disk-io.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  70. static void btrfs_error_commit_super(struct btrfs_root *root);
  71. /*
  72. * end_io_wq structs are used to do processing in task context when an IO is
  73. * complete. This is used during reads to verify checksums, and it is used
  74. * by writes to insert metadata for new file extents after IO is complete.
  75. */
  76. struct end_io_wq {
  77. struct bio *bio;
  78. bio_end_io_t *end_io;
  79. void *private;
  80. struct btrfs_fs_info *info;
  81. int error;
  82. int metadata;
  83. struct list_head list;
  84. struct btrfs_work work;
  85. };
  86. /*
  87. * async submit bios are used to offload expensive checksumming
  88. * onto the worker threads. They checksum file and metadata bios
  89. * just before they are sent down the IO stack.
  90. */
  91. struct async_submit_bio {
  92. struct inode *inode;
  93. struct bio *bio;
  94. struct list_head list;
  95. extent_submit_bio_hook_t *submit_bio_start;
  96. extent_submit_bio_hook_t *submit_bio_done;
  97. int rw;
  98. int mirror_num;
  99. unsigned long bio_flags;
  100. /*
  101. * bio_offset is optional, can be used if the pages in the bio
  102. * can't tell us where in the file the bio should go
  103. */
  104. u64 bio_offset;
  105. struct btrfs_work work;
  106. int error;
  107. };
  108. /*
  109. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  110. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  111. * the level the eb occupies in the tree.
  112. *
  113. * Different roots are used for different purposes and may nest inside each
  114. * other and they require separate keysets. As lockdep keys should be
  115. * static, assign keysets according to the purpose of the root as indicated
  116. * by btrfs_root->objectid. This ensures that all special purpose roots
  117. * have separate keysets.
  118. *
  119. * Lock-nesting across peer nodes is always done with the immediate parent
  120. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  121. * subclass to avoid triggering lockdep warning in such cases.
  122. *
  123. * The key is set by the readpage_end_io_hook after the buffer has passed
  124. * csum validation but before the pages are unlocked. It is also set by
  125. * btrfs_init_new_buffer on freshly allocated blocks.
  126. *
  127. * We also add a check to make sure the highest level of the tree is the
  128. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  129. * needs update as well.
  130. */
  131. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  132. # if BTRFS_MAX_LEVEL != 8
  133. # error
  134. # endif
  135. static struct btrfs_lockdep_keyset {
  136. u64 id; /* root objectid */
  137. const char *name_stem; /* lock name stem */
  138. char names[BTRFS_MAX_LEVEL + 1][20];
  139. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  140. } btrfs_lockdep_keysets[] = {
  141. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  142. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  143. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  144. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  145. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  146. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  147. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  148. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  149. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  150. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  151. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id, buf->start,
  279. val, found, btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid,
  299. int atomic)
  300. {
  301. struct extent_state *cached_state = NULL;
  302. int ret;
  303. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  304. return 0;
  305. if (atomic)
  306. return -EAGAIN;
  307. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  308. 0, &cached_state);
  309. if (extent_buffer_uptodate(eb) &&
  310. btrfs_header_generation(eb) == parent_transid) {
  311. ret = 0;
  312. goto out;
  313. }
  314. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  315. "found %llu\n",
  316. eb->start, parent_transid, btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * Return 0 if the superblock checksum type matches the checksum value of that
  326. * algorithm. Pass the raw disk superblock data.
  327. */
  328. static int btrfs_check_super_csum(char *raw_disk_sb)
  329. {
  330. struct btrfs_super_block *disk_sb =
  331. (struct btrfs_super_block *)raw_disk_sb;
  332. u16 csum_type = btrfs_super_csum_type(disk_sb);
  333. int ret = 0;
  334. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  335. u32 crc = ~(u32)0;
  336. const int csum_size = sizeof(crc);
  337. char result[csum_size];
  338. /*
  339. * The super_block structure does not span the whole
  340. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  341. * is filled with zeros and is included in the checkum.
  342. */
  343. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  344. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  345. btrfs_csum_final(crc, result);
  346. if (memcmp(raw_disk_sb, result, csum_size))
  347. ret = 1;
  348. if (ret && btrfs_super_generation(disk_sb) < 10) {
  349. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  350. ret = 0;
  351. }
  352. }
  353. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  354. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  355. csum_type);
  356. ret = 1;
  357. }
  358. return ret;
  359. }
  360. /*
  361. * helper to read a given tree block, doing retries as required when
  362. * the checksums don't match and we have alternate mirrors to try.
  363. */
  364. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  365. struct extent_buffer *eb,
  366. u64 start, u64 parent_transid)
  367. {
  368. struct extent_io_tree *io_tree;
  369. int failed = 0;
  370. int ret;
  371. int num_copies = 0;
  372. int mirror_num = 0;
  373. int failed_mirror = 0;
  374. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  375. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  376. while (1) {
  377. ret = read_extent_buffer_pages(io_tree, eb, start,
  378. WAIT_COMPLETE,
  379. btree_get_extent, mirror_num);
  380. if (!ret) {
  381. if (!verify_parent_transid(io_tree, eb,
  382. parent_transid, 0))
  383. break;
  384. else
  385. ret = -EIO;
  386. }
  387. /*
  388. * This buffer's crc is fine, but its contents are corrupted, so
  389. * there is no reason to read the other copies, they won't be
  390. * any less wrong.
