amd64_edac.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. /*
  101. * Select DCT to which PCI cfg accesses are routed
  102. */
  103. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  104. {
  105. u32 reg = 0;
  106. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  107. reg &= 0xfffffffe;
  108. reg |= dct;
  109. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  110. }
  111. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  112. const char *func)
  113. {
  114. u8 dct = 0;
  115. if (addr >= 0x140 && addr <= 0x1a0) {
  116. dct = 1;
  117. addr -= 0x100;
  118. }
  119. f15h_select_dct(pvt, dct);
  120. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  121. }
  122. /*
  123. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  124. * hardware and can involve L2 cache, dcache as well as the main memory. With
  125. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  126. * functionality.
  127. *
  128. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  129. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  130. * bytes/sec for the setting.
  131. *
  132. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  133. * other archs, we might not have access to the caches directly.
  134. */
  135. /*
  136. * scan the scrub rate mapping table for a close or matching bandwidth value to
  137. * issue. If requested is too big, then use last maximum value found.
  138. */
  139. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  140. {
  141. u32 scrubval;
  142. int i;
  143. /*
  144. * map the configured rate (new_bw) to a value specific to the AMD64
  145. * memory controller and apply to register. Search for the first
  146. * bandwidth entry that is greater or equal than the setting requested
  147. * and program that. If at last entry, turn off DRAM scrubbing.
  148. *
  149. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  150. * by falling back to the last element in scrubrates[].
  151. */
  152. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  153. /*
  154. * skip scrub rates which aren't recommended
  155. * (see F10 BKDG, F3x58)
  156. */
  157. if (scrubrates[i].scrubval < min_rate)
  158. continue;
  159. if (scrubrates[i].bandwidth <= new_bw)
  160. break;
  161. }
  162. scrubval = scrubrates[i].scrubval;
  163. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  164. if (scrubval)
  165. return scrubrates[i].bandwidth;
  166. return 0;
  167. }
  168. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  169. {
  170. struct amd64_pvt *pvt = mci->pvt_info;
  171. u32 min_scrubrate = 0x5;
  172. if (boot_cpu_data.x86 == 0xf)
  173. min_scrubrate = 0x0;
  174. /* F15h Erratum #505 */
  175. if (boot_cpu_data.x86 == 0x15)
  176. f15h_select_dct(pvt, 0);
  177. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  178. }
  179. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  180. {
  181. struct amd64_pvt *pvt = mci->pvt_info;
  182. u32 scrubval = 0;
  183. int i, retval = -EINVAL;
  184. /* F15h Erratum #505 */
  185. if (boot_cpu_data.x86 == 0x15)
  186. f15h_select_dct(pvt, 0);
  187. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  188. scrubval = scrubval & 0x001F;
  189. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  190. if (scrubrates[i].scrubval == scrubval) {
  191. retval = scrubrates[i].bandwidth;
  192. break;
  193. }
  194. }
  195. return retval;
  196. }
  197. /*
  198. * returns true if the SysAddr given by sys_addr matches the
  199. * DRAM base/limit associated with node_id
  200. */
  201. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  202. unsigned nid)
  203. {
  204. u64 addr;
  205. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  206. * all ones if the most significant implemented address bit is 1.
  207. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  208. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  209. * Application Programming.
  210. */
  211. addr = sys_addr & 0x000000ffffffffffull;
  212. return ((addr >= get_dram_base(pvt, nid)) &&
  213. (addr <= get_dram_limit(pvt, nid)));
  214. }
  215. /*
  216. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  217. * mem_ctl_info structure for the node that the SysAddr maps to.
  218. *
  219. * On failure, return NULL.
  220. */
  221. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  222. u64 sys_addr)
  223. {
  224. struct amd64_pvt *pvt;
  225. unsigned node_id;
  226. u32 intlv_en, bits;
  227. /*
  228. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  229. * 3.4.4.2) registers to map the SysAddr to a node ID.
  230. */
  231. pvt = mci->pvt_info;
  232. /*
  233. * The value of this field should be the same for all DRAM Base
  234. * registers. Therefore we arbitrarily choose to read it from the
  235. * register for node 0.
  236. */
  237. intlv_en = dram_intlv_en(pvt, 0);
  238. if (intlv_en == 0) {
  239. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  240. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  241. goto found;
  242. }
  243. goto err_no_match;
  244. }
  245. if (unlikely((intlv_en != 0x01) &&
  246. (intlv_en != 0x03) &&
  247. (intlv_en != 0x07))) {
  248. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  249. return NULL;
  250. }
  251. bits = (((u32) sys_addr) >> 12) & intlv_en;
  252. for (node_id = 0; ; ) {
  253. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  254. break; /* intlv_sel field matches */
  255. if (++node_id >= DRAM_RANGES)
  256. goto err_no_match;
  257. }
  258. /* sanity test for sys_addr */
  259. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  260. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  261. "range for node %d with node interleaving enabled.\n",
  262. __func__, sys_addr, node_id);
  263. return NULL;
  264. }
  265. found:
  266. return edac_mc_find((int)node_id);
  267. err_no_match:
  268. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  269. (unsigned long)sys_addr);
  270. return NULL;
  271. }
  272. /*
  273. * compute the CS base address of the @csrow on the DRAM controller @dct.
  274. * For details see F2x[5C:40] in the processor's BKDG
  275. */
  276. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  277. u64 *base, u64 *mask)
  278. {
  279. u64 csbase, csmask, base_bits, mask_bits;
  280. u8 addr_shift;
  281. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  282. csbase = pvt->csels[dct].csbases[csrow];
  283. csmask = pvt->csels[dct].csmasks[csrow];
  284. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  285. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  286. addr_shift = 4;
  287. } else {
  288. csbase = pvt->csels[dct].csbases[csrow];
  289. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  290. addr_shift = 8;
  291. if (boot_cpu_data.x86 == 0x15)
  292. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  293. else
  294. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  295. }
  296. *base = (csbase & base_bits) << addr_shift;
  297. *mask = ~0ULL;
  298. /* poke holes for the csmask */
  299. *mask &= ~(mask_bits << addr_shift);
  300. /* OR them in */
  301. *mask |= (csmask & mask_bits) << addr_shift;
  302. }
  303. #define for_each_chip_select(i, dct, pvt) \
  304. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  305. #define chip_select_base(i, dct, pvt) \
  306. pvt->csels[dct].csbases[i]
  307. #define for_each_chip_select_mask(i, dct, pvt) \
  308. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  309. /*
  310. * @input_addr is an InputAddr associated with the node given by mci. Return the
  311. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  312. */
  313. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  314. {
  315. struct amd64_pvt *pvt;
  316. int csrow;
  317. u64 base, mask;
  318. pvt = mci->pvt_info;
  319. for_each_chip_select(csrow, 0, pvt) {
  320. if (!csrow_enabled(csrow, 0, pvt))
  321. continue;
  322. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  323. mask = ~mask;
  324. if ((input_addr & mask) == (base & mask)) {
  325. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  326. (unsigned long)input_addr, csrow,
  327. pvt->mc_node_id);
  328. return csrow;
  329. }
  330. }
  331. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  332. (unsigned long)input_addr, pvt->mc_node_id);
  333. return -1;
  334. }
  335. /*
  336. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  337. * for the node represented by mci. Info is passed back in *hole_base,
  338. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  339. * info is invalid. Info may be invalid for either of the following reasons:
  340. *
  341. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  342. * Address Register does not exist.
  343. *
  344. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  345. * indicating that its contents are not valid.
  346. *
  347. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  348. * complete 32-bit values despite the fact that the bitfields in the DHAR
  349. * only represent bits 31-24 of the base and offset values.
  350. */
  351. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  352. u64 *hole_offset, u64 *hole_size)
  353. {
  354. struct amd64_pvt *pvt = mci->pvt_info;
  355. /* only revE and later have the DRAM Hole Address Register */
  356. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  357. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  358. pvt->ext_model, pvt->mc_node_id);
  359. return 1;
  360. }
  361. /* valid for Fam10h and above */
  362. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  363. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  364. return 1;
  365. }
  366. if (!dhar_valid(pvt)) {
  367. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  368. pvt->mc_node_id);
  369. return 1;
  370. }
  371. /* This node has Memory Hoisting */
  372. /* +------------------+--------------------+--------------------+-----
  373. * | memory | DRAM hole | relocated |
  374. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  375. * | | | DRAM hole |
  376. * | | | [0x100000000, |
  377. * | | | (0x100000000+ |
  378. * | | | (0xffffffff-x))] |
  379. * +------------------+--------------------+--------------------+-----
  380. *
  381. * Above is a diagram of physical memory showing the DRAM hole and the
  382. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  383. * starts at address x (the base address) and extends through address
  384. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  385. * addresses in the hole so that they start at 0x100000000.
