spi-topcliff-pch.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_MAX_BAUDRATE 5000000
  47. #define PCH_MAX_FIFO_DEPTH 16
  48. #define STATUS_RUNNING 1
  49. #define STATUS_EXITING 2
  50. #define PCH_SLEEP_TIME 10
  51. #define SSN_LOW 0x02U
  52. #define SSN_HIGH 0x03U
  53. #define SSN_NO_CONTROL 0x00U
  54. #define PCH_MAX_CS 0xFF
  55. #define PCI_DEVICE_ID_GE_SPI 0x8816
  56. #define SPCR_SPE_BIT (1 << 0)
  57. #define SPCR_MSTR_BIT (1 << 1)
  58. #define SPCR_LSBF_BIT (1 << 4)
  59. #define SPCR_CPHA_BIT (1 << 5)
  60. #define SPCR_CPOL_BIT (1 << 6)
  61. #define SPCR_TFIE_BIT (1 << 8)
  62. #define SPCR_RFIE_BIT (1 << 9)
  63. #define SPCR_FIE_BIT (1 << 10)
  64. #define SPCR_ORIE_BIT (1 << 11)
  65. #define SPCR_MDFIE_BIT (1 << 12)
  66. #define SPCR_FICLR_BIT (1 << 24)
  67. #define SPSR_TFI_BIT (1 << 0)
  68. #define SPSR_RFI_BIT (1 << 1)
  69. #define SPSR_FI_BIT (1 << 2)
  70. #define SPSR_ORF_BIT (1 << 3)
  71. #define SPBRR_SIZE_BIT (1 << 10)
  72. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  73. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  74. #define SPCR_RFIC_FIELD 20
  75. #define SPCR_TFIC_FIELD 16
  76. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  77. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  78. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  79. #define PCH_CLOCK_HZ 50000000
  80. #define PCH_MAX_SPBR 1023
  81. /* Definition for ML7213 by OKI SEMICONDUCTOR */
  82. #define PCI_VENDOR_ID_ROHM 0x10DB
  83. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  84. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  85. /*
  86. * Set the number of SPI instance max
  87. * Intel EG20T PCH : 1ch
  88. * OKI SEMICONDUCTOR ML7213 IOH : 2ch
  89. * OKI SEMICONDUCTOR ML7223 IOH : 1ch
  90. */
  91. #define PCH_SPI_MAX_DEV 2
  92. #define PCH_BUF_SIZE 4096
  93. #define PCH_DMA_TRANS_SIZE 12
  94. static int use_dma = 1;
  95. struct pch_spi_dma_ctrl {
  96. struct dma_async_tx_descriptor *desc_tx;
  97. struct dma_async_tx_descriptor *desc_rx;
  98. struct pch_dma_slave param_tx;
  99. struct pch_dma_slave param_rx;
  100. struct dma_chan *chan_tx;
  101. struct dma_chan *chan_rx;
  102. struct scatterlist *sg_tx_p;
  103. struct scatterlist *sg_rx_p;
  104. struct scatterlist sg_tx;
  105. struct scatterlist sg_rx;
  106. int nent;
  107. void *tx_buf_virt;
  108. void *rx_buf_virt;
  109. dma_addr_t tx_buf_dma;
  110. dma_addr_t rx_buf_dma;
  111. };
  112. /**
  113. * struct pch_spi_data - Holds the SPI channel specific details
  114. * @io_remap_addr: The remapped PCI base address
  115. * @master: Pointer to the SPI master structure
  116. * @work: Reference to work queue handler
  117. * @wk: Workqueue for carrying out execution of the
  118. * requests
  119. * @wait: Wait queue for waking up upon receiving an
  120. * interrupt.
  121. * @transfer_complete: Status of SPI Transfer
  122. * @bcurrent_msg_processing: Status flag for message processing
  123. * @lock: Lock for protecting this structure
  124. * @queue: SPI Message queue
  125. * @status: Status of the SPI driver
  126. * @bpw_len: Length of data to be transferred in bits per
  127. * word
  128. * @transfer_active: Flag showing active transfer
  129. * @tx_index: Transmit data count; for bookkeeping during
  130. * transfer
  131. * @rx_index: Receive data count; for bookkeeping during
  132. * transfer
  133. * @tx_buff: Buffer for data to be transmitted
  134. * @rx_index: Buffer for Received data
  135. * @n_curnt_chip: The chip number that this SPI driver currently
  136. * operates on
  137. * @current_chip: Reference to the current chip that this SPI
  138. * driver currently operates on
  139. * @current_msg: The current message that this SPI driver is
  140. * handling
  141. * @cur_trans: The current transfer that this SPI driver is
  142. * handling
  143. * @board_dat: Reference to the SPI device data structure
  144. * @plat_dev: platform_device structure
  145. * @ch: SPI channel number
  146. * @irq_reg_sts: Status of IRQ registration
  147. */
  148. struct pch_spi_data {
  149. void __iomem *io_remap_addr;
  150. unsigned long io_base_addr;
  151. struct spi_master *master;
  152. struct work_struct work;
  153. struct workqueue_struct *wk;
  154. wait_queue_head_t wait;
  155. u8 transfer_complete;
  156. u8 bcurrent_msg_processing;
  157. spinlock_t lock;
  158. struct list_head queue;
  159. u8 status;
  160. u32 bpw_len;
  161. u8 transfer_active;
  162. u32 tx_index;
  163. u32 rx_index;
  164. u16 *pkt_tx_buff;
  165. u16 *pkt_rx_buff;
  166. u8 n_curnt_chip;
  167. struct spi_device *current_chip;
  168. struct spi_message *current_msg;
  169. struct spi_transfer *cur_trans;
  170. struct pch_spi_board_data *board_dat;
  171. struct platform_device *plat_dev;
  172. int ch;
  173. struct pch_spi_dma_ctrl dma;
  174. int use_dma;
  175. u8 irq_reg_sts;
  176. };
  177. /**
  178. * struct pch_spi_board_data - Holds the SPI device specific details
  179. * @pdev: Pointer to the PCI device
  180. * @suspend_sts: Status of suspend
  181. * @num: The number of SPI device instance
  182. */
  183. struct pch_spi_board_data {
  184. struct pci_dev *pdev;
  185. u8 suspend_sts;
  186. int num;
  187. };
  188. struct pch_pd_dev_save {
  189. int num;
  190. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  191. struct pch_spi_board_data *board_dat;
  192. };
  193. static struct pci_device_id pch_spi_pcidev_id[] = {
  194. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  195. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  196. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  197. { }
  198. };
  199. /**
  200. * pch_spi_writereg() - Performs register writes
  201. * @master: Pointer to struct spi_master.
