1087. hs = &hw->hsync_a;
  1088. hb = &hw->hblank_a;
  1089. ht = &hw->htotal_a;
  1090. vs = &hw->vsync_a;
  1091. vb = &hw->vblank_a;
  1092. vt = &hw->vtotal_a;
  1093. ss = &hw->src_size_a;
  1094. dpll_reg = DPLL_A;
  1095. fp0_reg = FPA0;
  1096. fp1_reg = FPA1;
  1097. pipe_conf_reg = PIPEACONF;
  1098. hsync_reg = HSYNC_A;
  1099. htotal_reg = HTOTAL_A;
  1100. hblank_reg = HBLANK_A;
  1101. vsync_reg = VSYNC_A;
  1102. vtotal_reg = VTOTAL_A;
  1103. vblank_reg = VBLANK_A;
  1104. src_size_reg = SRC_SIZE_A;
  1105. }
  1106. /* turn off pipe */
  1107. tmp = INREG(pipe_conf_reg);
  1108. tmp &= ~PIPECONF_ENABLE;
  1109. OUTREG(pipe_conf_reg, tmp);
  1110. count = 0;
  1111. do{
  1112. tmp_val[count%3] = INREG(0x70000);
  1113. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1114. break;
  1115. count++;
  1116. udelay(1);
  1117. if (count % 200 == 0)
  1118. {
  1119. tmp = INREG(pipe_conf_reg);
  1120. tmp &= ~PIPECONF_ENABLE;
  1121. OUTREG(pipe_conf_reg, tmp);
  1122. }
  1123. } while(count < 2000);
  1124. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1125. /* Disable planes A and B. */
  1126. tmp = INREG(DSPACNTR);
  1127. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1128. OUTREG(DSPACNTR, tmp);
  1129. tmp = INREG(DSPBCNTR);
  1130. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1131. OUTREG(DSPBCNTR, tmp);
  1132. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1133. mdelay(20);
  1134. /* Disable Sync */
  1135. tmp = INREG(ADPA);
  1136. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1137. tmp |= ADPA_DPMS_D3;
  1138. OUTREG(ADPA, tmp);
  1139. /* do some funky magic - xyzzy */
  1140. OUTREG(0x61204, 0xabcd0000);
  1141. /* turn off PLL */
  1142. tmp = INREG(dpll_reg);
  1143. dpll_reg &= ~DPLL_VCO_ENABLE;
  1144. OUTREG(dpll_reg, tmp);
  1145. /* Set PLL parameters */
  1146. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1147. OUTREG(fp0_reg, *fp0);
  1148. OUTREG(fp1_reg, *fp1);
  1149. /* Enable PLL */
  1150. tmp = INREG(dpll_reg);
  1151. tmp |= DPLL_VCO_ENABLE;
  1152. OUTREG(dpll_reg, tmp);
  1153. /* Set DVOs B/C */
  1154. OUTREG(DVOB, hw->dvob);
  1155. OUTREG(DVOC, hw->dvoc);
  1156. /* undo funky magic */
  1157. OUTREG(0x61204, 0x00000000);
  1158. /* Set ADPA */
  1159. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1160. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1161. /* Set pipe parameters */
  1162. OUTREG(hsync_reg, *hs);
  1163. OUTREG(hblank_reg, *hb);
  1164. OUTREG(htotal_reg, *ht);
  1165. OUTREG(vsync_reg, *vs);
  1166. OUTREG(vblank_reg, *vb);
  1167. OUTREG(vtotal_reg, *vt);
  1168. OUTREG(src_size_reg, *ss);
  1169. /* Enable pipe */
  1170. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1171. /* Enable sync */
  1172. tmp = INREG(ADPA);
  1173. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1174. tmp |= ADPA_DPMS_D0;
  1175. OUTREG(ADPA, tmp);
  1176. /* setup display plane */
  1177. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1178. /*
  1179. * i830M errata: the display plane must be enabled
  1180. * to allow writes to the other bits in the plane
  1181. * control register.