  391. */
  392. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  393. break;
  394. num_copies = btrfs_num_copies(root->fs_info,
  395. eb->start, eb->len);
  396. if (num_copies == 1)
  397. break;
  398. if (!failed_mirror) {
  399. failed = 1;
  400. failed_mirror = eb->read_mirror;
  401. }
  402. mirror_num++;
  403. if (mirror_num == failed_mirror)
  404. mirror_num++;
  405. if (mirror_num > num_copies)
  406. break;
  407. }
  408. if (failed && !ret && failed_mirror)
  409. repair_eb_io_failure(root, eb, failed_mirror);
  410. return ret;
  411. }
  412. /*
  413. * checksum a dirty tree block before IO. This has extra checks to make sure
  414. * we only fill in the checksum field in the first page of a multi-page block
  415. */
  416. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  417. {
  418. struct extent_io_tree *tree;
  419. u64 start = page_offset(page);
  420. u64 found_start;
  421. struct extent_buffer *eb;
  422. tree = &BTRFS_I(page->mapping->host)->io_tree;
  423. eb = (struct extent_buffer *)page->private;
  424. if (page != eb->pages[0])
  425. return 0;
  426. found_start = btrfs_header_bytenr(eb);
  427. if (found_start != start) {
  428. WARN_ON(1);
  429. return 0;
  430. }
  431. if (!PageUptodate(page)) {
  432. WARN_ON(1);
  433. return 0;
  434. }
  435. csum_tree_block(root, eb, 0);
  436. return 0;
  437. }
  438. static int check_tree_block_fsid(struct btrfs_root *root,
  439. struct extent_buffer *eb)
  440. {
  441. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  442. u8 fsid[BTRFS_UUID_SIZE];
  443. int ret = 1;
  444. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  445. while (fs_devices) {
  446. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  447. ret = 0;
  448. break;
  449. }
  450. fs_devices = fs_devices->seed;
  451. }
  452. return ret;
  453. }
  454. #define CORRUPT(reason, eb, root, slot) \
  455. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  456. "root=%llu, slot=%d\n", reason, \
  457. btrfs_header_bytenr(eb), root->objectid, slot)
  458. static noinline int check_leaf(struct btrfs_root *root,
  459. struct extent_buffer *leaf)
  460. {
  461. struct btrfs_key key;
  462. struct btrfs_key leaf_key;
  463. u32 nritems = btrfs_header_nritems(leaf);
  464. int slot;
  465. if (nritems == 0)
  466. return 0;
  467. /* Check the 0 item */
  468. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  469. BTRFS_LEAF_DATA_SIZE(root)) {
  470. CORRUPT("invalid item offset size pair", leaf, root, 0);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure each items keys are in the correct order and their
  475. * offsets make sense. We only have to loop through nritems-1 because
  476. * we check the current slot against the next slot, which verifies the
  477. * next slot's offset+size makes sense and that the current's slot
  478. * offset is correct.
  479. */
  480. for (slot = 0; slot < nritems - 1; slot++) {
  481. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  482. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  483. /* Make sure the keys are in the right order */
  484. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  485. CORRUPT("bad key order", leaf, root, slot);
  486. return -EIO;
  487. }
  488. /*
  489. * Make sure the offset and ends are right, remember that the
  490. * item data starts at the end of the leaf and grows towards the
  491. * front.
  492. */
  493. if (btrfs_item_offset_nr(leaf, slot) !=
  494. btrfs_item_end_nr(leaf, slot + 1)) {
  495. CORRUPT("slot offset bad", leaf, root, slot);
  496. return -EIO;
  497. }
  498. /*
  499. * Check to make sure that we don't point outside of the leaf,
  500. * just incase all the items are consistent to eachother, but
  501. * all point outside of the leaf.