  202. * @idx: Register offset.
  203. * @val: Value to be written to register.
  204. */
  205. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  206. {
  207. struct pch_spi_data *data = spi_master_get_devdata(master);
  208. iowrite32(val, (data->io_remap_addr + idx));
  209. }
  210. /**
  211. * pch_spi_readreg() - Performs register reads
  212. * @master: Pointer to struct spi_master.
  213. * @idx: Register offset.
  214. */
  215. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  216. {
  217. struct pch_spi_data *data = spi_master_get_devdata(master);
  218. return ioread32(data->io_remap_addr + idx);
  219. }
  220. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  221. u32 set, u32 clr)
  222. {
  223. u32 tmp = pch_spi_readreg(master, idx);
  224. tmp = (tmp & ~clr) | set;
  225. pch_spi_writereg(master, idx, tmp);
  226. }
  227. static void pch_spi_set_master_mode(struct spi_master *master)
  228. {
  229. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  230. }
  231. /**
  232. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  233. * @master: Pointer to struct spi_master.
  234. */
  235. static void pch_spi_clear_fifo(struct spi_master *master)
  236. {
  237. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  238. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  239. }
  240. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  241. void __iomem *io_remap_addr)
  242. {
  243. u32 n_read, tx_index, rx_index, bpw_len;
  244. u16 *pkt_rx_buffer, *pkt_tx_buff;
  245. int read_cnt;
  246. u32 reg_spcr_val;
  247. void __iomem *spsr;
  248. void __iomem *spdrr;
  249. void __iomem *spdwr;
  250. spsr = io_remap_addr + PCH_SPSR;
  251. iowrite32(reg_spsr_val, spsr);
  252. if (data->transfer_active) {
  253. rx_index = data->rx_index;
  254. tx_index = data->tx_index;
  255. bpw_len = data->bpw_len;
  256. pkt_rx_buffer = data->pkt_rx_buff;
  257. pkt_tx_buff = data->pkt_tx_buff;
  258. spdrr = io_remap_addr + PCH_SPDRR;
  259. spdwr = io_remap_addr + PCH_SPDWR;
  260. n_read = PCH_READABLE(reg_spsr_val);
  261. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  262. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  263. if (tx_index < bpw_len)
  264. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  265. }
  266. /* disable RFI if not needed */
  267. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  268. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  269. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  270. /* reset rx threshold */
  271. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  272. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  273. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  274. }
  275. /* update counts */
  276. data->tx_index = tx_index;
  277. data->rx_index = rx_index;
  278. }
  279. /* if transfer complete interrupt */
  280. if (reg_spsr_val & SPSR_FI_BIT) {
  281. if (tx_index < bpw_len)
  282. dev_err(&data->master->dev,
  283. "%s : Transfer is not completed", __func__);
  284. /* disable interrupts */
  285. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  286. /* transfer is completed;inform pch_spi_process_messages */
  287. data->transfer_complete = true;
  288. data->transfer_active = false;
  289. wake_up(&data->wait);
  290. }
  291. }
  292. /**
  293. * pch_spi_handler() - Interrupt handler
  294. * @irq: The interrupt number.
  295. * @dev_id: Pointer to struct pch_spi_board_data.
  296. */
  297. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  298. {
  299. u32 reg_spsr_val;
  300. void __iomem *spsr;
  301. void __iomem *io_remap_addr;
  302. irqreturn_t ret = IRQ_NONE;
  303. struct pch_spi_data *data = dev_id;
  304. struct pch_spi_board_data *board_dat = data->board_dat;
  305. if (board_dat->suspend_sts) {
  306. dev_dbg(&board_dat->pdev->dev,
  307. "%s returning due to suspend\n", __func__);
  308. return IRQ_NONE;
  309. }
  310. if (data->use_dma)
  311. return IRQ_NONE;
  312. io_remap_addr = data->io_remap_addr;
  313. spsr = io_remap_addr + PCH_SPSR;
  314. reg_spsr_val = ioread32(spsr);
  315. if (reg_spsr_val & SPSR_ORF_BIT)
  316. dev_err(&board_dat->pdev->dev, "%s Over run error", __func__);
  317. /* Check if the interrupt is for SPI device */
  318. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  319. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  320. ret = IRQ_HANDLED;
  321. }
  322. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  323. __func__, ret);
  324. return ret;
  325. }
  326. /**
  327. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  328. * @master: Pointer to struct spi_master.
  329. * @speed_hz: Baud rate.
  330. */
  331. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  332. {
  333. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  334. /* if baud rate is less than we can support limit it */
  335. if (n_spbr > PCH_MAX_SPBR)
  336. n_spbr = PCH_MAX_SPBR;
  337. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  338. }
  339. /**
  340. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  341. * @master: Pointer to struct spi_master.
  342. * @bits_per_word: Bits per word for SPI transfer.
  343. */
  344. static void pch_spi_set_bits_per_word(struct spi_master *master,
  345. u8 bits_per_word)
  346. {
  347. if (bits_per_word == 8)
  348. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  349. else
  350. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  351. }
  352. /**
  353. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  354. * @spi: Pointer to struct spi_device.
  355. */
  356. static void pch_spi_setup_transfer(struct spi_device *spi)
  357. {
  358. u32 flags = 0;
  359. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  360. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  361. spi->max_speed_hz);
  362. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  363. /* set bits per word */
  364. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  365. if (!(spi->mode & SPI_LSB_FIRST))
  366. flags |= SPCR_LSBF_BIT;
  367. if (spi->mode & SPI_CPOL)
  368. flags |= SPCR_CPOL_BIT;
  369. if (spi->mode & SPI_CPHA)
  370. flags |= SPCR_CPHA_BIT;
  371. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  372. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  373. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  374. pch_spi_clear_fifo(spi->master);
  375. }
  376. /**
  377. * pch_spi_reset() - Clears SPI registers
  378. * @master: Pointer to struct spi_master.