  386. */
  387. *hole_base = dhar_base(pvt);
  388. *hole_size = (1ULL << 32) - *hole_base;
  389. if (boot_cpu_data.x86 > 0xf)
  390. *hole_offset = f10_dhar_offset(pvt);
  391. else
  392. *hole_offset = k8_dhar_offset(pvt);
  393. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  394. pvt->mc_node_id, (unsigned long)*hole_base,
  395. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  396. return 0;
  397. }
  398. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  399. /*
  400. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  401. * assumed that sys_addr maps to the node given by mci.
  402. *
  403. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  404. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  405. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  406. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  407. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  408. * These parts of the documentation are unclear. I interpret them as follows:
  409. *
  410. * When node n receives a SysAddr, it processes the SysAddr as follows:
  411. *
  412. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  413. * Limit registers for node n. If the SysAddr is not within the range
  414. * specified by the base and limit values, then node n ignores the Sysaddr
  415. * (since it does not map to node n). Otherwise continue to step 2 below.
  416. *
  417. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  418. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  419. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  420. * hole. If not, skip to step 3 below. Else get the value of the
  421. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  422. * offset defined by this value from the SysAddr.
  423. *
  424. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  425. * Base register for node n. To obtain the DramAddr, subtract the base
  426. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  427. */
  428. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  429. {
  430. struct amd64_pvt *pvt = mci->pvt_info;
  431. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  432. int ret;
  433. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  434. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  435. &hole_size);
  436. if (!ret) {
  437. if ((sys_addr >= (1ULL << 32)) &&
  438. (sys_addr < ((1ULL << 32) + hole_size))) {
  439. /* use DHAR to translate SysAddr to DramAddr */
  440. dram_addr = sys_addr - hole_offset;
  441. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  442. (unsigned long)sys_addr,
  443. (unsigned long)dram_addr);
  444. return dram_addr;
  445. }
  446. }
  447. /*
  448. * Translate the SysAddr to a DramAddr as shown near the start of
  449. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  450. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  451. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  452. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  453. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  454. * Programmer's Manual Volume 1 Application Programming.
  455. */
  456. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  457. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  458. (unsigned long)sys_addr, (unsigned long)dram_addr);
  459. return dram_addr;
  460. }
  461. /*
  462. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  463. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  464. * for node interleaving.
  465. */
  466. static int num_node_interleave_bits(unsigned intlv_en)
  467. {
  468. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  469. int n;
  470. BUG_ON(intlv_en > 7);
  471. n = intlv_shift_table[intlv_en];
  472. return n;
  473. }
  474. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  475. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  476. {
  477. struct amd64_pvt *pvt;
  478. int intlv_shift;
  479. u64 input_addr;
  480. pvt = mci->pvt_info;
  481. /*
  482. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  483. * concerning translating a DramAddr to an InputAddr.
  484. */
  485. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  486. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  487. (dram_addr & 0xfff);
  488. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  489. intlv_shift, (unsigned long)dram_addr,
  490. (unsigned long)input_addr);
  491. return input_addr;
  492. }
  493. /*
  494. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  495. * assumed that @sys_addr maps to the node given by mci.
  496. */
  497. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  498. {
  499. u64 input_addr;
  500. input_addr =
  501. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  502. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  503. (unsigned long)sys_addr, (unsigned long)input_addr);
  504. return input_addr;
  505. }
  506. /*
  507. * @input_addr is an InputAddr associated with the node represented by mci.
  508. * Translate @input_addr to a DramAddr and return the result.
  509. */
  510. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  511. {
  512. struct amd64_pvt *pvt;
  513. unsigned node_id, intlv_shift;
  514. u64 bits, dram_addr;
  515. u32 intlv_sel;
  516. /*
  517. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  518. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  519. * this procedure. When translating from a DramAddr to an InputAddr, the
  520. * bits used for node interleaving are discarded. Here we recover these
  521. * bits from the IntlvSel field of the DRAM Limit register (section
  522. * 3.4.4.2) for the node that input_addr is associated with.
  523. */
  524. pvt = mci->pvt_info;
  525. node_id = pvt->mc_node_id;
  526. BUG_ON(node_id > 7);
  527. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  528. if (intlv_shift == 0) {
  529. edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
  530. (unsigned long)input_addr);
  531. return input_addr;
  532. }
  533. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  534. (input_addr & 0xfff);
  535. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  536. dram_addr = bits + (intlv_sel << 12);
  537. edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
  538. (unsigned long)input_addr,
  539. (unsigned long)dram_addr, intlv_shift);
  540. return dram_addr;
  541. }
  542. /*
  543. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  544. * @dram_addr to a SysAddr.
  545. */
  546. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  547. {
  548. struct amd64_pvt *pvt = mci->pvt_info;
  549. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  550. int ret = 0;
  551. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  552. &hole_size);
  553. if (!ret) {
  554. if ((dram_addr >= hole_base) &&
  555. (dram_addr < (hole_base + hole_size))) {
  556. sys_addr = dram_addr + hole_offset;
  557. edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
  558. (unsigned long)dram_addr,
  559. (unsigned long)sys_addr);
  560. return sys_addr;
  561. }
  562. }
  563. base = get_dram_base(pvt, pvt->mc_node_id);
  564. sys_addr = dram_addr + base;
  565. /*
  566. * The sys_addr we have computed up to this point is a 40-bit value
  567. * because the k8 deals with 40-bit values. However, the value we are
  568. * supposed to return is a full 64-bit physical address. The AMD
  569. * x86-64 architecture specifies that the most significant implemented
  570. * address bit through bit 63 of a physical address must be either all
  571. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  572. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  573. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  574. * Programming.
  575. */
  576. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  577. edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  578. pvt->mc_node_id, (unsigned long)dram_addr,
  579. (unsigned long)sys_addr);
  580. return sys_addr;
  581. }
  582. /*
  583. * @input_addr is an InputAddr associated with the node given by mci. Translate
  584. * @input_addr to a SysAddr.
  585. */
  586. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  587. u64 input_addr)
  588. {
  589. return dram_addr_to_sys_addr(mci,
  590. input_addr_to_dram_addr(mci, input_addr));
  591. }
  592. /* Map the Error address to a PAGE and PAGE OFFSET. */
  593. static inline void error_address_to_page_and_offset(u64 error_address,
  594. struct err_info *err)
  595. {
  596. err->page = (u32) (error_address >> PAGE_SHIFT);
  597. err->offset = ((u32) error_address) & ~PAGE_MASK;
  598. }
  599. /*
  600. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  601. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  602. * of a node that detected an ECC memory error. mci represents the node that
  603. * the error address maps to (possibly different from the node that detected
  604. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  605. * error.
  606. */
  607. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  608. {
  609. int csrow;
  610. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  611. if (csrow == -1)
  612. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  613. "address 0x%lx\n", (unsigned long)sys_addr);
  614. return csrow;
  615. }
  616. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  617. /*
  618. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  619. * are ECC capable.