  502. */
  503. if (btrfs_item_end_nr(leaf, slot) >
  504. BTRFS_LEAF_DATA_SIZE(root)) {
  505. CORRUPT("slot end outside of leaf", leaf, root, slot);
  506. return -EIO;
  507. }
  508. }
  509. return 0;
  510. }
  511. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  512. u64 phy_offset, struct page *page,
  513. u64 start, u64 end, int mirror)
  514. {
  515. struct extent_io_tree *tree;
  516. u64 found_start;
  517. int found_level;
  518. struct extent_buffer *eb;
  519. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  520. int ret = 0;
  521. int reads_done;
  522. if (!page->private)
  523. goto out;
  524. tree = &BTRFS_I(page->mapping->host)->io_tree;
  525. eb = (struct extent_buffer *)page->private;
  526. /* the pending IO might have been the only thing that kept this buffer
  527. * in memory. Make sure we have a ref for all this other checks
  528. */
  529. extent_buffer_get(eb);
  530. reads_done = atomic_dec_and_test(&eb->io_pages);
  531. if (!reads_done)
  532. goto err;
  533. eb->read_mirror = mirror;
  534. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. found_start = btrfs_header_bytenr(eb);
  539. if (found_start != eb->start) {
  540. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  541. "%llu %llu\n",
  542. found_start, eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. if (check_tree_block_fsid(root, eb)) {
  547. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  548. eb->start);
  549. ret = -EIO;
  550. goto err;
  551. }
  552. found_level = btrfs_header_level(eb);
  553. if (found_level >= BTRFS_MAX_LEVEL) {
  554. btrfs_info(root->fs_info, "bad tree block level %d\n",
  555. (int)btrfs_header_level(eb));
  556. ret = -EIO;
  557. goto err;
  558. }
  559. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  560. eb, found_level);
  561. ret = csum_tree_block(root, eb, 1);
  562. if (ret) {
  563. ret = -EIO;
  564. goto err;
  565. }
  566. /*
  567. * If this is a leaf block and it is corrupt, set the corrupt bit so
  568. * that we don't try and read the other copies of this block, just
  569. * return -EIO.
  570. */
  571. if (found_level == 0 && check_leaf(root, eb)) {
  572. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  573. ret = -EIO;
  574. }
  575. if (!ret)
  576. set_extent_buffer_uptodate(eb);
  577. err:
  578. if (reads_done &&
  579. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  580. btree_readahead_hook(root, eb, eb->start, ret);
  581. if (ret) {
  582. /*
  583. * our io error hook is going to dec the io pages
  584. * again, we have to make sure it has something
  585. * to decrement
  586. */
  587. atomic_inc(&eb->io_pages);
  588. clear_extent_buffer_uptodate(eb);
  589. }
  590. free_extent_buffer(eb);
  591. out:
  592. return ret;
  593. }
  594. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  595. {
  596. struct extent_buffer *eb;
  597. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  598. eb = (struct extent_buffer *)page->private;
  599. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  600. eb->read_mirror = failed_mirror;
  601. atomic_dec(&eb->io_pages);
  602. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  603. btree_readahead_hook(root, eb, eb->start, -EIO);
  604. return -EIO; /* we fixed nothing */
  605. }
  606. static void end_workqueue_bio(struct bio *bio, int err)
  607. {
  608. struct end_io_wq *end_io_wq = bio->bi_private;
  609. struct btrfs_fs_info *fs_info;
  610. fs_info = end_io_wq->info;
  611. end_io_wq->error = err;
  612. end_io_wq->work.func = end_workqueue_fn;
  613. end_io_wq->work.flags = 0;
  614. if (bio->bi_rw & REQ_WRITE) {
  615. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  616. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  617. &end_io_wq->work);
  618. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  619. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  620. &end_io_wq->work);
  621. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  622. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  623. &end_io_wq->work);
  624. else
  625. btrfs_queue_worker(&fs_info->endio_write_workers,
  626. &end_io_wq->work);
  627. } else {
  628. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else if (end_io_wq->metadata)
  632. btrfs_queue_worker(&fs_info->endio_meta_workers,
  633. &end_io_wq->work);
  634. else
  635. btrfs_queue_worker(&fs_info->endio_workers,
  636. &end_io_wq->work);
  637. }
  638. }
  639. /*
  640. * For the metadata arg you want
  641. *
  642. * 0 - if data
  643. * 1 - if normal metadta
  644. * 2 - if writing to the free space cache area
  645. * 3 - raid parity work
  646. */
  647. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  648. int metadata)
  649. {
  650. struct end_io_wq *end_io_wq;
  651. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  652. if (!end_io_wq)
  653. return -ENOMEM;
  654. end_io_wq->private = bio->bi_private;
  655. end_io_wq->end_io = bio->bi_end_io;
  656. end_io_wq->info = info;
  657. end_io_wq->error = 0;
  658. end_io_wq->bio = bio;
  659. end_io_wq->metadata = metadata;
  660. bio->bi_private = end_io_wq;
  661. bio->bi_end_io = end_workqueue_bio;
  662. return 0;
  663. }
  664. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  665. {
  666. unsigned long limit = min_t(unsigned long,
  667. info->workers.max_workers,
  668. info->fs_devices->open_devices);
  669. return 256 * limit;
  670. }
  671. static void run_one_async_start(struct btrfs_work *work)
  672. {
  673. struct async_submit_bio *async;
  674. int ret;
  675. async = container_of(work, struct async_submit_bio, work);