  379. */
  380. static void pch_spi_reset(struct spi_master *master)
  381. {
  382. /* write 1 to reset SPI */
  383. pch_spi_writereg(master, PCH_SRST, 0x1);
  384. /* clear reset */
  385. pch_spi_writereg(master, PCH_SRST, 0x0);
  386. }
  387. static int pch_spi_setup(struct spi_device *pspi)
  388. {
  389. /* check bits per word */
  390. if (pspi->bits_per_word == 0) {
  391. pspi->bits_per_word = 8;
  392. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  393. }
  394. if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
  395. dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
  396. return -EINVAL;
  397. }
  398. /* Check baud rate setting */
  399. /* if baud rate of chip is greater than
  400. max we can support,return error */
  401. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  402. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  403. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  404. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  405. return 0;
  406. }
  407. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  408. {
  409. struct spi_transfer *transfer;
  410. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  411. int retval;
  412. unsigned long flags;
  413. /* validate spi message and baud rate */
  414. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  415. dev_err(&pspi->dev, "%s list empty\n", __func__);
  416. retval = -EINVAL;
  417. goto err_out;
  418. }
  419. if (unlikely(pspi->max_speed_hz == 0)) {
  420. dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
  421. __func__, pspi->max_speed_hz);
  422. retval = -EINVAL;
  423. goto err_out;
  424. }
  425. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  426. "Transfer Speed is set.\n", __func__);
  427. spin_lock_irqsave(&data->lock, flags);
  428. /* validate Tx/Rx buffers and Transfer length */
  429. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  430. if (!transfer->tx_buf && !transfer->rx_buf) {
  431. dev_err(&pspi->dev,
  432. "%s Tx and Rx buffer NULL\n", __func__);
  433. retval = -EINVAL;
  434. goto err_return_spinlock;
  435. }
  436. if (!transfer->len) {
  437. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  438. __func__);
  439. retval = -EINVAL;
  440. goto err_return_spinlock;
  441. }
  442. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  443. " valid\n", __func__);
  444. /* if baud rate has been specified validate the same */
  445. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  446. transfer->speed_hz = PCH_MAX_BAUDRATE;
  447. /* if bits per word has been specified validate the same */
  448. if (transfer->bits_per_word) {
  449. if ((transfer->bits_per_word != 8)
  450. && (transfer->bits_per_word != 16)) {
  451. retval = -EINVAL;
  452. dev_err(&pspi->dev,
  453. "%s Invalid bits per word\n", __func__);
  454. goto err_return_spinlock;
  455. }
  456. }
  457. }
  458. spin_unlock_irqrestore(&data->lock, flags);
  459. /* We won't process any messages if we have been asked to terminate */
  460. if (data->status == STATUS_EXITING) {
  461. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  462. retval = -ESHUTDOWN;
  463. goto err_out;
  464. }
  465. /* If suspended ,return -EINVAL */
  466. if (data->board_dat->suspend_sts) {
  467. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  468. retval = -EINVAL;
  469. goto err_out;
  470. }
  471. /* set status of message */
  472. pmsg->actual_length = 0;
  473. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  474. pmsg->status = -EINPROGRESS;
  475. spin_lock_irqsave(&data->lock, flags);
  476. /* add message to queue */
  477. list_add_tail(&pmsg->queue, &data->queue);
  478. spin_unlock_irqrestore(&data->lock, flags);
  479. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  480. /* schedule work queue to run */
  481. queue_work(data->wk, &data->work);
  482. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  483. retval = 0;
  484. err_out:
  485. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  486. return retval;
  487. err_return_spinlock:
  488. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  489. spin_unlock_irqrestore(&data->lock, flags);
  490. return retval;
  491. }
  492. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  493. struct spi_device *pspi)
  494. {
  495. if (data->current_chip != NULL) {
  496. if (pspi->chip_select != data->n_curnt_chip) {
  497. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  498. data->current_chip = NULL;
  499. }
  500. }
  501. data->current_chip = pspi;
  502. data->n_curnt_chip = data->current_chip->chip_select;
  503. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  504. pch_spi_setup_transfer(pspi);
  505. }
  506. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  507. {
  508. int size;
  509. u32 n_writes;
  510. int j;
  511. struct spi_message *pmsg;
  512. const u8 *tx_buf;
  513. const u16 *tx_sbuf;
  514. /* set baud rate if needed */
  515. if (data->cur_trans->speed_hz) {
  516. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  517. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  518. }
  519. /* set bits per word if needed */
  520. if (data->cur_trans->bits_per_word &&
  521. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  522. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  523. pch_spi_set_bits_per_word(data->master,
  524. data->cur_trans->bits_per_word);
  525. *bpw = data->cur_trans->bits_per_word;
  526. } else {
  527. *bpw = data->current_msg->spi->bits_per_word;
  528. }
  529. /* reset Tx/Rx index */
  530. data->tx_index = 0;
  531. data->rx_index = 0;
  532. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  533. /* find alloc size */
  534. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  535. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  536. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  537. if (data->pkt_tx_buff != NULL) {
  538. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  539. if (!data->pkt_rx_buff)
  540. kfree(data->pkt_tx_buff);
  541. }
  542. if (!data->pkt_rx_buff) {
  543. /* flush queue and set status of all transfers to -ENOMEM */
  544. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  545. list_for_each_entry(pmsg, data->queue.next, queue) {
  546. pmsg->status = -ENOMEM;
  547. if (pmsg->complete != 0)
  548. pmsg->complete(pmsg->context);
  549. /* delete from queue */
  550. list_del_init(&pmsg->queue);
  551. }
  552. return;
  553. }
  554. /* copy Tx Data */