  620. */
  621. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  622. {
  623. u8 bit;
  624. unsigned long edac_cap = EDAC_FLAG_NONE;
  625. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  626. ? 19
  627. : 17;
  628. if (pvt->dclr0 & BIT(bit))
  629. edac_cap = EDAC_FLAG_SECDED;
  630. return edac_cap;
  631. }
  632. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  633. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  634. {
  635. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  636. edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  637. (dclr & BIT(16)) ? "un" : "",
  638. (dclr & BIT(19)) ? "yes" : "no");
  639. edac_dbg(1, " PAR/ERR parity: %s\n",
  640. (dclr & BIT(8)) ? "enabled" : "disabled");
  641. if (boot_cpu_data.x86 == 0x10)
  642. edac_dbg(1, " DCT 128bit mode width: %s\n",
  643. (dclr & BIT(11)) ? "128b" : "64b");
  644. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  645. (dclr & BIT(12)) ? "yes" : "no",
  646. (dclr & BIT(13)) ? "yes" : "no",
  647. (dclr & BIT(14)) ? "yes" : "no",
  648. (dclr & BIT(15)) ? "yes" : "no");
  649. }
  650. /* Display and decode various NB registers for debug purposes. */
  651. static void dump_misc_regs(struct amd64_pvt *pvt)
  652. {
  653. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  654. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  655. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  656. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  657. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  658. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  659. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  660. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  661. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  662. pvt->dhar, dhar_base(pvt),
  663. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  664. : f10_dhar_offset(pvt));
  665. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  666. amd64_debug_display_dimm_sizes(pvt, 0);
  667. /* everything below this point is Fam10h and above */
  668. if (boot_cpu_data.x86 == 0xf)
  669. return;
  670. amd64_debug_display_dimm_sizes(pvt, 1);
  671. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  672. /* Only if NOT ganged does dclr1 have valid info */
  673. if (!dct_ganging_enabled(pvt))
  674. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  675. }
  676. /*
  677. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  678. */
  679. static void prep_chip_selects(struct amd64_pvt *pvt)
  680. {
  681. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  682. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  683. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  684. } else {
  685. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  686. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  687. }
  688. }
  689. /*
  690. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  691. */
  692. static void read_dct_base_mask(struct amd64_pvt *pvt)
  693. {
  694. int cs;
  695. prep_chip_selects(pvt);
  696. for_each_chip_select(cs, 0, pvt) {
  697. int reg0 = DCSB0 + (cs * 4);
  698. int reg1 = DCSB1 + (cs * 4);
  699. u32 *base0 = &pvt->csels[0].csbases[cs];
  700. u32 *base1 = &pvt->csels[1].csbases[cs];
  701. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  702. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  703. cs, *base0, reg0);
  704. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  705. continue;
  706. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  707. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  708. cs, *base1, reg1);
  709. }
  710. for_each_chip_select_mask(cs, 0, pvt) {
  711. int reg0 = DCSM0 + (cs * 4);
  712. int reg1 = DCSM1 + (cs * 4);
  713. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  714. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  715. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  716. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  717. cs, *mask0, reg0);
  718. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  719. continue;
  720. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  721. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  722. cs, *mask1, reg1);
  723. }
  724. }
  725. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  726. {
  727. enum mem_type type;
  728. /* F15h supports only DDR3 */
  729. if (boot_cpu_data.x86 >= 0x15)
  730. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  731. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  732. if (pvt->dchr0 & DDR3_MODE)
  733. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  734. else
  735. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  736. } else {
  737. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  738. }
  739. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  740. return type;
  741. }
  742. /* Get the number of DCT channels the memory controller is using. */
  743. static int k8_early_channel_count(struct amd64_pvt *pvt)
  744. {
  745. int flag;
  746. if (pvt->ext_model >= K8_REV_F)
  747. /* RevF (NPT) and later */
  748. flag = pvt->dclr0 & WIDTH_128;
  749. else
  750. /* RevE and earlier */
  751. flag = pvt->dclr0 & REVE_WIDTH_128;
  752. /* not used */
  753. pvt->dclr1 = 0;
  754. return (flag) ? 2 : 1;
  755. }
  756. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  757. static u64 get_error_address(struct mce *m)
  758. {
  759. struct cpuinfo_x86 *c = &boot_cpu_data;
  760. u64 addr;
  761. u8 start_bit = 1;
  762. u8 end_bit = 47;
  763. if (c->x86 == 0xf) {
  764. start_bit = 3;
  765. end_bit = 39;
  766. }
  767. addr = m->addr & GENMASK(start_bit, end_bit);
  768. /*
  769. * Erratum 637 workaround
  770. */
  771. if (c->x86 == 0x15) {
  772. struct amd64_pvt *pvt;
  773. u64 cc6_base, tmp_addr;
  774. u32 tmp;
  775. u16 mce_nid;
  776. u8 intlv_en;
  777. if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
  778. return addr;
  779. mce_nid = amd_get_nb_id(m->extcpu);
  780. pvt = mcis[mce_nid]->pvt_info;
  781. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  782. intlv_en = tmp >> 21 & 0x7;
  783. /* add [47:27] + 3 trailing bits */
  784. cc6_base = (tmp & GENMASK(0, 20)) << 3;
  785. /* reverse and add DramIntlvEn */
  786. cc6_base |= intlv_en ^ 0x7;
  787. /* pin at [47:24] */
  788. cc6_base <<= 24;
  789. if (!intlv_en)
  790. return cc6_base | (addr & GENMASK(0, 23));
  791. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  792. /* faster log2 */
  793. tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
  794. /* OR DramIntlvSel into bits [14:12] */
  795. tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
  796. /* add remaining [11:0] bits from original MC4_ADDR */
  797. tmp_addr |= addr & GENMASK(0, 11);
  798. return cc6_base | tmp_addr;
  799. }
  800. return addr;
  801. }
  802. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  803. {
  804. struct cpuinfo_x86 *c = &boot_cpu_data;
  805. int off = range << 3;
  806. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  807. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  808. if (c->x86 == 0xf)
  809. return;
  810. if (!dram_rw(pvt, range))
  811. return;
  812. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  813. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  814. /* Factor in CC6 save area by reading dst node's limit reg */
  815. if (c->x86 == 0x15) {
  816. struct pci_dev *f1 = NULL;
  817. u8 nid = dram_dst_node(pvt, range);
  818. u32 llim;
  819. f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
  820. if (WARN_ON(!f1))
  821. return;
  822. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  823. pvt->ranges[range].lim.lo &= GENMASK(0, 15);
  824. /* {[39:27],111b} */
  825. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  826. pvt->ranges[range].lim.hi &= GENMASK(0, 7);
  827. /* [47:40] */
  828. pvt->ranges[range].lim.hi |= llim >> 13;
  829. pci_dev_put(f1);
  830. }
  831. }
  832. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  833. struct err_info *err)
  834. {
  835. struct amd64_pvt *pvt = mci->pvt_info;
  836. error_address_to_page_and_offset(sys_addr, err);
  837. /*
  838. * Find out which node the error address belongs to. This may be
  839. * different from the node that detected the error.
  840. */
  841. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  842. if (!err->src_mci) {
  843. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  844. (unsigned long)sys_addr);
  845. err->err_code = ERR_NODE;
  846. return;
  847. }
  848. /* Now map the sys_addr to a CSROW */
  849. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  850. if (err->csrow < 0) {
  851. err->err_code = ERR_CSROW;
  852. return;
  853. }
  854. /* CHIPKILL enabled */
  855. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  856. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  857. if (err->channel < 0) {
  858. /*
  859. * Syndrome didn't map, so we don't know which of the
  860. * 2 DIMMs is in error. So we need to ID 'both' of them
  861. * as suspect.
  862. */
  863. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  864. "possible error reporting race\n",
  865. err->syndrome);
  866. err->err_code = ERR_CHANNEL;
  867. return;
  868. }
  869. } else {
  870. /*
  871. * non-chipkill ecc mode
  872. *
  873. * The k8 documentation is unclear about how to determine the
  874. * channel number when using non-chipkill memory. This method
  875. * was obtained from email communication with someone at AMD.
  876. * (Wish the email was placed in this comment - norsk)
  877. */
  878. err->channel = ((sys_addr & BIT(3)) != 0);
  879. }
  880. }
  881. static int ddr2_cs_size(unsigned i, bool dct_width)
  882. {
  883. unsigned shift = 0;
  884. if (i <= 2)
  885. shift = i;
  886. else if (!(i & 0x1))
  887. shift = i >> 1;
  888. else
  889. shift = (i + 1) >> 1;
  890. return 128 << (shift + !!dct_width);
  891. }
  892. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  893. unsigned cs_mode)
  894. {
  895. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  896. if (pvt->ext_model >= K8_REV_F) {
  897. WARN_ON(cs_mode > 11);
  898. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  899. }
  900. else if (pvt->ext_model >= K8_REV_D) {
  901. unsigned diff;
  902. WARN_ON(cs_mode > 10);
  903. /*
  904. * the below calculation, besides trying to win an obfuscated C
  905. * contest, maps cs_mode values to DIMM chip select sizes. The
  906. * mappings are:
  907. *
  908. * cs_mode CS size (mb)
  909. * ======= ============
  910. * 0 32
  911. * 1 64
  912. * 2 128
  913. * 3 128
  914. * 4 256
  915. * 5 512
  916. * 6 256
  917. * 7 512
  918. * 8 1024
  919. * 9 1024
  920. * 10 2048
  921. *
  922. * Basically, it calculates a value with which to shift the
  923. * smallest CS size of 32MB.
  924. *
  925. * ddr[23]_cs_size have a similar purpose.
  926. */
  927. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  928. return 32 << (cs_mode - diff);
  929. }
  930. else {
  931. WARN_ON(cs_mode > 6);
  932. return 32 << cs_mode;
  933. }
  934. }
  935. /*
  936. * Get the number of DCT channels in use.
  937. *
  938. * Return:
  939. * number of Memory Channels in operation
  940. * Pass back:
  941. * contents of the DCL0_LOW register
  942. */
  943. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  944. {
  945. int i, j, channels = 0;
  946. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  947. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  948. return 2;
  949. /*
  950. * Need to check if in unganged mode: In such, there are 2 channels,
  951. * but they are not in 128 bit mode and thus the above 'dclr0' status
  952. * bit will be OFF.