  676. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  677. async->mirror_num, async->bio_flags,
  678. async->bio_offset);
  679. if (ret)
  680. async->error = ret;
  681. }
  682. static void run_one_async_done(struct btrfs_work *work)
  683. {
  684. struct btrfs_fs_info *fs_info;
  685. struct async_submit_bio *async;
  686. int limit;
  687. async = container_of(work, struct async_submit_bio, work);
  688. fs_info = BTRFS_I(async->inode)->root->fs_info;
  689. limit = btrfs_async_submit_limit(fs_info);
  690. limit = limit * 2 / 3;
  691. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  692. waitqueue_active(&fs_info->async_submit_wait))
  693. wake_up(&fs_info->async_submit_wait);
  694. /* If an error occured we just want to clean up the bio and move on */
  695. if (async->error) {
  696. bio_endio(async->bio, async->error);
  697. return;
  698. }
  699. async->submit_bio_done(async->inode, async->rw, async->bio,
  700. async->mirror_num, async->bio_flags,
  701. async->bio_offset);
  702. }
  703. static void run_one_async_free(struct btrfs_work *work)
  704. {
  705. struct async_submit_bio *async;
  706. async = container_of(work, struct async_submit_bio, work);
  707. kfree(async);
  708. }
  709. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  710. int rw, struct bio *bio, int mirror_num,
  711. unsigned long bio_flags,
  712. u64 bio_offset,
  713. extent_submit_bio_hook_t *submit_bio_start,
  714. extent_submit_bio_hook_t *submit_bio_done)
  715. {
  716. struct async_submit_bio *async;
  717. async = kmalloc(sizeof(*async), GFP_NOFS);
  718. if (!async)
  719. return -ENOMEM;
  720. async->inode = inode;
  721. async->rw = rw;
  722. async->bio = bio;
  723. async->mirror_num = mirror_num;
  724. async->submit_bio_start = submit_bio_start;
  725. async->submit_bio_done = submit_bio_done;
  726. async->work.func = run_one_async_start;
  727. async->work.ordered_func = run_one_async_done;
  728. async->work.ordered_free = run_one_async_free;
  729. async->work.flags = 0;
  730. async->bio_flags = bio_flags;
  731. async->bio_offset = bio_offset;
  732. async->error = 0;
  733. atomic_inc(&fs_info->nr_async_submits);
  734. if (rw & REQ_SYNC)
  735. btrfs_set_work_high_prio(&async->work);
  736. btrfs_queue_worker(&fs_info->workers, &async->work);
  737. while (atomic_read(&fs_info->async_submit_draining) &&
  738. atomic_read(&fs_info->nr_async_submits)) {
  739. wait_event(fs_info->async_submit_wait,
  740. (atomic_read(&fs_info->nr_async_submits) == 0));
  741. }
  742. return 0;
  743. }
  744. static int btree_csum_one_bio(struct bio *bio)
  745. {
  746. struct bio_vec *bvec = bio->bi_io_vec;
  747. int bio_index = 0;
  748. struct btrfs_root *root;
  749. int ret = 0;
  750. WARN_ON(bio->bi_vcnt <= 0);
  751. while (bio_index < bio->bi_vcnt) {
  752. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  753. ret = csum_dirty_buffer(root, bvec->bv_page);
  754. if (ret)
  755. break;
  756. bio_index++;
  757. bvec++;
  758. }
  759. return ret;
  760. }
  761. static int __btree_submit_bio_start(struct inode *inode, int rw,
  762. struct bio *bio, int mirror_num,
  763. unsigned long bio_flags,
  764. u64 bio_offset)
  765. {
  766. /*
  767. * when we're called for a write, we're already in the async
  768. * submission context. Just jump into btrfs_map_bio
  769. */
  770. return btree_csum_one_bio(bio);
  771. }
  772. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  773. int mirror_num, unsigned long bio_flags,
  774. u64 bio_offset)
  775. {
  776. int ret;
  777. /*
  778. * when we're called for a write, we're already in the async
  779. * submission context. Just jump into btrfs_map_bio
  780. */
  781. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  782. if (ret)
  783. bio_endio(bio, ret);
  784. return ret;
  785. }
  786. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  787. {
  788. if (bio_flags & EXTENT_BIO_TREE_LOG)
  789. return 0;
  790. #ifdef CONFIG_X86
  791. if (cpu_has_xmm4_2)
  792. return 0;
  793. #endif
  794. return 1;
  795. }
  796. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  797. int mirror_num, unsigned long bio_flags,
  798. u64 bio_offset)
  799. {
  800. int async = check_async_write(inode, bio_flags);
  801. int ret;
  802. if (!(rw & REQ_WRITE)) {
  803. /*
  804. * called for a read, do the setup so that checksum validation
  805. * can happen in the async kernel threads
  806. */
  807. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  808. bio, 1);
  809. if (ret)
  810. goto out_w_error;
  811. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  812. mirror_num, 0);
  813. } else if (!async) {
  814. ret = btree_csum_one_bio(bio);
  815. if (ret)
  816. goto out_w_error;
  817. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  818. mirror_num, 0);
  819. } else {
  820. /*
  821. * kthread helpers are used to submit writes so that
  822. * checksumming can happen in parallel across all CPUs
  823. */
  824. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  825. inode, rw, bio, mirror_num, 0,
  826. bio_offset,
  827. __btree_submit_bio_start,
  828. __btree_submit_bio_done);
  829. }
  830. if (ret) {
  831. out_w_error:
  832. bio_endio(bio, ret);
  833. }
  834. return ret;
  835. }
  836. #ifdef CONFIG_MIGRATION
  837. static int btree_migratepage(struct address_space *mapping,
  838. struct page *newpage, struct page *page,
  839. enum migrate_mode mode)
  840. {
  841. /*
  842. * we can't safely write a btree page from here,
  843. * we haven't done the locking hook
  844. */
  845. if (PageDirty(page))
  846. return -EAGAIN;
  847. /*
  848. * Buffers may be managed in a filesystem specific way.