  1182. */
  1183. tmp = INREG(DSPACNTR);
  1184. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1185. tmp |= DISPPLANE_PLANE_ENABLE;
  1186. OUTREG(DSPACNTR, tmp);
  1187. OUTREG(DSPACNTR,
  1188. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1189. mdelay(1);
  1190. }
  1191. }
  1192. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1193. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1194. OUTREG(DSPABASE, hw->disp_a_base);
  1195. /* Enable plane */
  1196. if (!blank) {
  1197. tmp = INREG(DSPACNTR);
  1198. tmp |= DISPPLANE_PLANE_ENABLE;
  1199. OUTREG(DSPACNTR, tmp);
  1200. OUTREG(DSPABASE, hw->disp_a_base);
  1201. }
  1202. return 0;
  1203. }
  1204. /* forward declarations */
  1205. static void refresh_ring(struct intelfb_info *dinfo);
  1206. static void reset_state(struct intelfb_info *dinfo);
  1207. static void do_flush(struct intelfb_info *dinfo);
  1208. static int
  1209. wait_ring(struct intelfb_info *dinfo, int n)
  1210. {
  1211. int i = 0;
  1212. unsigned long end;
  1213. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1214. #if VERBOSE > 0
  1215. DBG_MSG("wait_ring: %d\n", n);
  1216. #endif
  1217. end = jiffies + (HZ * 3);
  1218. while (dinfo->ring_space < n) {
  1219. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1220. RING_HEAD_MASK);
  1221. if (dinfo->ring_tail + RING_MIN_FREE <
  1222. (u32 __iomem) dinfo->ring_head)
  1223. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1224. - (dinfo->ring_tail + RING_MIN_FREE);
  1225. else
  1226. dinfo->ring_space = (dinfo->ring.size +
  1227. (u32 __iomem) dinfo->ring_head)
  1228. - (dinfo->ring_tail + RING_MIN_FREE);
  1229. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1230. end = jiffies + (HZ * 3);
  1231. last_head = (u32 __iomem) dinfo->ring_head;
  1232. }
  1233. i++;
  1234. if (time_before(end, jiffies)) {
  1235. if (!i) {
  1236. /* Try again */
  1237. reset_state(dinfo);
  1238. refresh_ring(dinfo);
  1239. do_flush(dinfo);
  1240. end = jiffies + (HZ * 3);
  1241. i = 1;
  1242. } else {
  1243. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1244. dinfo->ring_space, n);
  1245. WRN_MSG("lockup - turning off hardware "
  1246. "acceleration\n");
  1247. dinfo->ring_lockup = 1;
  1248. break;
  1249. }
  1250. }
  1251. udelay(1);
  1252. }
  1253. return i;
  1254. }
  1255. static void
  1256. do_flush(struct intelfb_info *dinfo) {
  1257. START_RING(2);
  1258. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1259. OUT_RING(MI_NOOP);
  1260. ADVANCE_RING();
  1261. }
  1262. void
  1263. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1264. {
  1265. #if VERBOSE > 0
  1266. DBG_MSG("intelfbhw_do_sync\n");
  1267. #endif
  1268. if (!dinfo->accel)
  1269. return;
  1270. /*
  1271. * Send a flush, then wait until the ring is empty. This is what
  1272. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1273. * than the recommended method (both have problems).