  953. *
  954. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  955. * their CSEnable bit on. If so, then SINGLE DIMM case.
  956. */
  957. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  958. /*
  959. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  960. * is more than just one DIMM present in unganged mode. Need to check
  961. * both controllers since DIMMs can be placed in either one.
  962. */
  963. for (i = 0; i < 2; i++) {
  964. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  965. for (j = 0; j < 4; j++) {
  966. if (DBAM_DIMM(j, dbam) > 0) {
  967. channels++;
  968. break;
  969. }
  970. }
  971. }
  972. if (channels > 2)
  973. channels = 2;
  974. amd64_info("MCT channel count: %d\n", channels);
  975. return channels;
  976. }
  977. static int ddr3_cs_size(unsigned i, bool dct_width)
  978. {
  979. unsigned shift = 0;
  980. int cs_size = 0;
  981. if (i == 0 || i == 3 || i == 4)
  982. cs_size = -1;
  983. else if (i <= 2)
  984. shift = i;
  985. else if (i == 12)
  986. shift = 7;
  987. else if (!(i & 0x1))
  988. shift = i >> 1;
  989. else
  990. shift = (i + 1) >> 1;
  991. if (cs_size != -1)
  992. cs_size = (128 * (1 << !!dct_width)) << shift;
  993. return cs_size;
  994. }
  995. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  996. unsigned cs_mode)
  997. {
  998. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  999. WARN_ON(cs_mode > 11);
  1000. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1001. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1002. else
  1003. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1004. }
  1005. /*
  1006. * F15h supports only 64bit DCT interfaces
  1007. */
  1008. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1009. unsigned cs_mode)
  1010. {
  1011. WARN_ON(cs_mode > 12);
  1012. return ddr3_cs_size(cs_mode, false);
  1013. }
  1014. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1015. {
  1016. if (boot_cpu_data.x86 == 0xf)
  1017. return;
  1018. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1019. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1020. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1021. edac_dbg(0, " DCTs operate in %s mode\n",
  1022. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1023. if (!dct_ganging_enabled(pvt))
  1024. edac_dbg(0, " Address range split per DCT: %s\n",
  1025. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1026. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  1027. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1028. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1029. edac_dbg(0, " channel interleave: %s, "
  1030. "interleave bits selector: 0x%x\n",
  1031. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1032. dct_sel_interleave_addr(pvt));
  1033. }
  1034. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  1035. }
  1036. /*
  1037. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1038. * Interleaving Modes.
  1039. */
  1040. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1041. bool hi_range_sel, u8 intlv_en)
  1042. {
  1043. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1044. if (dct_ganging_enabled(pvt))
  1045. return 0;
  1046. if (hi_range_sel)
  1047. return dct_sel_high;
  1048. /*
  1049. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1050. */
  1051. if (dct_interleave_enabled(pvt)) {
  1052. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1053. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1054. if (!intlv_addr)
  1055. return sys_addr >> 6 & 1;
  1056. if (intlv_addr & 0x2) {
  1057. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1058. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1059. return ((sys_addr >> shift) & 1) ^ temp;
  1060. }
  1061. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1062. }
  1063. if (dct_high_range_enabled(pvt))
  1064. return ~dct_sel_high & 1;
  1065. return 0;
  1066. }
  1067. /* Convert the sys_addr to the normalized DCT address */
  1068. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
  1069. u64 sys_addr, bool hi_rng,
  1070. u32 dct_sel_base_addr)
  1071. {
  1072. u64 chan_off;
  1073. u64 dram_base = get_dram_base(pvt, range);
  1074. u64 hole_off = f10_dhar_offset(pvt);
  1075. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1076. if (hi_rng) {
  1077. /*
  1078. * if
  1079. * base address of high range is below 4Gb
  1080. * (bits [47:27] at [31:11])
  1081. * DRAM address space on this DCT is hoisted above 4Gb &&
  1082. * sys_addr > 4Gb
  1083. *
  1084. * remove hole offset from sys_addr
  1085. * else
  1086. * remove high range offset from sys_addr
  1087. */
  1088. if ((!(dct_sel_base_addr >> 16) ||
  1089. dct_sel_base_addr < dhar_base(pvt)) &&
  1090. dhar_valid(pvt) &&
  1091. (sys_addr >= BIT_64(32)))
  1092. chan_off = hole_off;
  1093. else
  1094. chan_off = dct_sel_base_off;
  1095. } else {
  1096. /*
  1097. * if
  1098. * we have a valid hole &&
  1099. * sys_addr > 4Gb
  1100. *
  1101. * remove hole
  1102. * else
  1103. * remove dram base to normalize to DCT address
  1104. */
  1105. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1106. chan_off = hole_off;
  1107. else
  1108. chan_off = dram_base;
  1109. }
  1110. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1111. }
  1112. /*
  1113. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1114. * spare row
  1115. */
  1116. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1117. {
  1118. int tmp_cs;
  1119. if (online_spare_swap_done(pvt, dct) &&
  1120. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1121. for_each_chip_select(tmp_cs, dct, pvt) {
  1122. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1123. csrow = tmp_cs;
  1124. break;
  1125. }
  1126. }
  1127. }
  1128. return csrow;
  1129. }
  1130. /*
  1131. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1132. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1133. *
  1134. * Return:
  1135. * -EINVAL: NOT FOUND
  1136. * 0..csrow = Chip-Select Row
  1137. */
  1138. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1139. {
  1140. struct mem_ctl_info *mci;
  1141. struct amd64_pvt *pvt;
  1142. u64 cs_base, cs_mask;
  1143. int cs_found = -EINVAL;
  1144. int csrow;
  1145. mci = mcis[nid];
  1146. if (!mci)
  1147. return cs_found;
  1148. pvt = mci->pvt_info;
  1149. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1150. for_each_chip_select(csrow, dct, pvt) {
  1151. if (!csrow_enabled(csrow, dct, pvt))
  1152. continue;
  1153. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1154. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1155. csrow, cs_base, cs_mask);
  1156. cs_mask = ~cs_mask;
  1157. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1158. (in_addr & cs_mask), (cs_base & cs_mask));
  1159. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1160. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1161. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1162. break;
  1163. }
  1164. }
  1165. return cs_found;
  1166. }
  1167. /*
  1168. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1169. * swapped with a region located at the bottom of memory so that the GPU can use
  1170. * the interleaved region and thus two channels.
  1171. */
  1172. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1173. {
  1174. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1175. if (boot_cpu_data.x86 == 0x10) {
  1176. /* only revC3 and revE have that feature */
  1177. if (boot_cpu_data.x86_model < 4 ||
  1178. (boot_cpu_data.x86_model < 0xa &&
  1179. boot_cpu_data.x86_mask < 3))
  1180. return sys_addr;
  1181. }
  1182. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1183. if (!(swap_reg & 0x1))
  1184. return sys_addr;
  1185. swap_base = (swap_reg >> 3) & 0x7f;
  1186. swap_limit = (swap_reg >> 11) & 0x7f;
  1187. rgn_size = (swap_reg >> 20) & 0x7f;
  1188. tmp_addr = sys_addr >> 27;
  1189. if (!(sys_addr >> 34) &&
  1190. (((tmp_addr >= swap_base) &&
  1191. (tmp_addr <= swap_limit)) ||
  1192. (tmp_addr < rgn_size)))
  1193. return sys_addr ^ (u64)swap_base << 27;
  1194. return sys_addr;
  1195. }
  1196. /* For a given @dram_range, check if @sys_addr falls within it. */
  1197. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1198. u64 sys_addr, int *chan_sel)
  1199. {
  1200. int cs_found = -EINVAL;
  1201. u64 chan_addr;
  1202. u32 dct_sel_base;
  1203. u8 channel;
  1204. bool high_range = false;
  1205. u8 node_id = dram_dst_node(pvt, range);
  1206. u8 intlv_en = dram_intlv_en(pvt, range);
  1207. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1208. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1209. range, sys_addr, get_dram_limit(pvt, range));
  1210. if (dhar_valid(pvt) &&
  1211. dhar_base(pvt) <= sys_addr &&
  1212. sys_addr < BIT_64(32)) {
  1213. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1214. sys_addr);
  1215. return -EINVAL;
  1216. }
  1217. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1218. return -EINVAL;
  1219. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1220. dct_sel_base = dct_sel_baseaddr(pvt);
  1221. /*
  1222. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1223. * select between DCT0 and DCT1.