  849. * We must have no buffers or drop them.
  850. */
  851. if (page_has_private(page) &&
  852. !try_to_release_page(page, GFP_KERNEL))
  853. return -EAGAIN;
  854. return migrate_page(mapping, newpage, page, mode);
  855. }
  856. #endif
  857. static int btree_writepages(struct address_space *mapping,
  858. struct writeback_control *wbc)
  859. {
  860. struct extent_io_tree *tree;
  861. struct btrfs_fs_info *fs_info;
  862. int ret;
  863. tree = &BTRFS_I(mapping->host)->io_tree;
  864. if (wbc->sync_mode == WB_SYNC_NONE) {
  865. if (wbc->for_kupdate)
  866. return 0;
  867. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  868. /* this is a bit racy, but that's ok */
  869. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  870. BTRFS_DIRTY_METADATA_THRESH);
  871. if (ret < 0)
  872. return 0;
  873. }
  874. return btree_write_cache_pages(mapping, wbc);
  875. }
  876. static int btree_readpage(struct file *file, struct page *page)
  877. {
  878. struct extent_io_tree *tree;
  879. tree = &BTRFS_I(page->mapping->host)->io_tree;
  880. return extent_read_full_page(tree, page, btree_get_extent, 0);
  881. }
  882. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  883. {
  884. if (PageWriteback(page) || PageDirty(page))
  885. return 0;
  886. return try_release_extent_buffer(page);
  887. }
  888. static void btree_invalidatepage(struct page *page, unsigned int offset,
  889. unsigned int length)
  890. {
  891. struct extent_io_tree *tree;
  892. tree = &BTRFS_I(page->mapping->host)->io_tree;
  893. extent_invalidatepage(tree, page, offset);
  894. btree_releasepage(page, GFP_NOFS);
  895. if (PagePrivate(page)) {
  896. printk(KERN_WARNING "btrfs warning page private not zero "
  897. "on page %llu\n", (unsigned long long)page_offset(page));
  898. ClearPagePrivate(page);
  899. set_page_private(page, 0);
  900. page_cache_release(page);
  901. }
  902. }
  903. static int btree_set_page_dirty(struct page *page)
  904. {
  905. #ifdef DEBUG
  906. struct extent_buffer *eb;
  907. BUG_ON(!PagePrivate(page));
  908. eb = (struct extent_buffer *)page->private;
  909. BUG_ON(!eb);
  910. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  911. BUG_ON(!atomic_read(&eb->refs));
  912. btrfs_assert_tree_locked(eb);
  913. #endif
  914. return __set_page_dirty_nobuffers(page);
  915. }
  916. static const struct address_space_operations btree_aops = {
  917. .readpage = btree_readpage,
  918. .writepages = btree_writepages,
  919. .releasepage = btree_releasepage,
  920. .invalidatepage = btree_invalidatepage,
  921. #ifdef CONFIG_MIGRATION
  922. .migratepage = btree_migratepage,
  923. #endif
  924. .set_page_dirty = btree_set_page_dirty,
  925. };
  926. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  927. u64 parent_transid)
  928. {
  929. struct extent_buffer *buf = NULL;
  930. struct inode *btree_inode = root->fs_info->btree_inode;
  931. int ret = 0;
  932. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  933. if (!buf)
  934. return 0;
  935. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  936. buf, 0, WAIT_NONE, btree_get_extent, 0);
  937. free_extent_buffer(buf);
  938. return ret;
  939. }
  940. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  941. int mirror_num, struct extent_buffer **eb)
  942. {
  943. struct extent_buffer *buf = NULL;
  944. struct inode *btree_inode = root->fs_info->btree_inode;
  945. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  946. int ret;
  947. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  948. if (!buf)
  949. return 0;
  950. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  951. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  952. btree_get_extent, mirror_num);
  953. if (ret) {
  954. free_extent_buffer(buf);
  955. return ret;
  956. }
  957. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  958. free_extent_buffer(buf);
  959. return -EIO;
  960. } else if (extent_buffer_uptodate(buf)) {
  961. *eb = buf;
  962. } else {
  963. free_extent_buffer(buf);
  964. }
  965. return 0;
  966. }
  967. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  968. u64 bytenr, u32 blocksize)
  969. {
  970. struct inode *btree_inode = root->fs_info->btree_inode;
  971. struct extent_buffer *eb;
  972. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
  973. return eb;
  974. }
  975. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  976. u64 bytenr, u32 blocksize)
  977. {
  978. struct inode *btree_inode = root->fs_info->btree_inode;
  979. struct extent_buffer *eb;
  980. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  981. bytenr, blocksize);
  982. return eb;
  983. }
  984. int btrfs_write_tree_block(struct extent_buffer *buf)
  985. {
  986. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  987. buf->start + buf->len - 1);
  988. }
  989. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawait_range(buf->pages[0]->mapping,
  992. buf->start, buf->start + buf->len - 1);
  993. }