  1274. */
  1275. do_flush(dinfo);
  1276. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1277. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1278. }
  1279. static void
  1280. refresh_ring(struct intelfb_info *dinfo)
  1281. {
  1282. #if VERBOSE > 0
  1283. DBG_MSG("refresh_ring\n");
  1284. #endif
  1285. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1286. RING_HEAD_MASK);
  1287. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1288. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1289. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1290. - (dinfo->ring_tail + RING_MIN_FREE);
  1291. else
  1292. dinfo->ring_space = (dinfo->ring.size +
  1293. (u32 __iomem) dinfo->ring_head)
  1294. - (dinfo->ring_tail + RING_MIN_FREE);
  1295. }
  1296. static void
  1297. reset_state(struct intelfb_info *dinfo)
  1298. {
  1299. int i;
  1300. u32 tmp;
  1301. #if VERBOSE > 0
  1302. DBG_MSG("reset_state\n");
  1303. #endif
  1304. for (i = 0; i < FENCE_NUM; i++)
  1305. OUTREG(FENCE + (i << 2), 0);
  1306. /* Flush the ring buffer if it's enabled. */
  1307. tmp = INREG(PRI_RING_LENGTH);
  1308. if (tmp & RING_ENABLE) {
  1309. #if VERBOSE > 0
  1310. DBG_MSG("reset_state: ring was enabled\n");
  1311. #endif
  1312. refresh_ring(dinfo);
  1313. intelfbhw_do_sync(dinfo);
  1314. DO_RING_IDLE();
  1315. }
  1316. OUTREG(PRI_RING_LENGTH, 0);
  1317. OUTREG(PRI_RING_HEAD, 0);
  1318. OUTREG(PRI_RING_TAIL, 0);
  1319. OUTREG(PRI_RING_START, 0);
  1320. }
  1321. /* Stop the 2D engine, and turn off the ring buffer. */
  1322. void
  1323. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1324. {
  1325. #if VERBOSE > 0
  1326. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1327. dinfo->ring_active);
  1328. #endif
  1329. if (!dinfo->accel)
  1330. return;
  1331. dinfo->ring_active = 0;
  1332. reset_state(dinfo);
  1333. }
  1334. /*
  1335. * Enable the ring buffer, and initialise the 2D engine.
  1336. * It is assumed that the graphics engine has been stopped by previously
  1337. * calling intelfb_2d_stop().
  1338. */
  1339. void
  1340. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1341. {
  1342. #if VERBOSE > 0
  1343. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1344. dinfo->accel, dinfo->ring_active);
  1345. #endif
  1346. if (!dinfo->accel)
  1347. return;
  1348. /* Initialise the primary ring buffer. */
  1349. OUTREG(PRI_RING_LENGTH, 0);
  1350. OUTREG(PRI_RING_TAIL, 0);
  1351. OUTREG(PRI_RING_HEAD, 0);
  1352. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1353. OUTREG(PRI_RING_LENGTH,
  1354. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1355. RING_NO_REPORT | RING_ENABLE);
  1356. refresh_ring(dinfo);
  1357. dinfo->ring_active = 1;
  1358. }
  1359. /* 2D fillrect (solid fill or invert) */
  1360. void
  1361. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1362. u32 color, u32 pitch, u32 bpp, u32 rop)
  1363. {
  1364. u32 br00, br09, br13, br14, br16;
  1365. #if VERBOSE > 0
  1366. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1367. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1368. #endif
  1369. br00 = COLOR_BLT_CMD;
  1370. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1371. br13 = (rop << ROP_SHIFT) | pitch;
  1372. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1373. br16 = color;
  1374. switch (bpp) {
  1375. case 8:
  1376. br13 |= COLOR_DEPTH_8;
  1377. break;
  1378. case 16:
  1379. br13 |= COLOR_DEPTH_16;
  1380. break;
  1381. case 32:
  1382. br13 |= COLOR_DEPTH_32;
  1383. br00 |= WRITE_ALPHA | WRITE_RGB;
  1384. break;
  1385. }
  1386. START_RING(6);
  1387. OUT_RING(br00);
  1388. OUT_RING(br13);
  1389. OUT_RING(br14);
  1390. OUT_RING(br09);
  1391. OUT_RING(br16);
  1392. OUT_RING(MI_NOOP);
  1393. ADVANCE_RING();
  1394. #if VERBOSE > 0
  1395. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1396. dinfo->ring_tail, dinfo->ring_space);
  1397. #endif
  1398. }
  1399. void
  1400. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1401. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1402. {
  1403. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1404. #if VERBOSE > 0
  1405. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1406. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1407. #endif
  1408. br00 = XY_SRC_COPY_BLT_CMD;
  1409. br09 = dinfo->fb_start;
  1410. br11 = (pitch << PITCH_SHIFT);
  1411. br12 = dinfo->fb_start;
  1412. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1413. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1414. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1415. ((dsty + h) << HEIGHT_SHIFT);
  1416. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1417. switch (bpp) {
  1418. case 8:
  1419. br13 |= COLOR_DEPTH_8;
  1420. break;
  1421. case 16:
  1422. br13 |= COLOR_DEPTH_16;
  1423. break;
  1424. case 32:
  1425. br13 |= COLOR_DEPTH_32;
  1426. br00 |= WRITE_ALPHA | WRITE_RGB;
  1427. break;
  1428. }
  1429. START_RING(8);
  1430. OUT_RING(br00);
  1431. OUT_RING(br13);
  1432. OUT_RING(br22);
  1433. OUT_RING(br23);
  1434. OUT_RING(br09);
  1435. OUT_RING(br26);
  1436. OUT_RING(br11);
  1437. OUT_RING(br12);
  1438. ADVANCE_RING();
  1439. }
  1440. int
  1441. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1442. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1443. {
  1444. int nbytes, ndwords, pad, tmp;
  1445. u32 br00, br09, br13, br18, br19, br22, br23;
  1446. int dat, ix, iy, iw;
  1447. int i, j;
  1448. #if VERBOSE > 0
  1449. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1450. #endif
  1451. /* size in bytes of a padded scanline */
  1452. nbytes = ROUND_UP_TO(w, 16) / 8;
  1453. /* Total bytes of padded scanline data to write out. */
  1454. nbytes = nbytes * h;
  1455. /*
  1456. * Check if the glyph data exceeds the immediate mode limit.