  1224. */
  1225. if (dct_high_range_enabled(pvt) &&
  1226. !dct_ganging_enabled(pvt) &&
  1227. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1228. high_range = true;
  1229. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1230. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1231. high_range, dct_sel_base);
  1232. /* Remove node interleaving, see F1x120 */
  1233. if (intlv_en)
  1234. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1235. (chan_addr & 0xfff);
  1236. /* remove channel interleave */
  1237. if (dct_interleave_enabled(pvt) &&
  1238. !dct_high_range_enabled(pvt) &&
  1239. !dct_ganging_enabled(pvt)) {
  1240. if (dct_sel_interleave_addr(pvt) != 1) {
  1241. if (dct_sel_interleave_addr(pvt) == 0x3)
  1242. /* hash 9 */
  1243. chan_addr = ((chan_addr >> 10) << 9) |
  1244. (chan_addr & 0x1ff);
  1245. else
  1246. /* A[6] or hash 6 */
  1247. chan_addr = ((chan_addr >> 7) << 6) |
  1248. (chan_addr & 0x3f);
  1249. } else
  1250. /* A[12] */
  1251. chan_addr = ((chan_addr >> 13) << 12) |
  1252. (chan_addr & 0xfff);
  1253. }
  1254. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1255. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1256. if (cs_found >= 0)
  1257. *chan_sel = channel;
  1258. return cs_found;
  1259. }
  1260. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1261. int *chan_sel)
  1262. {
  1263. int cs_found = -EINVAL;
  1264. unsigned range;
  1265. for (range = 0; range < DRAM_RANGES; range++) {
  1266. if (!dram_rw(pvt, range))
  1267. continue;
  1268. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1269. (get_dram_limit(pvt, range) >= sys_addr)) {
  1270. cs_found = f1x_match_to_this_node(pvt, range,
  1271. sys_addr, chan_sel);
  1272. if (cs_found >= 0)
  1273. break;
  1274. }
  1275. }
  1276. return cs_found;
  1277. }
  1278. /*
  1279. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1280. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1281. *
  1282. * The @sys_addr is usually an error address received from the hardware
  1283. * (MCX_ADDR).
  1284. */
  1285. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1286. struct err_info *err)
  1287. {
  1288. struct amd64_pvt *pvt = mci->pvt_info;
  1289. error_address_to_page_and_offset(sys_addr, err);
  1290. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1291. if (err->csrow < 0) {
  1292. err->err_code = ERR_CSROW;
  1293. return;
  1294. }
  1295. /*
  1296. * We need the syndromes for channel detection only when we're
  1297. * ganged. Otherwise @chan should already contain the channel at
  1298. * this point.
  1299. */
  1300. if (dct_ganging_enabled(pvt))
  1301. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1302. }
  1303. /*
  1304. * debug routine to display the memory sizes of all logical DIMMs and its
  1305. * CSROWs
  1306. */
  1307. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1308. {
  1309. int dimm, size0, size1;
  1310. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1311. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1312. if (boot_cpu_data.x86 == 0xf) {
  1313. /* K8 families < revF not supported yet */
  1314. if (pvt->ext_model < K8_REV_F)
  1315. return;
  1316. else
  1317. WARN_ON(ctrl != 0);
  1318. }
  1319. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1320. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1321. : pvt->csels[0].csbases;
  1322. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1323. ctrl, dbam);
  1324. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1325. /* Dump memory sizes for DIMM and its CSROWs */
  1326. for (dimm = 0; dimm < 4; dimm++) {
  1327. size0 = 0;
  1328. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1329. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1330. DBAM_DIMM(dimm, dbam));
  1331. size1 = 0;
  1332. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1333. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1334. DBAM_DIMM(dimm, dbam));
  1335. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1336. dimm * 2, size0,
  1337. dimm * 2 + 1, size1);
  1338. }
  1339. }
  1340. static struct amd64_family_type amd64_family_types[] = {
  1341. [K8_CPUS] = {
  1342. .ctl_name = "K8",
  1343. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1344. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1345. .ops = {
  1346. .early_channel_count = k8_early_channel_count,
  1347. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1348. .dbam_to_cs = k8_dbam_to_chip_select,
  1349. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1350. }
  1351. },
  1352. [F10_CPUS] = {
  1353. .ctl_name = "F10h",
  1354. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1355. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1356. .ops = {
  1357. .early_channel_count = f1x_early_channel_count,
  1358. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1359. .dbam_to_cs = f10_dbam_to_chip_select,
  1360. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1361. }
  1362. },
  1363. [F15_CPUS] = {
  1364. .ctl_name = "F15h",
  1365. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1366. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1367. .ops = {
  1368. .early_channel_count = f1x_early_channel_count,
  1369. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1370. .dbam_to_cs = f15_dbam_to_chip_select,
  1371. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1372. }
  1373. },
  1374. };
  1375. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1376. unsigned int device,
  1377. struct pci_dev *related)
  1378. {
  1379. struct pci_dev *dev = NULL;
  1380. dev = pci_get_device(vendor, device, dev);
  1381. while (dev) {
  1382. if ((dev->bus->number == related->bus->number) &&
  1383. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1384. break;
  1385. dev = pci_get_device(vendor, device, dev);
  1386. }
  1387. return dev;
  1388. }
  1389. /*
  1390. * These are tables of eigenvectors (one per line) which can be used for the
  1391. * construction of the syndrome tables. The modified syndrome search algorithm
  1392. * uses those to find the symbol in error and thus the DIMM.
  1393. *
  1394. * Algorithm courtesy of Ross LaFetra from AMD.
  1395. */
  1396. static u16 x4_vectors[] = {
  1397. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1398. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1399. 0x0001, 0x0002, 0x0004, 0x0008,
  1400. 0x1013, 0x3032, 0x4044, 0x8088,
  1401. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1402. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1403. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1404. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1405. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1406. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1407. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1408. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1409. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1410. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1411. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1412. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1413. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1414. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1415. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1416. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1417. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1418. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1419. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1420. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1421. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1422. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1423. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1424. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1425. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1426. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1427. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1428. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1429. 0x4807, 0xc40e, 0x130c, 0x3208,
  1430. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1431. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1432. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1433. };
  1434. static u16 x8_vectors[] = {
  1435. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1436. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1437. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1438. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1439. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1440. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1441. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1442. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1443. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1444. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1445. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1446. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1447. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1448. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1449. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1450. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1451. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1452. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1453. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1454. };
  1455. static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
  1456. unsigned v_dim)
  1457. {
  1458. unsigned int i, err_sym;
  1459. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1460. u16 s = syndrome;
  1461. unsigned v_idx = err_sym * v_dim;
  1462. unsigned v_end = (err_sym + 1) * v_dim;