  555. if (data->cur_trans->tx_buf != NULL) {
  556. if (*bpw == 8) {
  557. tx_buf = data->cur_trans->tx_buf;
  558. for (j = 0; j < data->bpw_len; j++)
  559. data->pkt_tx_buff[j] = *tx_buf++;
  560. } else {
  561. tx_sbuf = data->cur_trans->tx_buf;
  562. for (j = 0; j < data->bpw_len; j++)
  563. data->pkt_tx_buff[j] = *tx_sbuf++;
  564. }
  565. }
  566. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  567. n_writes = data->bpw_len;
  568. if (n_writes > PCH_MAX_FIFO_DEPTH)
  569. n_writes = PCH_MAX_FIFO_DEPTH;
  570. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  571. "0x2 to SSNXCR\n", __func__);
  572. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  573. for (j = 0; j < n_writes; j++)
  574. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  575. /* update tx_index */
  576. data->tx_index = j;
  577. /* reset transfer complete flag */
  578. data->transfer_complete = false;
  579. data->transfer_active = true;
  580. }
  581. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  582. {
  583. struct spi_message *pmsg;
  584. dev_dbg(&data->master->dev, "%s called\n", __func__);
  585. /* Invoke complete callback
  586. * [To the spi core..indicating end of transfer] */
  587. data->current_msg->status = 0;
  588. if (data->current_msg->complete != 0) {
  589. dev_dbg(&data->master->dev,
  590. "%s:Invoking callback of SPI core\n", __func__);
  591. data->current_msg->complete(data->current_msg->context);
  592. }
  593. /* update status in global variable */
  594. data->bcurrent_msg_processing = false;
  595. dev_dbg(&data->master->dev,
  596. "%s:data->bcurrent_msg_processing = false\n", __func__);
  597. data->current_msg = NULL;
  598. data->cur_trans = NULL;
  599. /* check if we have items in list and not suspending
  600. * return 1 if list empty */
  601. if ((list_empty(&data->queue) == 0) &&
  602. (!data->board_dat->suspend_sts) &&
  603. (data->status != STATUS_EXITING)) {
  604. /* We have some more work to do (either there is more tranint
  605. * bpw;sfer requests in the current message or there are
  606. *more messages)
  607. */
  608. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  609. queue_work(data->wk, &data->work);
  610. } else if (data->board_dat->suspend_sts ||
  611. data->status == STATUS_EXITING) {
  612. dev_dbg(&data->master->dev,
  613. "%s suspend/remove initiated, flushing queue\n",
  614. __func__);
  615. list_for_each_entry(pmsg, data->queue.next, queue) {
  616. pmsg->status = -EIO;
  617. if (pmsg->complete)
  618. pmsg->complete(pmsg->context);
  619. /* delete from queue */
  620. list_del_init(&pmsg->queue);
  621. }
  622. }
  623. }
  624. static void pch_spi_set_ir(struct pch_spi_data *data)
  625. {
  626. /* enable interrupts, set threshold, enable SPI */
  627. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  628. /* set receive threshold to PCH_RX_THOLD */
  629. pch_spi_setclr_reg(data->master, PCH_SPCR,
  630. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  631. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  632. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  633. MASK_RFIC_SPCR_BITS | PCH_ALL);
  634. else
  635. /* set receive threshold to maximum */
  636. pch_spi_setclr_reg(data->master, PCH_SPCR,
  637. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  638. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  639. SPCR_SPE_BIT,
  640. MASK_RFIC_SPCR_BITS | PCH_ALL);
  641. /* Wait until the transfer completes; go to sleep after
  642. initiating the transfer. */
  643. dev_dbg(&data->master->dev,
  644. "%s:waiting for transfer to get over\n", __func__);
  645. wait_event_interruptible(data->wait, data->transfer_complete);
  646. /* clear all interrupts */
  647. pch_spi_writereg(data->master, PCH_SPSR,
  648. pch_spi_readreg(data->master, PCH_SPSR));
  649. /* Disable interrupts and SPI transfer */
  650. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  651. /* clear FIFO */
  652. pch_spi_clear_fifo(data->master);
  653. }
  654. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  655. {
  656. int j;
  657. u8 *rx_buf;
  658. u16 *rx_sbuf;
  659. /* copy Rx Data */
  660. if (!data->cur_trans->rx_buf)
  661. return;
  662. if (bpw == 8) {
  663. rx_buf = data->cur_trans->rx_buf;
  664. for (j = 0; j < data->bpw_len; j++)
  665. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  666. } else {
  667. rx_sbuf = data->cur_trans->rx_buf;
  668. for (j = 0; j < data->bpw_len; j++)
  669. *rx_sbuf++ = data->pkt_rx_buff[j];
  670. }
  671. }
  672. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  673. {
  674. int j;
  675. u8 *rx_buf;
  676. u16 *rx_sbuf;
  677. const u8 *rx_dma_buf;
  678. const u16 *rx_dma_sbuf;
  679. /* copy Rx Data */
  680. if (!data->cur_trans->rx_buf)
  681. return;
  682. if (bpw == 8) {
  683. rx_buf = data->cur_trans->rx_buf;
  684. rx_dma_buf = data->dma.rx_buf_virt;
  685. for (j = 0; j < data->bpw_len; j++)
  686. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  687. } else {
  688. rx_sbuf = data->cur_trans->rx_buf;
  689. rx_dma_sbuf = data->dma.rx_buf_virt;
  690. for (j = 0; j < data->bpw_len; j++)
  691. *rx_sbuf++ = *rx_dma_sbuf++;
  692. }
  693. }
  694. static void pch_spi_start_transfer(struct pch_spi_data *data)
  695. {
  696. struct pch_spi_dma_ctrl *dma;
  697. unsigned long flags;
  698. dma = &data->dma;
  699. spin_lock_irqsave(&data->lock, flags);
  700. /* disable interrupts, SPI set enable */
  701. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  702. spin_unlock_irqrestore(&data->lock, flags);
  703. /* Wait until the transfer completes; go to sleep after
  704. initiating the transfer. */
  705. dev_dbg(&data->master->dev,
  706. "%s:waiting for transfer to get over\n", __func__);
  707. wait_event_interruptible(data->wait, data->transfer_complete);
  708. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  709. DMA_FROM_DEVICE);
  710. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  711. DMA_FROM_DEVICE);
  712. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  713. async_tx_ack(dma->desc_rx);
  714. async_tx_ack(dma->desc_tx);
  715. kfree(dma->sg_tx_p);
  716. kfree(dma->sg_rx_p);
  717. spin_lock_irqsave(&data->lock, flags);
  718. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  719. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  720. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  721. SPCR_SPE_BIT);
  722. /* clear all interrupts */
  723. pch_spi_writereg(data->master, PCH_SPSR,