  994. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  995. u32 blocksize, u64 parent_transid)
  996. {
  997. struct extent_buffer *buf = NULL;
  998. int ret;
  999. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1000. if (!buf)
  1001. return NULL;
  1002. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1003. if (ret) {
  1004. free_extent_buffer(buf);
  1005. return NULL;
  1006. }
  1007. return buf;
  1008. }
  1009. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1010. struct extent_buffer *buf)
  1011. {
  1012. struct btrfs_fs_info *fs_info = root->fs_info;
  1013. if (btrfs_header_generation(buf) ==
  1014. fs_info->running_transaction->transid) {
  1015. btrfs_assert_tree_locked(buf);
  1016. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1017. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1018. -buf->len,
  1019. fs_info->dirty_metadata_batch);
  1020. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1021. btrfs_set_lock_blocking(buf);
  1022. clear_extent_buffer_dirty(buf);
  1023. }
  1024. }
  1025. }
  1026. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1027. u32 stripesize, struct btrfs_root *root,
  1028. struct btrfs_fs_info *fs_info,
  1029. u64 objectid)
  1030. {
  1031. root->node = NULL;
  1032. root->commit_root = NULL;
  1033. root->sectorsize = sectorsize;
  1034. root->nodesize = nodesize;
  1035. root->leafsize = leafsize;
  1036. root->stripesize = stripesize;
  1037. root->ref_cows = 0;
  1038. root->track_dirty = 0;
  1039. root->in_radix = 0;
  1040. root->orphan_item_inserted = 0;
  1041. root->orphan_cleanup_state = 0;
  1042. root->objectid = objectid;
  1043. root->last_trans = 0;
  1044. root->highest_objectid = 0;
  1045. root->nr_delalloc_inodes = 0;
  1046. root->nr_ordered_extents = 0;
  1047. root->name = NULL;
  1048. root->inode_tree = RB_ROOT;
  1049. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1050. root->block_rsv = NULL;
  1051. root->orphan_block_rsv = NULL;
  1052. INIT_LIST_HEAD(&root->dirty_list);
  1053. INIT_LIST_HEAD(&root->root_list);
  1054. INIT_LIST_HEAD(&root->delalloc_inodes);
  1055. INIT_LIST_HEAD(&root->delalloc_root);
  1056. INIT_LIST_HEAD(&root->ordered_extents);
  1057. INIT_LIST_HEAD(&root->ordered_root);
  1058. INIT_LIST_HEAD(&root->logged_list[0]);
  1059. INIT_LIST_HEAD(&root->logged_list[1]);
  1060. spin_lock_init(&root->orphan_lock);
  1061. spin_lock_init(&root->inode_lock);
  1062. spin_lock_init(&root->delalloc_lock);
  1063. spin_lock_init(&root->ordered_extent_lock);
  1064. spin_lock_init(&root->accounting_lock);
  1065. spin_lock_init(&root->log_extents_lock[0]);
  1066. spin_lock_init(&root->log_extents_lock[1]);
  1067. mutex_init(&root->objectid_mutex);
  1068. mutex_init(&root->log_mutex);
  1069. init_waitqueue_head(&root->log_writer_wait);
  1070. init_waitqueue_head(&root->log_commit_wait[0]);
  1071. init_waitqueue_head(&root->log_commit_wait[1]);
  1072. atomic_set(&root->log_commit[0], 0);
  1073. atomic_set(&root->log_commit[1], 0);
  1074. atomic_set(&root->log_writers, 0);
  1075. atomic_set(&root->log_batch, 0);
  1076. atomic_set(&root->orphan_inodes, 0);
  1077. atomic_set(&root->refs, 1);
  1078. root->log_transid = 0;
  1079. root->last_log_commit = 0;
  1080. if (fs_info)
  1081. extent_io_tree_init(&root->dirty_log_pages,
  1082. fs_info->btree_inode->i_mapping);
  1083. memset(&root->root_key, 0, sizeof(root->root_key));
  1084. memset(&root->root_item, 0, sizeof(root->root_item));
  1085. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1086. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1087. if (fs_info)
  1088. root->defrag_trans_start = fs_info->generation;
  1089. else
  1090. root->defrag_trans_start = 0;
  1091. init_completion(&root->kobj_unregister);
  1092. root->defrag_running = 0;
  1093. root->root_key.objectid = objectid;
  1094. root->anon_dev = 0;
  1095. spin_lock_init(&root->root_item_lock);
  1096. }
  1097. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1098. {
  1099. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1100. if (root)
  1101. root->fs_info = fs_info;
  1102. return root;
  1103. }
  1104. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1105. /* Should only be used by the testing infrastructure */
  1106. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1107. {
  1108. struct btrfs_root *root;
  1109. root = btrfs_alloc_root(NULL);
  1110. if (!root)
  1111. return ERR_PTR(-ENOMEM);
  1112. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1113. root->dummy_root = 1;
  1114. return root;
  1115. }
  1116. #endif
  1117. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1118. struct btrfs_fs_info *fs_info,
  1119. u64 objectid)
  1120. {
  1121. struct extent_buffer *leaf;
  1122. struct btrfs_root *tree_root = fs_info->tree_root;
  1123. struct btrfs_root *root;
  1124. struct btrfs_key key;
  1125. int ret = 0;
  1126. u64 bytenr;
  1127. uuid_le uuid;
  1128. root = btrfs_alloc_root(fs_info);
  1129. if (!root)