  1457. * It would take a large font (1K pixels) to hit this limit.
  1458. */
  1459. if (nbytes > MAX_MONO_IMM_SIZE)
  1460. return 0;
  1461. /* Src data is packaged a dword (32-bit) at a time. */
  1462. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1463. /*
  1464. * Ring has to be padded to a quad word. But because the command starts
  1465. with 7 bytes, pad only if there is an even number of ndwords
  1466. */
  1467. pad = !(ndwords % 2);
  1468. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1469. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1470. br09 = dinfo->fb_start;
  1471. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1472. br18 = bg;
  1473. br19 = fg;
  1474. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1475. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1476. switch (bpp) {
  1477. case 8:
  1478. br13 |= COLOR_DEPTH_8;
  1479. break;
  1480. case 16:
  1481. br13 |= COLOR_DEPTH_16;
  1482. break;
  1483. case 32:
  1484. br13 |= COLOR_DEPTH_32;
  1485. br00 |= WRITE_ALPHA | WRITE_RGB;
  1486. break;
  1487. }
  1488. START_RING(8 + ndwords);
  1489. OUT_RING(br00);
  1490. OUT_RING(br13);
  1491. OUT_RING(br22);
  1492. OUT_RING(br23);
  1493. OUT_RING(br09);
  1494. OUT_RING(br18);
  1495. OUT_RING(br19);
  1496. ix = iy = 0;
  1497. iw = ROUND_UP_TO(w, 8) / 8;
  1498. while (ndwords--) {
  1499. dat = 0;
  1500. for (j = 0; j < 2; ++j) {
  1501. for (i = 0; i < 2; ++i) {
  1502. if (ix != iw || i == 0)
  1503. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1504. }
  1505. if (ix == iw && iy != (h-1)) {
  1506. ix = 0;
  1507. ++iy;
  1508. }
  1509. }
  1510. OUT_RING(dat);
  1511. }
  1512. if (pad)
  1513. OUT_RING(MI_NOOP);
  1514. ADVANCE_RING();
  1515. return 1;
  1516. }
  1517. /* HW cursor functions. */
  1518. void
  1519. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1520. {
  1521. u32 tmp;
  1522. #if VERBOSE > 0
  1523. DBG_MSG("intelfbhw_cursor_init\n");
  1524. #endif
  1525. if (dinfo->mobile || IS_I9xx(dinfo)) {
  1526. if (!dinfo->cursor.physical)
  1527. return;
  1528. tmp = INREG(CURSOR_A_CONTROL);
  1529. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1530. CURSOR_MEM_TYPE_LOCAL |
  1531. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1532. tmp |= CURSOR_MODE_DISABLE;
  1533. OUTREG(CURSOR_A_CONTROL, tmp);
  1534. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1535. } else {
  1536. tmp = INREG(CURSOR_CONTROL);
  1537. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1538. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1539. tmp = CURSOR_FORMAT_3C;
  1540. OUTREG(CURSOR_CONTROL, tmp);
  1541. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1542. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1543. (64 << CURSOR_SIZE_V_SHIFT);
  1544. OUTREG(CURSOR_SIZE, tmp);
  1545. }
  1546. }
  1547. void
  1548. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1549. {
  1550. u32 tmp;
  1551. #if VERBOSE > 0
  1552. DBG_MSG("intelfbhw_cursor_hide\n");
  1553. #endif
  1554. dinfo->cursor_on = 0;
  1555. if (dinfo->mobile || IS_I9xx(dinfo)) {
  1556. if (!dinfo->cursor.physical)
  1557. return;
  1558. tmp = INREG(CURSOR_A_CONTROL);
  1559. tmp &= ~CURSOR_MODE_MASK;
  1560. tmp |= CURSOR_MODE_DISABLE;