  724. pch_spi_readreg(data->master, PCH_SPSR));
  725. /* clear FIFO */
  726. pch_spi_clear_fifo(data->master);
  727. spin_unlock_irqrestore(&data->lock, flags);
  728. }
  729. static void pch_dma_rx_complete(void *arg)
  730. {
  731. struct pch_spi_data *data = arg;
  732. /* transfer is completed;inform pch_spi_process_messages_dma */
  733. data->transfer_complete = true;
  734. wake_up_interruptible(&data->wait);
  735. }
  736. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  737. {
  738. struct pch_dma_slave *param = slave;
  739. if ((chan->chan_id == param->chan_id) &&
  740. (param->dma_dev == chan->device->dev)) {
  741. chan->private = param;
  742. return true;
  743. } else {
  744. return false;
  745. }
  746. }
  747. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  748. {
  749. dma_cap_mask_t mask;
  750. struct dma_chan *chan;
  751. struct pci_dev *dma_dev;
  752. struct pch_dma_slave *param;
  753. struct pch_spi_dma_ctrl *dma;
  754. unsigned int width;
  755. if (bpw == 8)
  756. width = PCH_DMA_WIDTH_1_BYTE;
  757. else
  758. width = PCH_DMA_WIDTH_2_BYTES;
  759. dma = &data->dma;
  760. dma_cap_zero(mask);
  761. dma_cap_set(DMA_SLAVE, mask);
  762. /* Get DMA's dev information */
  763. dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
  764. /* Set Tx DMA */
  765. param = &dma->param_tx;
  766. param->dma_dev = &dma_dev->dev;
  767. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  768. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  769. param->width = width;
  770. chan = dma_request_channel(mask, pch_spi_filter, param);
  771. if (!chan) {
  772. dev_err(&data->master->dev,
  773. "ERROR: dma_request_channel FAILS(Tx)\n");
  774. data->use_dma = 0;
  775. return;
  776. }
  777. dma->chan_tx = chan;
  778. /* Set Rx DMA */
  779. param = &dma->param_rx;
  780. param->dma_dev = &dma_dev->dev;
  781. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  782. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  783. param->width = width;
  784. chan = dma_request_channel(mask, pch_spi_filter, param);
  785. if (!chan) {
  786. dev_err(&data->master->dev,
  787. "ERROR: dma_request_channel FAILS(Rx)\n");
  788. dma_release_channel(dma->chan_tx);
  789. dma->chan_tx = NULL;
  790. data->use_dma = 0;
  791. return;
  792. }
  793. dma->chan_rx = chan;
  794. }
  795. static void pch_spi_release_dma(struct pch_spi_data *data)
  796. {
  797. struct pch_spi_dma_ctrl *dma;
  798. dma = &data->dma;
  799. if (dma->chan_tx) {
  800. dma_release_channel(dma->chan_tx);
  801. dma->chan_tx = NULL;
  802. }
  803. if (dma->chan_rx) {
  804. dma_release_channel(dma->chan_rx);
  805. dma->chan_rx = NULL;
  806. }
  807. return;
  808. }
  809. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  810. {
  811. const u8 *tx_buf;
  812. const u16 *tx_sbuf;
  813. u8 *tx_dma_buf;
  814. u16 *tx_dma_sbuf;
  815. struct scatterlist *sg;
  816. struct dma_async_tx_descriptor *desc_tx;
  817. struct dma_async_tx_descriptor *desc_rx;
  818. int num;
  819. int i;
  820. int size;
  821. int rem;
  822. unsigned long flags;
  823. struct pch_spi_dma_ctrl *dma;
  824. dma = &data->dma;
  825. /* set baud rate if needed */
  826. if (data->cur_trans->speed_hz) {
  827. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  828. spin_lock_irqsave(&data->lock, flags);
  829. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  830. spin_unlock_irqrestore(&data->lock, flags);
  831. }
  832. /* set bits per word if needed */
  833. if (data->cur_trans->bits_per_word &&
  834. (data->current_msg->spi->bits_per_word !=
  835. data->cur_trans->bits_per_word)) {
  836. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  837. spin_lock_irqsave(&data->lock, flags);
  838. pch_spi_set_bits_per_word(data->master,
  839. data->cur_trans->bits_per_word);
  840. spin_unlock_irqrestore(&data->lock, flags);
  841. *bpw = data->cur_trans->bits_per_word;
  842. } else {
  843. *bpw = data->current_msg->spi->bits_per_word;
  844. }
  845. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  846. /* copy Tx Data */
  847. if (data->cur_trans->tx_buf != NULL) {
  848. if (*bpw == 8) {
  849. tx_buf = data->cur_trans->tx_buf;
  850. tx_dma_buf = dma->tx_buf_virt;
  851. for (i = 0; i < data->bpw_len; i++)
  852. *tx_dma_buf++ = *tx_buf++;
  853. } else {
  854. tx_sbuf = data->cur_trans->tx_buf;
  855. tx_dma_sbuf = dma->tx_buf_virt;
  856. for (i = 0; i < data->bpw_len; i++)
  857. *tx_dma_sbuf++ = *tx_sbuf++;
  858. }
  859. }
  860. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  861. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  862. size = PCH_DMA_TRANS_SIZE;
  863. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  864. } else {
  865. num = 1;
  866. size = data->bpw_len;
  867. rem = data->bpw_len;
  868. }
  869. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  870. __func__, num, size, rem);
  871. spin_lock_irqsave(&data->lock, flags);
  872. /* set receive fifo threshold and transmit fifo threshold */
  873. pch_spi_setclr_reg(data->master, PCH_SPCR,
  874. ((size - 1) << SPCR_RFIC_FIELD) |
  875. ((PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE) <<
  876. SPCR_TFIC_FIELD),
  877. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  878. spin_unlock_irqrestore(&data->lock, flags);
  879. /* RX */
  880. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  881. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  882. /* offset, length setting */
  883. sg = dma->sg_rx_p;
  884. for (i = 0; i < num; i++, sg++) {
  885. if (i == 0) {
  886. sg->offset = 0;
  887. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  888. sg->offset);
  889. sg_dma_len(sg) = rem;
  890. } else {
  891. sg->offset = rem + size * (i - 1);
  892. sg->offset = sg->offset * (*bpw / 8);
  893. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  894. sg->offset);
  895. sg_dma_len(sg) = size;
  896. }
  897. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  898. }
  899. sg = dma->sg_rx_p;
  900. desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
  901. num, DMA_FROM_DEVICE,
  902. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  903. if (!desc_rx) {
  904. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  905. __func__);
  906. return;
  907. }
  908. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  909. desc_rx->callback = pch_dma_rx_complete;
  910. desc_rx->callback_param = data;
  911. dma->nent = num;
  912. dma->desc_rx = desc_rx;