  1463. /* walk over all 16 bits of the syndrome */
  1464. for (i = 1; i < (1U << 16); i <<= 1) {
  1465. /* if bit is set in that eigenvector... */
  1466. if (v_idx < v_end && vectors[v_idx] & i) {
  1467. u16 ev_comp = vectors[v_idx++];
  1468. /* ... and bit set in the modified syndrome, */
  1469. if (s & i) {
  1470. /* remove it. */
  1471. s ^= ev_comp;
  1472. if (!s)
  1473. return err_sym;
  1474. }
  1475. } else if (s & i)
  1476. /* can't get to zero, move to next symbol */
  1477. break;
  1478. }
  1479. }
  1480. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1481. return -1;
  1482. }
  1483. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1484. {
  1485. if (sym_size == 4)
  1486. switch (err_sym) {
  1487. case 0x20:
  1488. case 0x21:
  1489. return 0;
  1490. break;
  1491. case 0x22:
  1492. case 0x23:
  1493. return 1;
  1494. break;
  1495. default:
  1496. return err_sym >> 4;
  1497. break;
  1498. }
  1499. /* x8 symbols */
  1500. else
  1501. switch (err_sym) {
  1502. /* imaginary bits not in a DIMM */
  1503. case 0x10:
  1504. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1505. err_sym);
  1506. return -1;
  1507. break;
  1508. case 0x11:
  1509. return 0;
  1510. break;
  1511. case 0x12:
  1512. return 1;
  1513. break;
  1514. default:
  1515. return err_sym >> 3;
  1516. break;
  1517. }
  1518. return -1;
  1519. }
  1520. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1521. {
  1522. struct amd64_pvt *pvt = mci->pvt_info;
  1523. int err_sym = -1;
  1524. if (pvt->ecc_sym_sz == 8)
  1525. err_sym = decode_syndrome(syndrome, x8_vectors,
  1526. ARRAY_SIZE(x8_vectors),
  1527. pvt->ecc_sym_sz);
  1528. else if (pvt->ecc_sym_sz == 4)
  1529. err_sym = decode_syndrome(syndrome, x4_vectors,
  1530. ARRAY_SIZE(x4_vectors),
  1531. pvt->ecc_sym_sz);
  1532. else {
  1533. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1534. return err_sym;
  1535. }
  1536. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1537. }
  1538. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1539. u8 ecc_type)
  1540. {
  1541. enum hw_event_mc_err_type err_type;
  1542. const char *string;
  1543. if (ecc_type == 2)
  1544. err_type = HW_EVENT_ERR_CORRECTED;
  1545. else if (ecc_type == 1)
  1546. err_type = HW_EVENT_ERR_UNCORRECTED;
  1547. else {
  1548. WARN(1, "Something is rotten in the state of Denmark.\n");
  1549. return;
  1550. }
  1551. switch (err->err_code) {
  1552. case DECODE_OK:
  1553. string = "";
  1554. break;
  1555. case ERR_NODE:
  1556. string = "Failed to map error addr to a node";
  1557. break;
  1558. case ERR_CSROW:
  1559. string = "Failed to map error addr to a csrow";
  1560. break;
  1561. case ERR_CHANNEL:
  1562. string = "unknown syndrome - possible error reporting race";
  1563. break;
  1564. default:
  1565. string = "WTF error";
  1566. break;
  1567. }
  1568. edac_mc_handle_error(err_type, mci, 1,
  1569. err->page, err->offset, err->syndrome,
  1570. err->csrow, err->channel, -1,
  1571. string, "");
  1572. }
  1573. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1574. struct mce *m)
  1575. {
  1576. struct amd64_pvt *pvt = mci->pvt_info;
  1577. u8 ecc_type = (m->status >> 45) & 0x3;
  1578. u8 xec = XEC(m->status, 0x1f);
  1579. u16 ec = EC(m->status);
  1580. u64 sys_addr;
  1581. struct err_info err;
  1582. /* Bail out early if this was an 'observed' error */
  1583. if (PP(ec) == NBSL_PP_OBS)
  1584. return;
  1585. /* Do only ECC errors */
  1586. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1587. return;
  1588. memset(&err, 0, sizeof(err));
  1589. sys_addr = get_error_address(m);
  1590. if (ecc_type == 2)
  1591. err.syndrome = extract_syndrome(m->status);
  1592. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1593. __log_bus_error(mci, &err, ecc_type);
  1594. }
  1595. void amd64_decode_bus_error(int node_id, struct mce *m)
  1596. {
  1597. __amd64_decode_bus_error(mcis[node_id], m);
  1598. }
  1599. /*
  1600. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1601. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1602. */
  1603. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1604. {
  1605. /* Reserve the ADDRESS MAP Device */
  1606. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1607. if (!pvt->F1) {
  1608. amd64_err("error address map device not found: "
  1609. "vendor %x device 0x%x (broken BIOS?)\n",
  1610. PCI_VENDOR_ID_AMD, f1_id);
  1611. return -ENODEV;
  1612. }
  1613. /* Reserve the MISC Device */
  1614. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1615. if (!pvt->F3) {
  1616. pci_dev_put(pvt->F1);
  1617. pvt->F1 = NULL;
  1618. amd64_err("error F3 device not found: "
  1619. "vendor %x device 0x%x (broken BIOS?)\n",
  1620. PCI_VENDOR_ID_AMD, f3_id);
  1621. return -ENODEV;
  1622. }
  1623. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1624. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1625. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1626. return 0;
  1627. }
  1628. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1629. {
  1630. pci_dev_put(pvt->F1);
  1631. pci_dev_put(pvt->F3);
  1632. }
  1633. /*
  1634. * Retrieve the hardware registers of the memory controller (this includes the
  1635. * 'Address Map' and 'Misc' device regs)
  1636. */
  1637. static void read_mc_regs(struct amd64_pvt *pvt)
  1638. {
  1639. struct cpuinfo_x86 *c = &boot_cpu_data;
  1640. u64 msr_val;
  1641. u32 tmp;
  1642. unsigned range;
  1643. /*
  1644. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1645. * those are Read-As-Zero
  1646. */
  1647. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1648. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1649. /* check first whether TOP_MEM2 is enabled */
  1650. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1651. if (msr_val & (1U << 21)) {
  1652. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1653. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1654. } else
  1655. edac_dbg(0, " TOP_MEM2 disabled\n");
  1656. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1657. read_dram_ctl_register(pvt);
  1658. for (range = 0; range < DRAM_RANGES; range++) {
  1659. u8 rw;
  1660. /* read settings for this DRAM range */
  1661. read_dram_base_limit_regs(pvt, range);
  1662. rw = dram_rw(pvt, range);
  1663. if (!rw)
  1664. continue;
  1665. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1666. range,
  1667. get_dram_base(pvt, range),
  1668. get_dram_limit(pvt, range));
  1669. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1670. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1671. (rw & 0x1) ? "R" : "-",
  1672. (rw & 0x2) ? "W" : "-",
  1673. dram_intlv_sel(pvt, range),
  1674. dram_dst_node(pvt, range));
  1675. }
  1676. read_dct_base_mask(pvt);
  1677. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1678. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1679. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1680. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1681. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1682. if (!dct_ganging_enabled(pvt)) {
  1683. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1684. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1685. }
  1686. pvt->ecc_sym_sz = 4;
  1687. if (c->x86 >= 0x10) {
  1688. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1689. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1690. /* F10h, revD and later can do x8 ECC too */
  1691. if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
  1692. pvt->ecc_sym_sz = 8;
  1693. }
  1694. dump_misc_regs(pvt);
  1695. }
  1696. /*
  1697. * NOTE: CPU Revision Dependent code
  1698. *
  1699. * Input:
  1700. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1701. * k8 private pointer to -->
  1702. * DRAM Bank Address mapping register
  1703. * node_id
  1704. * DCL register where dual_channel_active is
  1705. *
  1706. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1707. *
  1708. * Bits: CSROWs
  1709. * 0-3 CSROWs 0 and 1
  1710. * 4-7 CSROWs 2 and 3
  1711. * 8-11 CSROWs 4 and 5
  1712. * 12-15 CSROWs 6 and 7
  1713. *
  1714. * Values range from: 0 to 15
  1715. * The meaning of the values depends on CPU revision and dual-channel state,
  1716. * see relevant BKDG more info.
  1717. *
  1718. * The memory controller provides for total of only 8 CSROWs in its current
  1719. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1720. * single channel or two (2) DIMMs in dual channel mode.
  1721. *
  1722. * The following code logic collapses the various tables for CSROW based on CPU
  1723. * revision.
  1724. *
  1725. * Returns:
  1726. * The number of PAGE_SIZE pages on the specified CSROW number it
  1727. * encompasses
  1728. *
  1729. */
  1730. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1731. {
  1732. u32 cs_mode, nr_pages;
  1733. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1734. /*
  1735. * The math on this doesn't look right on the surface because x/2*4 can
  1736. * be simplified to x*2 but this expression makes use of the fact that
  1737. * it is integral math where 1/2=0. This intermediate value becomes the
  1738. * number of bits to shift the DBAM register to extract the proper CSROW
  1739. * field.
  1740. */
  1741. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  1742. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1743. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  1744. csrow_nr, dct, cs_mode);
  1745. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  1746. return nr_pages;
  1747. }
  1748. /*
  1749. * Initialize the array of csrow attribute instances, based on the values
  1750. * from pci config hardware registers.