  1130. return ERR_PTR(-ENOMEM);
  1131. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1132. tree_root->sectorsize, tree_root->stripesize,
  1133. root, fs_info, objectid);
  1134. root->root_key.objectid = objectid;
  1135. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1136. root->root_key.offset = 0;
  1137. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1138. 0, objectid, NULL, 0, 0, 0);
  1139. if (IS_ERR(leaf)) {
  1140. ret = PTR_ERR(leaf);
  1141. leaf = NULL;
  1142. goto fail;
  1143. }
  1144. bytenr = leaf->start;
  1145. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1146. btrfs_set_header_bytenr(leaf, leaf->start);
  1147. btrfs_set_header_generation(leaf, trans->transid);
  1148. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1149. btrfs_set_header_owner(leaf, objectid);
  1150. root->node = leaf;
  1151. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1152. BTRFS_FSID_SIZE);
  1153. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1154. btrfs_header_chunk_tree_uuid(leaf),
  1155. BTRFS_UUID_SIZE);
  1156. btrfs_mark_buffer_dirty(leaf);
  1157. root->commit_root = btrfs_root_node(root);
  1158. root->track_dirty = 1;
  1159. root->root_item.flags = 0;
  1160. root->root_item.byte_limit = 0;
  1161. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1162. btrfs_set_root_generation(&root->root_item, trans->transid);
  1163. btrfs_set_root_level(&root->root_item, 0);
  1164. btrfs_set_root_refs(&root->root_item, 1);
  1165. btrfs_set_root_used(&root->root_item, leaf->len);
  1166. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1167. btrfs_set_root_dirid(&root->root_item, 0);
  1168. uuid_le_gen(&uuid);
  1169. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1170. root->root_item.drop_level = 0;
  1171. key.objectid = objectid;
  1172. key.type = BTRFS_ROOT_ITEM_KEY;
  1173. key.offset = 0;
  1174. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1175. if (ret)
  1176. goto fail;
  1177. btrfs_tree_unlock(leaf);
  1178. return root;
  1179. fail:
  1180. if (leaf) {
  1181. btrfs_tree_unlock(leaf);
  1182. free_extent_buffer(leaf);
  1183. }
  1184. kfree(root);
  1185. return ERR_PTR(ret);
  1186. }
  1187. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1188. struct btrfs_fs_info *fs_info)
  1189. {
  1190. struct btrfs_root *root;
  1191. struct btrfs_root *tree_root = fs_info->tree_root;
  1192. struct extent_buffer *leaf;
  1193. root = btrfs_alloc_root(fs_info);
  1194. if (!root)
  1195. return ERR_PTR(-ENOMEM);
  1196. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1197. tree_root->sectorsize, tree_root->stripesize,
  1198. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1199. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1200. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1201. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1202. /*
  1203. * log trees do not get reference counted because they go away
  1204. * before a real commit is actually done. They do store pointers
  1205. * to file data extents, and those reference counts still get
  1206. * updated (along with back refs to the log tree).
  1207. */
  1208. root->ref_cows = 0;
  1209. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1210. BTRFS_TREE_LOG_OBJECTID, NULL,
  1211. 0, 0, 0);
  1212. if (IS_ERR(leaf)) {
  1213. kfree(root);
  1214. return ERR_CAST(leaf);
  1215. }
  1216. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1217. btrfs_set_header_bytenr(leaf, leaf->start);
  1218. btrfs_set_header_generation(leaf, trans->transid);
  1219. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1220. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1221. root->node = leaf;
  1222. write_extent_buffer(root->node, root->fs_info->fsid,
  1223. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1224. btrfs_mark_buffer_dirty(root->node);
  1225. btrfs_tree_unlock(root->node);
  1226. return root;
  1227. }
  1228. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1229. struct btrfs_fs_info *fs_info)
  1230. {
  1231. struct btrfs_root *log_root;
  1232. log_root = alloc_log_tree(trans, fs_info);
  1233. if (IS_ERR(log_root))
  1234. return PTR_ERR(log_root);
  1235. WARN_ON(fs_info->log_root_tree);
  1236. fs_info->log_root_tree = log_root;
  1237. return 0;
  1238. }
  1239. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1240. struct btrfs_root *root)
  1241. {
  1242. struct btrfs_root *log_root;
  1243. struct btrfs_inode_item *inode_item;
  1244. log_root = alloc_log_tree(trans, root->fs_info);
  1245. if (IS_ERR(log_root))
  1246. return PTR_ERR(log_root);
  1247. log_root->last_trans = trans->transid;
  1248. log_root->root_key.offset = root->root_key.objectid;
  1249. inode_item = &log_root->root_item.inode;
  1250. btrfs_set_stack_inode_generation(inode_item, 1);
  1251. btrfs_set_stack_inode_size(inode_item, 3);
  1252. btrfs_set_stack_inode_nlink(inode_item, 1);
  1253. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1254. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1255. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1256. WARN_ON(root->log_root);