  913. /* TX */
  914. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  915. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  916. /* offset, length setting */
  917. sg = dma->sg_tx_p;
  918. for (i = 0; i < num; i++, sg++) {
  919. if (i == 0) {
  920. sg->offset = 0;
  921. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  922. sg->offset);
  923. sg_dma_len(sg) = rem;
  924. } else {
  925. sg->offset = rem + size * (i - 1);
  926. sg->offset = sg->offset * (*bpw / 8);
  927. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  928. sg->offset);
  929. sg_dma_len(sg) = size;
  930. }
  931. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  932. }
  933. sg = dma->sg_tx_p;
  934. desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
  935. sg, num, DMA_TO_DEVICE,
  936. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  937. if (!desc_tx) {
  938. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  939. __func__);
  940. return;
  941. }
  942. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  943. desc_tx->callback = NULL;
  944. desc_tx->callback_param = data;
  945. dma->nent = num;
  946. dma->desc_tx = desc_tx;
  947. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  948. "0x2 to SSNXCR\n", __func__);
  949. spin_lock_irqsave(&data->lock, flags);
  950. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  951. desc_rx->tx_submit(desc_rx);
  952. desc_tx->tx_submit(desc_tx);
  953. spin_unlock_irqrestore(&data->lock, flags);
  954. /* reset transfer complete flag */
  955. data->transfer_complete = false;
  956. }
  957. static void pch_spi_process_messages(struct work_struct *pwork)
  958. {
  959. struct spi_message *pmsg;
  960. struct pch_spi_data *data;
  961. int bpw;
  962. data = container_of(pwork, struct pch_spi_data, work);
  963. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  964. spin_lock(&data->lock);
  965. /* check if suspend has been initiated;if yes flush queue */
  966. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  967. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  968. "flushing queue\n", __func__);
  969. list_for_each_entry(pmsg, data->queue.next, queue) {
  970. pmsg->status = -EIO;
  971. if (pmsg->complete != 0) {
  972. spin_unlock(&data->lock);
  973. pmsg->complete(pmsg->context);
  974. spin_lock(&data->lock);
  975. }
  976. /* delete from queue */
  977. list_del_init(&pmsg->queue);
  978. }
  979. spin_unlock(&data->lock);
  980. return;
  981. }
  982. data->bcurrent_msg_processing = true;
  983. dev_dbg(&data->master->dev,
  984. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  985. /* Get the message from the queue and delete it from there. */
  986. data->current_msg = list_entry(data->queue.next, struct spi_message,
  987. queue);
  988. list_del_init(&data->current_msg->queue);
  989. data->current_msg->status = 0;
  990. pch_spi_select_chip(data, data->current_msg->spi);
  991. spin_unlock(&data->lock);
  992. if (data->use_dma)
  993. pch_spi_request_dma(data,
  994. data->current_msg->spi->bits_per_word);
  995. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  996. do {
  997. /* If we are already processing a message get the next
  998. transfer structure from the message otherwise retrieve
  999. the 1st transfer request from the message. */
  1000. spin_lock(&data->lock);
  1001. if (data->cur_trans == NULL) {
  1002. data->cur_trans =
  1003. list_entry(data->current_msg->transfers.next,
  1004. struct spi_transfer, transfer_list);
  1005. dev_dbg(&data->master->dev, "%s "
  1006. ":Getting 1st transfer message\n", __func__);
  1007. } else {
  1008. data->cur_trans =
  1009. list_entry(data->cur_trans->transfer_list.next,
  1010. struct spi_transfer, transfer_list);
  1011. dev_dbg(&data->master->dev, "%s "
  1012. ":Getting next transfer message\n", __func__);
  1013. }
  1014. spin_unlock(&data->lock);
  1015. if (data->use_dma) {
  1016. pch_spi_handle_dma(data, &bpw);
  1017. pch_spi_start_transfer(data);
  1018. pch_spi_copy_rx_data_for_dma(data, bpw);
  1019. } else {
  1020. pch_spi_set_tx(data, &bpw);
  1021. pch_spi_set_ir(data);
  1022. pch_spi_copy_rx_data(data, bpw);
  1023. kfree(data->pkt_rx_buff);
  1024. data->pkt_rx_buff = NULL;
  1025. kfree(data->pkt_tx_buff);
  1026. data->pkt_tx_buff = NULL;
  1027. }
  1028. /* increment message count */
  1029. data->current_msg->actual_length += data->cur_trans->len;
  1030. dev_dbg(&data->master->dev,
  1031. "%s:data->current_msg->actual_length=%d\n",
  1032. __func__, data->current_msg->actual_length);
  1033. /* check for delay */
  1034. if (data->cur_trans->delay_usecs) {
  1035. dev_dbg(&data->master->dev, "%s:"
  1036. "delay in usec=%d\n", __func__,
  1037. data->cur_trans->delay_usecs);
  1038. udelay(data->cur_trans->delay_usecs);
  1039. }
  1040. spin_lock(&data->lock);
  1041. /* No more transfer in this message. */
  1042. if ((data->cur_trans->transfer_list.next) ==
  1043. &(data->current_msg->transfers)) {
  1044. pch_spi_nomore_transfer(data);
  1045. }
  1046. spin_unlock(&data->lock);
  1047. } while (data->cur_trans != NULL);
  1048. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1049. if (data->use_dma)
  1050. pch_spi_release_dma(data);
  1051. }
  1052. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1053. struct pch_spi_data *data)
  1054. {
  1055. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1056. /* free workqueue */
  1057. if (data->wk != NULL) {
  1058. destroy_workqueue(data->wk);
  1059. data->wk = NULL;
  1060. dev_dbg(&board_dat->pdev->dev,
  1061. "%s destroy_workqueue invoked successfully\n",
  1062. __func__);
  1063. }
  1064. }
  1065. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1066. struct pch_spi_data *data)
  1067. {
  1068. int retval = 0;
  1069. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1070. /* create workqueue */
  1071. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1072. if (!data->wk) {
  1073. dev_err(&board_dat->pdev->dev,
  1074. "%s create_singlet hread_workqueue failed\n", __func__);
  1075. retval = -EBUSY;
  1076. goto err_return;
  1077. }
  1078. /* reset PCH SPI h/w */
  1079. pch_spi_reset(data->master);
  1080. dev_dbg(&board_dat->pdev->dev,
  1081. "%s pch_spi_reset invoked successfully\n", __func__);
  1082. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1083. err_return:
  1084. if (retval != 0) {
  1085. dev_err(&board_dat->pdev->dev,
  1086. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1087. pch_spi_free_resources(board_dat, data);