  1561. OUTREG(CURSOR_A_CONTROL, tmp);
  1562. /* Flush changes */
  1563. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1564. } else {
  1565. tmp = INREG(CURSOR_CONTROL);
  1566. tmp &= ~CURSOR_ENABLE;
  1567. OUTREG(CURSOR_CONTROL, tmp);
  1568. }
  1569. }
  1570. void
  1571. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1572. {
  1573. u32 tmp;
  1574. #if VERBOSE > 0
  1575. DBG_MSG("intelfbhw_cursor_show\n");
  1576. #endif
  1577. dinfo->cursor_on = 1;
  1578. if (dinfo->cursor_blanked)
  1579. return;
  1580. if (dinfo->mobile || IS_I9xx(dinfo)) {
  1581. if (!dinfo->cursor.physical)
  1582. return;
  1583. tmp = INREG(CURSOR_A_CONTROL);
  1584. tmp &= ~CURSOR_MODE_MASK;
  1585. tmp |= CURSOR_MODE_64_4C_AX;
  1586. OUTREG(CURSOR_A_CONTROL, tmp);
  1587. /* Flush changes */
  1588. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1589. } else {
  1590. tmp = INREG(CURSOR_CONTROL);
  1591. tmp |= CURSOR_ENABLE;
  1592. OUTREG(CURSOR_CONTROL, tmp);
  1593. }
  1594. }
  1595. void
  1596. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1597. {
  1598. u32 tmp;
  1599. #if VERBOSE > 0
  1600. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1601. #endif
  1602. /*
  1603. * Sets the position. The coordinates are assumed to already
  1604. * have any offset adjusted. Assume that the cursor is never
  1605. * completely off-screen, and that x, y are always >= 0.
  1606. */
  1607. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1608. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1609. OUTREG(CURSOR_A_POSITION, tmp);
  1610. if (IS_I9xx(dinfo)) {
  1611. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1612. }
  1613. }
  1614. void
  1615. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1616. {
  1617. #if VERBOSE > 0
  1618. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1619. #endif
  1620. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1621. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1622. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1623. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1624. }
  1625. void
  1626. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1627. u8 *data)
  1628. {
  1629. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1630. int i, j, w = width / 8;
  1631. int mod = width % 8, t_mask, d_mask;
  1632. #if VERBOSE > 0
  1633. DBG_MSG("intelfbhw_cursor_load\n");
  1634. #endif
  1635. if (!dinfo->cursor.virtual)
  1636. return;
  1637. t_mask = 0xff >> mod;
  1638. d_mask = ~(0xff >> mod);
  1639. for (i = height; i--; ) {
  1640. for (j = 0; j < w; j++) {
  1641. writeb(0x00, addr + j);
  1642. writeb(*(data++), addr + j+8);
  1643. }
  1644. if (mod) {
  1645. writeb(t_mask, addr + j);
  1646. writeb(*(data++) & d_mask, addr + j+8);
  1647. }
  1648. addr += 16;
  1649. }
  1650. }
  1651. void
  1652. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1653. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1654. int i, j;
  1655. #if VERBOSE > 0
  1656. DBG_MSG("intelfbhw_cursor_reset\n");
  1657. #endif
  1658. if (!dinfo->cursor.virtual)
  1659. return;
  1660. for (i = 64; i--; ) {
  1661. for (j = 0; j < 8; j++) {
  1662. writeb(0xff, addr + j+0);
  1663. writeb(0x00, addr + j+8);
  1664. }
  1665. addr += 16;
  1666. }
  1667. }