  1751. */
  1752. static int init_csrows(struct mem_ctl_info *mci)
  1753. {
  1754. struct amd64_pvt *pvt = mci->pvt_info;
  1755. struct csrow_info *csrow;
  1756. struct dimm_info *dimm;
  1757. enum edac_type edac_mode;
  1758. enum mem_type mtype;
  1759. int i, j, empty = 1;
  1760. int nr_pages = 0;
  1761. u32 val;
  1762. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1763. pvt->nbcfg = val;
  1764. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1765. pvt->mc_node_id, val,
  1766. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1767. /*
  1768. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  1769. */
  1770. for_each_chip_select(i, 0, pvt) {
  1771. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  1772. bool row_dct1 = false;
  1773. if (boot_cpu_data.x86 != 0xf)
  1774. row_dct1 = !!csrow_enabled(i, 1, pvt);
  1775. if (!row_dct0 && !row_dct1)
  1776. continue;
  1777. csrow = mci->csrows[i];
  1778. empty = 0;
  1779. edac_dbg(1, "MC node: %d, csrow: %d\n",
  1780. pvt->mc_node_id, i);
  1781. if (row_dct0)
  1782. nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1783. /* K8 has only one DCT */
  1784. if (boot_cpu_data.x86 != 0xf && row_dct1)
  1785. nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
  1786. mtype = amd64_determine_memory_type(pvt, i);
  1787. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  1788. /*
  1789. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1790. */
  1791. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1792. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1793. EDAC_S4ECD4ED : EDAC_SECDED;
  1794. else
  1795. edac_mode = EDAC_NONE;
  1796. for (j = 0; j < pvt->channel_count; j++) {
  1797. dimm = csrow->channels[j]->dimm;
  1798. dimm->mtype = mtype;
  1799. dimm->edac_mode = edac_mode;
  1800. dimm->nr_pages = nr_pages;
  1801. }
  1802. csrow->nr_pages = nr_pages;
  1803. }
  1804. return empty;
  1805. }
  1806. /* get all cores on this DCT */
  1807. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  1808. {
  1809. int cpu;
  1810. for_each_online_cpu(cpu)
  1811. if (amd_get_nb_id(cpu) == nid)
  1812. cpumask_set_cpu(cpu, mask);
  1813. }
  1814. /* check MCG_CTL on all the cpus on this node */
  1815. static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
  1816. {
  1817. cpumask_var_t mask;
  1818. int cpu, nbe;
  1819. bool ret = false;
  1820. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1821. amd64_warn("%s: Error allocating mask\n", __func__);
  1822. return false;
  1823. }
  1824. get_cpus_on_this_dct_cpumask(mask, nid);
  1825. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1826. for_each_cpu(cpu, mask) {
  1827. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1828. nbe = reg->l & MSR_MCGCTL_NBE;
  1829. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1830. cpu, reg->q,
  1831. (nbe ? "enabled" : "disabled"));
  1832. if (!nbe)
  1833. goto out;
  1834. }
  1835. ret = true;
  1836. out:
  1837. free_cpumask_var(mask);
  1838. return ret;
  1839. }
  1840. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1841. {
  1842. cpumask_var_t cmask;
  1843. int cpu;
  1844. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1845. amd64_warn("%s: error allocating mask\n", __func__);
  1846. return false;
  1847. }
  1848. get_cpus_on_this_dct_cpumask(cmask, nid);
  1849. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1850. for_each_cpu(cpu, cmask) {
  1851. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1852. if (on) {
  1853. if (reg->l & MSR_MCGCTL_NBE)
  1854. s->flags.nb_mce_enable = 1;
  1855. reg->l |= MSR_MCGCTL_NBE;
  1856. } else {
  1857. /*
  1858. * Turn off NB MCE reporting only when it was off before
  1859. */
  1860. if (!s->flags.nb_mce_enable)
  1861. reg->l &= ~MSR_MCGCTL_NBE;
  1862. }
  1863. }
  1864. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1865. free_cpumask_var(cmask);
  1866. return 0;
  1867. }
  1868. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1869. struct pci_dev *F3)
  1870. {
  1871. bool ret = true;
  1872. u32 value, mask = 0x3; /* UECC/CECC enable */
  1873. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1874. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1875. return false;
  1876. }
  1877. amd64_read_pci_cfg(F3, NBCTL, &value);
  1878. s->old_nbctl = value & mask;
  1879. s->nbctl_valid = true;
  1880. value |= mask;
  1881. amd64_write_pci_cfg(F3, NBCTL, value);
  1882. amd64_read_pci_cfg(F3, NBCFG, &value);
  1883. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1884. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1885. if (!(value & NBCFG_ECC_ENABLE)) {
  1886. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1887. s->flags.nb_ecc_prev = 0;
  1888. /* Attempt to turn on DRAM ECC Enable */
  1889. value |= NBCFG_ECC_ENABLE;
  1890. amd64_write_pci_cfg(F3, NBCFG, value);
  1891. amd64_read_pci_cfg(F3, NBCFG, &value);
  1892. if (!(value & NBCFG_ECC_ENABLE)) {
  1893. amd64_warn("Hardware rejected DRAM ECC enable,"
  1894. "check memory DIMM configuration.\n");
  1895. ret = false;
  1896. } else {
  1897. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1898. }
  1899. } else {
  1900. s->flags.nb_ecc_prev = 1;
  1901. }
  1902. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1903. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1904. return ret;
  1905. }
  1906. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1907. struct pci_dev *F3)
  1908. {
  1909. u32 value, mask = 0x3; /* UECC/CECC enable */
  1910. if (!s->nbctl_valid)
  1911. return;
  1912. amd64_read_pci_cfg(F3, NBCTL, &value);
  1913. value &= ~mask;
  1914. value |= s->old_nbctl;
  1915. amd64_write_pci_cfg(F3, NBCTL, value);
  1916. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1917. if (!s->flags.nb_ecc_prev) {
  1918. amd64_read_pci_cfg(F3, NBCFG, &value);
  1919. value &= ~NBCFG_ECC_ENABLE;
  1920. amd64_write_pci_cfg(F3, NBCFG, value);
  1921. }
  1922. /* restore the NB Enable MCGCTL bit */
  1923. if (toggle_ecc_err_reporting(s, nid, OFF))
  1924. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1925. }
  1926. /*
  1927. * EDAC requires that the BIOS have ECC enabled before
  1928. * taking over the processing of ECC errors. A command line
  1929. * option allows to force-enable hardware ECC later in
  1930. * enable_ecc_error_reporting().
  1931. */
  1932. static const char *ecc_msg =
  1933. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1934. " Either enable ECC checking or force module loading by setting "
  1935. "'ecc_enable_override'.\n"
  1936. " (Note that use of the override may cause unknown side effects.)\n";
  1937. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1938. {
  1939. u32 value;
  1940. u8 ecc_en = 0;
  1941. bool nb_mce_en = false;
  1942. amd64_read_pci_cfg(F3, NBCFG, &value);
  1943. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1944. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1945. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1946. if (!nb_mce_en)
  1947. amd64_notice("NB MCE bank disabled, set MSR "
  1948. "0x%08x[4] on node %d to enable.\n",
  1949. MSR_IA32_MCG_CTL, nid);
  1950. if (!ecc_en || !nb_mce_en) {
  1951. amd64_notice("%s", ecc_msg);
  1952. return false;
  1953. }
  1954. return true;
  1955. }
  1956. static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1957. {
  1958. int rc;
  1959. rc = amd64_create_sysfs_dbg_files(mci);
  1960. if (rc < 0)
  1961. return rc;
  1962. if (boot_cpu_data.x86 >= 0x10) {
  1963. rc = amd64_create_sysfs_inject_files(mci);
  1964. if (rc < 0)
  1965. return rc;
  1966. }
  1967. return 0;
  1968. }
  1969. static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1970. {
  1971. amd64_remove_sysfs_dbg_files(mci);
  1972. if (boot_cpu_data.x86 >= 0x10)
  1973. amd64_remove_sysfs_inject_files(mci);
  1974. }
  1975. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  1976. struct amd64_family_type *fam)
  1977. {
  1978. struct amd64_pvt *pvt = mci->pvt_info;
  1979. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1980. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1981. if (pvt->nbcap & NBCAP_SECDED)
  1982. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1983. if (pvt->nbcap & NBCAP_CHIPKILL)
  1984. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1985. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1986. mci->mod_name = EDAC_MOD_STR;
  1987. mci->mod_ver = EDAC_AMD64_VERSION;
  1988. mci->ctl_name = fam->ctl_name;
  1989. mci->dev_name = pci_name(pvt->F2);
  1990. mci->ctl_page_to_phys = NULL;
  1991. /* memory scrubber interface */
  1992. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1993. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1994. }
  1995. /*
  1996. * returns a pointer to the family descriptor on success, NULL otherwise.
  1997. */
  1998. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1999. {
  2000. u8 fam = boot_cpu_data.x86;
  2001. struct amd64_family_type *fam_type = NULL;
  2002. switch (fam) {
  2003. case 0xf:
  2004. fam_type = &amd64_family_types[K8_CPUS];
  2005. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2006. break;
  2007. case 0x10:
  2008. fam_type = &amd64_family_types[F10_CPUS];
  2009. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2010. break;
  2011. case 0x15:
  2012. fam_type = &amd64_family_types[F15_CPUS];
  2013. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  2014. break;
  2015. default:
  2016. amd64_err("Unsupported family!\n");
  2017. return NULL;
  2018. }
  2019. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2020. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2021. (fam == 0xf ?
  2022. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2023. : "revE or earlier ")
  2024. : ""), pvt->mc_node_id);
  2025. return fam_type;
  2026. }
  2027. static int amd64_init_one_instance(struct pci_dev *F2)
  2028. {
  2029. struct amd64_pvt *pvt = NULL;
  2030. struct amd64_family_type *fam_type = NULL;
  2031. struct mem_ctl_info *mci = NULL;
  2032. struct edac_mc_layer layers[2];
  2033. int err = 0, ret;
  2034. u16 nid = amd_get_node_id(F2);
  2035. ret = -ENOMEM;
  2036. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2037. if (!pvt)
  2038. goto err_ret;
  2039. pvt->mc_node_id = nid;
  2040. pvt->F2 = F2;
  2041. ret = -EINVAL;
  2042. fam_type = amd64_per_family_init(pvt);
  2043. if (!fam_type)
  2044. goto err_free;
  2045. ret = -ENODEV;
  2046. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2047. if (err)
  2048. goto err_free;
  2049. read_mc_regs(pvt);
  2050. /*
  2051. * We need to determine how many memory channels there are. Then use
  2052. * that information for calculating the size of the dynamic instance
  2053. * tables in the 'mci' structure.