  1088. }
  1089. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1090. return retval;
  1091. }
  1092. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1093. struct pch_spi_data *data)
  1094. {
  1095. struct pch_spi_dma_ctrl *dma;
  1096. dma = &data->dma;
  1097. if (dma->tx_buf_dma)
  1098. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1099. dma->tx_buf_virt, dma->tx_buf_dma);
  1100. if (dma->rx_buf_dma)
  1101. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1102. dma->rx_buf_virt, dma->rx_buf_dma);
  1103. return;
  1104. }
  1105. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1106. struct pch_spi_data *data)
  1107. {
  1108. struct pch_spi_dma_ctrl *dma;
  1109. dma = &data->dma;
  1110. /* Get Consistent memory for Tx DMA */
  1111. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1112. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1113. /* Get Consistent memory for Rx DMA */
  1114. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1115. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1116. }
  1117. static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
  1118. {
  1119. int ret;
  1120. struct spi_master *master;
  1121. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1122. struct pch_spi_data *data;
  1123. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1124. master = spi_alloc_master(&board_dat->pdev->dev,
  1125. sizeof(struct pch_spi_data));
  1126. if (!master) {
  1127. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1128. plat_dev->id);
  1129. return -ENOMEM;
  1130. }
  1131. data = spi_master_get_devdata(master);
  1132. data->master = master;
  1133. platform_set_drvdata(plat_dev, data);
  1134. /* baseaddress + address offset) */
  1135. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1136. PCH_ADDRESS_SIZE * plat_dev->id;
  1137. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1138. PCH_ADDRESS_SIZE * plat_dev->id;
  1139. if (!data->io_remap_addr) {
  1140. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1141. ret = -ENOMEM;
  1142. goto err_pci_iomap;
  1143. }
  1144. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1145. plat_dev->id, data->io_remap_addr);
  1146. /* initialize members of SPI master */
  1147. master->bus_num = -1;
  1148. master->num_chipselect = PCH_MAX_CS;
  1149. master->setup = pch_spi_setup;
  1150. master->transfer = pch_spi_transfer;
  1151. data->board_dat = board_dat;
  1152. data->plat_dev = plat_dev;
  1153. data->n_curnt_chip = 255;
  1154. data->status = STATUS_RUNNING;
  1155. data->ch = plat_dev->id;
  1156. data->use_dma = use_dma;
  1157. INIT_LIST_HEAD(&data->queue);
  1158. spin_lock_init(&data->lock);
  1159. INIT_WORK(&data->work, pch_spi_process_messages);
  1160. init_waitqueue_head(&data->wait);
  1161. ret = pch_spi_get_resources(board_dat, data);
  1162. if (ret) {
  1163. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1164. goto err_spi_get_resources;
  1165. }
  1166. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1167. IRQF_SHARED, KBUILD_MODNAME, data);
  1168. if (ret) {
  1169. dev_err(&plat_dev->dev,
  1170. "%s request_irq failed\n", __func__);
  1171. goto err_request_irq;
  1172. }
  1173. data->irq_reg_sts = true;
  1174. pch_spi_set_master_mode(master);
  1175. ret = spi_register_master(master);
  1176. if (ret != 0) {
  1177. dev_err(&plat_dev->dev,
  1178. "%s spi_register_master FAILED\n", __func__);
  1179. goto err_spi_register_master;
  1180. }
  1181. if (use_dma) {
  1182. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1183. pch_alloc_dma_buf(board_dat, data);
  1184. }
  1185. return 0;
  1186. err_spi_register_master:
  1187. free_irq(board_dat->pdev->irq, board_dat);
  1188. err_request_irq:
  1189. pch_spi_free_resources(board_dat, data);
  1190. err_spi_get_resources:
  1191. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1192. err_pci_iomap:
  1193. spi_master_put(master);
  1194. return ret;
  1195. }
  1196. static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
  1197. {
  1198. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1199. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1200. int count;
  1201. unsigned long flags;
  1202. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1203. __func__, plat_dev->id, board_dat->pdev->irq);
  1204. if (use_dma)
  1205. pch_free_dma_buf(board_dat, data);
  1206. /* check for any pending messages; no action is taken if the queue
  1207. * is still full; but at least we tried. Unload anyway */
  1208. count = 500;
  1209. spin_lock_irqsave(&data->lock, flags);
  1210. data->status = STATUS_EXITING;
  1211. while ((list_empty(&data->queue) == 0) && --count) {
  1212. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1213. __func__);
  1214. spin_unlock_irqrestore(&data->lock, flags);
  1215. msleep(PCH_SLEEP_TIME);
  1216. spin_lock_irqsave(&data->lock, flags);
  1217. }
  1218. spin_unlock_irqrestore(&data->lock, flags);
  1219. pch_spi_free_resources(board_dat, data);
  1220. /* disable interrupts & free IRQ */
  1221. if (data->irq_reg_sts) {
  1222. /* disable interrupts */
  1223. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1224. data->irq_reg_sts = false;
  1225. free_irq(board_dat->pdev->irq, data);
  1226. }
  1227. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1228. spi_unregister_master(data->master);
  1229. spi_master_put(data->master);
  1230. platform_set_drvdata(plat_dev, NULL);
  1231. return 0;
  1232. }
  1233. #ifdef CONFIG_PM
  1234. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1235. pm_message_t state)
  1236. {
  1237. u8 count;
  1238. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1239. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1240. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1241. if (!board_dat) {
  1242. dev_err(&pd_dev->dev,
  1243. "%s pci_get_drvdata returned NULL\n", __func__);
  1244. return -EFAULT;
  1245. }
  1246. /* check if the current message is processed:
  1247. Only after thats done the transfer will be suspended */
  1248. count = 255;
  1249. while ((--count) > 0) {
  1250. if (!(data->bcurrent_msg_processing))
  1251. break;
  1252. msleep(PCH_SLEEP_TIME);
  1253. }
  1254. /* Free IRQ */
  1255. if (data->irq_reg_sts) {
  1256. /* disable all interrupts */
  1257. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1258. pch_spi_reset(data->master);
  1259. free_irq(board_dat->pdev->irq, data);
  1260. data->irq_reg_sts = false;
  1261. dev_dbg(&pd_dev->dev,
  1262. "%s free_irq invoked successfully.\n", __func__);
  1263. }
  1264. return 0;
  1265. }
  1266. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1267. {
  1268. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1269. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1270. int retval;
  1271. if (!board_dat) {
  1272. dev_err(&pd_dev->dev,
  1273. "%s pci_get_drvdata returned NULL\n", __func__);
  1274. return -EFAULT;
  1275. }
  1276. if (!data->irq_reg_sts) {
  1277. /* register IRQ */
  1278. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1279. IRQF_SHARED, KBUILD_MODNAME, data);
  1280. if (retval < 0) {
  1281. dev_err(&pd_dev->dev,
  1282. "%s request_irq failed\n", __func__);
  1283. return retval;
  1284. }
  1285. /* reset PCH SPI h/w */
  1286. pch_spi_reset(data->master);
  1287. pch_spi_set_master_mode(data->master);
  1288. data->irq_reg_sts = true;
  1289. }
  1290. return 0;
  1291. }
  1292. #else
  1293. #define pch_spi_pd_suspend NULL
  1294. #define pch_spi_pd_resume NULL
  1295. #endif
  1296. static struct platform_driver pch_spi_pd_driver = {
  1297. .driver = {
  1298. .name = "pch-spi",
  1299. .owner = THIS_MODULE,
  1300. },
  1301. .probe = pch_spi_pd_probe,
  1302. .remove = __devexit_p(pch_spi_pd_remove),
  1303. .suspend = pch_spi_pd_suspend,
  1304. .resume = pch_spi_pd_resume
  1305. };
  1306. static int __devinit pch_spi_probe(struct pci_dev *pdev,
  1307. const struct pci_device_id *id)
  1308. {
  1309. struct pch_spi_board_data *board_dat;
  1310. struct platform_device *pd_dev = NULL;
  1311. int retval;
  1312. int i;
  1313. struct pch_pd_dev_save *pd_dev_save;
  1314. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1315. if (!pd_dev_save) {
  1316. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1317. return -ENOMEM;
  1318. }
  1319. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1320. if (!board_dat) {
  1321. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1322. retval = -ENOMEM;
  1323. goto err_no_mem;
  1324. }
  1325. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1326. if (retval) {
  1327. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1328. goto pci_request_regions;
  1329. }
  1330. board_dat->pdev = pdev;
  1331. board_dat->num = id->driver_data;
  1332. pd_dev_save->num = id->driver_data;
  1333. pd_dev_save->board_dat = board_dat;
  1334. retval = pci_enable_device(pdev);
  1335. if (retval) {
  1336. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1337. goto pci_enable_device;
  1338. }
  1339. for (i = 0; i < board_dat->num; i++) {
  1340. pd_dev = platform_device_alloc("pch-spi", i);
  1341. if (!pd_dev) {
  1342. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1343. goto err_platform_device;
  1344. }
  1345. pd_dev_save->pd_save[i] = pd_dev;
  1346. pd_dev->dev.parent = &pdev->dev;
  1347. retval = platform_device_add_data(pd_dev, board_dat,
  1348. sizeof(*board_dat));
  1349. if (retval) {
  1350. dev_err(&pdev->dev,
  1351. "platform_device_add_data failed\n");
  1352. platform_device_put(pd_dev);
  1353. goto err_platform_device;
  1354. }
  1355. retval = platform_device_add(pd_dev);
  1356. if (retval) {
  1357. dev_err(&pdev->dev, "platform_device_add failed\n");
  1358. platform_device_put(pd_dev);
  1359. goto err_platform_device;
  1360. }
  1361. }
  1362. pci_set_drvdata(pdev, pd_dev_save);
  1363. return 0;
  1364. err_platform_device:
  1365. pci_disable_device(pdev);
  1366. pci_enable_device:
  1367. pci_release_regions(pdev);
  1368. pci_request_regions:
  1369. kfree(board_dat);
  1370. err_no_mem:
  1371. kfree(pd_dev_save);
  1372. return retval;
  1373. }
  1374. static void __devexit pch_spi_remove(struct pci_dev *pdev)
  1375. {
  1376. int i;
  1377. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1378. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1379. for (i = 0; i < pd_dev_save->num; i++)
  1380. platform_device_unregister(pd_dev_save->pd_save[i]);
  1381. pci_disable_device(pdev);
  1382. pci_release_regions(pdev);
  1383. kfree(pd_dev_save->board_dat);
  1384. kfree(pd_dev_save);
  1385. }
  1386. #ifdef CONFIG_PM
  1387. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1388. {
  1389. int retval;
  1390. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1391. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1392. pd_dev_save->board_dat->suspend_sts = true;
  1393. /* save config space */
  1394. retval = pci_save_state(pdev);
  1395. if (retval == 0) {
  1396. pci_enable_wake(pdev, PCI_D3hot, 0);
  1397. pci_disable_device(pdev);
  1398. pci_set_power_state(pdev, PCI_D3hot);
  1399. } else {
  1400. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1401. }
  1402. return retval;
  1403. }
  1404. static int pch_spi_resume(struct pci_dev *pdev)
  1405. {
  1406. int retval;
  1407. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1408. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1409. pci_set_power_state(pdev, PCI_D0);
  1410. pci_restore_state(pdev);
  1411. retval = pci_enable_device(pdev);
  1412. if (retval < 0) {
  1413. dev_err(&pdev->dev,
  1414. "%s pci_enable_device failed\n", __func__);
  1415. } else {
  1416. pci_enable_wake(pdev, PCI_D3hot, 0);
  1417. /* set suspend status to false */
  1418. pd_dev_save->board_dat->suspend_sts = false;
  1419. }
  1420. return retval;
  1421. }
  1422. #else
  1423. #define pch_spi_suspend NULL
  1424. #define pch_spi_resume NULL
  1425. #endif
  1426. static struct pci_driver pch_spi_pcidev = {
  1427. .name = "pch_spi",
  1428. .id_table = pch_spi_pcidev_id,
  1429. .probe = pch_spi_probe,
  1430. .remove = pch_spi_remove,
  1431. .suspend = pch_spi_suspend,
  1432. .resume = pch_spi_resume,
  1433. };
  1434. static int __init pch_spi_init(void)
  1435. {
  1436. int ret;
  1437. ret = platform_driver_register(&pch_spi_pd_driver);
  1438. if (ret)
  1439. return ret;
  1440. ret = pci_register_driver(&pch_spi_pcidev);
  1441. if (ret)
  1442. return ret;
  1443. return 0;
  1444. }
  1445. module_init(pch_spi_init);
  1446. static void __exit pch_spi_exit(void)
  1447. {
  1448. pci_unregister_driver(&pch_spi_pcidev);
  1449. platform_driver_unregister(&pch_spi_pd_driver);
  1450. }
  1451. module_exit(pch_spi_exit);
  1452. module_param(use_dma, int, 0644);
  1453. MODULE_PARM_DESC(use_dma,
  1454. "to use DMA for data transfers pass 1 else 0; default 1");
  1455. MODULE_LICENSE("GPL");
  1456. MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");