  2054. */
  2055. ret = -EINVAL;
  2056. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2057. if (pvt->channel_count < 0)
  2058. goto err_siblings;
  2059. ret = -ENOMEM;
  2060. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2061. layers[0].size = pvt->csels[0].b_cnt;
  2062. layers[0].is_virt_csrow = true;
  2063. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2064. layers[1].size = pvt->channel_count;
  2065. layers[1].is_virt_csrow = false;
  2066. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2067. if (!mci)
  2068. goto err_siblings;
  2069. mci->pvt_info = pvt;
  2070. mci->pdev = &pvt->F2->dev;
  2071. mci->csbased = 1;
  2072. setup_mci_misc_attrs(mci, fam_type);
  2073. if (init_csrows(mci))
  2074. mci->edac_cap = EDAC_FLAG_NONE;
  2075. ret = -ENODEV;
  2076. if (edac_mc_add_mc(mci)) {
  2077. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2078. goto err_add_mc;
  2079. }
  2080. if (set_mc_sysfs_attrs(mci)) {
  2081. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2082. goto err_add_sysfs;
  2083. }
  2084. /* register stuff with EDAC MCE */
  2085. if (report_gart_errors)
  2086. amd_report_gart_errors(true);
  2087. amd_register_ecc_decoder(amd64_decode_bus_error);
  2088. mcis[nid] = mci;
  2089. atomic_inc(&drv_instances);
  2090. return 0;
  2091. err_add_sysfs:
  2092. edac_mc_del_mc(mci->pdev);
  2093. err_add_mc:
  2094. edac_mc_free(mci);
  2095. err_siblings:
  2096. free_mc_sibling_devs(pvt);
  2097. err_free:
  2098. kfree(pvt);
  2099. err_ret:
  2100. return ret;
  2101. }
  2102. static int amd64_probe_one_instance(struct pci_dev *pdev,
  2103. const struct pci_device_id *mc_type)
  2104. {
  2105. u16 nid = amd_get_node_id(pdev);
  2106. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2107. struct ecc_settings *s;
  2108. int ret = 0;
  2109. ret = pci_enable_device(pdev);
  2110. if (ret < 0) {
  2111. edac_dbg(0, "ret=%d\n", ret);
  2112. return -EIO;
  2113. }
  2114. ret = -ENOMEM;
  2115. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2116. if (!s)
  2117. goto err_out;
  2118. ecc_stngs[nid] = s;
  2119. if (!ecc_enabled(F3, nid)) {
  2120. ret = -ENODEV;
  2121. if (!ecc_enable_override)
  2122. goto err_enable;
  2123. amd64_warn("Forcing ECC on!\n");
  2124. if (!enable_ecc_error_reporting(s, nid, F3))
  2125. goto err_enable;
  2126. }
  2127. ret = amd64_init_one_instance(pdev);
  2128. if (ret < 0) {
  2129. amd64_err("Error probing instance: %d\n", nid);
  2130. restore_ecc_error_reporting(s, nid, F3);
  2131. }
  2132. return ret;
  2133. err_enable:
  2134. kfree(s);
  2135. ecc_stngs[nid] = NULL;
  2136. err_out:
  2137. return ret;
  2138. }
  2139. static void amd64_remove_one_instance(struct pci_dev *pdev)
  2140. {
  2141. struct mem_ctl_info *mci;
  2142. struct amd64_pvt *pvt;
  2143. u16 nid = amd_get_node_id(pdev);
  2144. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2145. struct ecc_settings *s = ecc_stngs[nid];
  2146. mci = find_mci_by_dev(&pdev->dev);
  2147. del_mc_sysfs_attrs(mci);
  2148. /* Remove from EDAC CORE tracking list */
  2149. mci = edac_mc_del_mc(&pdev->dev);
  2150. if (!mci)
  2151. return;
  2152. pvt = mci->pvt_info;
  2153. restore_ecc_error_reporting(s, nid, F3);
  2154. free_mc_sibling_devs(pvt);
  2155. /* unregister from EDAC MCE */
  2156. amd_report_gart_errors(false);
  2157. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2158. kfree(ecc_stngs[nid]);
  2159. ecc_stngs[nid] = NULL;
  2160. /* Free the EDAC CORE resources */
  2161. mci->pvt_info = NULL;
  2162. mcis[nid] = NULL;
  2163. kfree(pvt);
  2164. edac_mc_free(mci);
  2165. }
  2166. /*
  2167. * This table is part of the interface for loading drivers for PCI devices. The
  2168. * PCI core identifies what devices are on a system during boot, and then
  2169. * inquiry this table to see if this driver is for a given device found.
  2170. */
  2171. static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
  2172. {
  2173. .vendor = PCI_VENDOR_ID_AMD,
  2174. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2175. .subvendor = PCI_ANY_ID,
  2176. .subdevice = PCI_ANY_ID,
  2177. .class = 0,
  2178. .class_mask = 0,
  2179. },
  2180. {
  2181. .vendor = PCI_VENDOR_ID_AMD,
  2182. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2183. .subvendor = PCI_ANY_ID,
  2184. .subdevice = PCI_ANY_ID,
  2185. .class = 0,
  2186. .class_mask = 0,
  2187. },
  2188. {
  2189. .vendor = PCI_VENDOR_ID_AMD,
  2190. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2191. .subvendor = PCI_ANY_ID,
  2192. .subdevice = PCI_ANY_ID,
  2193. .class = 0,
  2194. .class_mask = 0,
  2195. },
  2196. {0, }
  2197. };
  2198. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2199. static struct pci_driver amd64_pci_driver = {
  2200. .name = EDAC_MOD_STR,
  2201. .probe = amd64_probe_one_instance,
  2202. .remove = amd64_remove_one_instance,
  2203. .id_table = amd64_pci_table,
  2204. };
  2205. static void setup_pci_device(void)
  2206. {
  2207. struct mem_ctl_info *mci;
  2208. struct amd64_pvt *pvt;
  2209. if (amd64_ctl_pci)
  2210. return;
  2211. mci = mcis[0];
  2212. if (mci) {
  2213. pvt = mci->pvt_info;
  2214. amd64_ctl_pci =
  2215. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2216. if (!amd64_ctl_pci) {
  2217. pr_warning("%s(): Unable to create PCI control\n",
  2218. __func__);
  2219. pr_warning("%s(): PCI error report via EDAC not set\n",
  2220. __func__);
  2221. }
  2222. }
  2223. }
  2224. static int __init amd64_edac_init(void)
  2225. {
  2226. int err = -ENODEV;
  2227. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2228. opstate_init();
  2229. if (amd_cache_northbridges() < 0)
  2230. goto err_ret;
  2231. err = -ENOMEM;
  2232. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2233. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2234. if (!(mcis && ecc_stngs))
  2235. goto err_free;
  2236. msrs = msrs_alloc();
  2237. if (!msrs)
  2238. goto err_free;
  2239. err = pci_register_driver(&amd64_pci_driver);
  2240. if (err)
  2241. goto err_pci;
  2242. err = -ENODEV;
  2243. if (!atomic_read(&drv_instances))
  2244. goto err_no_instances;
  2245. setup_pci_device();
  2246. return 0;
  2247. err_no_instances:
  2248. pci_unregister_driver(&amd64_pci_driver);
  2249. err_pci:
  2250. msrs_free(msrs);
  2251. msrs = NULL;
  2252. err_free:
  2253. kfree(mcis);
  2254. mcis = NULL;
  2255. kfree(ecc_stngs);
  2256. ecc_stngs = NULL;
  2257. err_ret:
  2258. return err;
  2259. }
  2260. static void __exit amd64_edac_exit(void)
  2261. {
  2262. if (amd64_ctl_pci)
  2263. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2264. pci_unregister_driver(&amd64_pci_driver);
  2265. kfree(ecc_stngs);
  2266. ecc_stngs = NULL;
  2267. kfree(mcis);
  2268. mcis = NULL;
  2269. msrs_free(msrs);
  2270. msrs = NULL;
  2271. }
  2272. module_init(amd64_edac_init);
  2273. module_exit(amd64_edac_exit);
  2274. MODULE_LICENSE("GPL");
  2275. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2276. "Dave Peterson, Thayne Harbaugh");
  2277. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2278. EDAC_AMD64_VERSION);
  2279. module_param(edac_op_state, int, 0444);
  2280. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");