  1257. root->log_root = log_root;
  1258. root->log_transid = 0;
  1259. root->last_log_commit = 0;
  1260. return 0;
  1261. }
  1262. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1263. struct btrfs_key *key)
  1264. {
  1265. struct btrfs_root *root;
  1266. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1267. struct btrfs_path *path;
  1268. u64 generation;
  1269. u32 blocksize;
  1270. int ret;
  1271. path = btrfs_alloc_path();
  1272. if (!path)
  1273. return ERR_PTR(-ENOMEM);
  1274. root = btrfs_alloc_root(fs_info);
  1275. if (!root) {
  1276. ret = -ENOMEM;
  1277. goto alloc_fail;
  1278. }
  1279. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1280. tree_root->sectorsize, tree_root->stripesize,
  1281. root, fs_info, key->objectid);
  1282. ret = btrfs_find_root(tree_root, key, path,
  1283. &root->root_item, &root->root_key);
  1284. if (ret) {
  1285. if (ret > 0)
  1286. ret = -ENOENT;
  1287. goto find_fail;
  1288. }
  1289. generation = btrfs_root_generation(&root->root_item);
  1290. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1291. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1292. blocksize, generation);
  1293. if (!root->node) {
  1294. ret = -ENOMEM;
  1295. goto find_fail;
  1296. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1297. ret = -EIO;
  1298. goto read_fail;
  1299. }
  1300. root->commit_root = btrfs_root_node(root);
  1301. out:
  1302. btrfs_free_path(path);
  1303. return root;
  1304. read_fail:
  1305. free_extent_buffer(root->node);
  1306. find_fail:
  1307. kfree(root);
  1308. alloc_fail:
  1309. root = ERR_PTR(ret);
  1310. goto out;
  1311. }
  1312. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1313. struct btrfs_key *location)
  1314. {
  1315. struct btrfs_root *root;
  1316. root = btrfs_read_tree_root(tree_root, location);
  1317. if (IS_ERR(root))
  1318. return root;
  1319. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1320. root->ref_cows = 1;
  1321. btrfs_check_and_init_root_item(&root->root_item);
  1322. }
  1323. return root;
  1324. }
  1325. int btrfs_init_fs_root(struct btrfs_root *root)
  1326. {
  1327. int ret;
  1328. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1329. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1330. GFP_NOFS);
  1331. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1332. ret = -ENOMEM;
  1333. goto fail;
  1334. }
  1335. btrfs_init_free_ino_ctl(root);
  1336. mutex_init(&root->fs_commit_mutex);
  1337. spin_lock_init(&root->cache_lock);
  1338. init_waitqueue_head(&root->cache_wait);
  1339. ret = get_anon_bdev(&root->anon_dev);
  1340. if (ret)
  1341. goto fail;
  1342. return 0;
  1343. fail:
  1344. kfree(root->free_ino_ctl);
  1345. kfree(root->free_ino_pinned);
  1346. return ret;
  1347. }
  1348. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1349. u64 root_id)
  1350. {
  1351. struct btrfs_root *root;
  1352. spin_lock(&fs_info->fs_roots_radix_lock);
  1353. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1354. (unsigned long)root_id);
  1355. spin_unlock(&fs_info->fs_roots_radix_lock);
  1356. return root;
  1357. }
  1358. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1359. struct btrfs_root *root)
  1360. {
  1361. int ret;
  1362. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1363. if (ret)
  1364. return ret;
  1365. spin_lock(&fs_info->fs_roots_radix_lock);
  1366. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1367. (unsigned long)root->root_key.objectid,
  1368. root);
  1369. if (ret == 0)
  1370. root->in_radix = 1;
  1371. spin_unlock(&fs_info->fs_roots_radix_lock);
  1372. radix_tree_preload_end();
  1373. return ret;
  1374. }
  1375. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1376. struct btrfs_key *location,
  1377. bool check_ref)
  1378. {
  1379. struct btrfs_root *root;
  1380. int ret;
  1381. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1382. return fs_info->tree_root;
  1383. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1384. return fs_info->extent_root;
  1385. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1386. return fs_info->chunk_root;
  1387. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1388. return fs_info->dev_root;
  1389. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1390. return fs_info->csum_root;
  1391. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1392. return fs_info->quota_root ? fs_info->quota_root :
  1393. ERR_PTR(-ENOENT);
  1394. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1395. return fs_info->uuid_root ? fs_info->uuid_root :
  1396. ERR_PTR(-ENOENT);
  1397. again:
  1398. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1399. if (root) {
  1400. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1401. return ERR_PTR(-ENOENT);
  1402. return root;
  1403. }
  1404. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1405. if (IS_ERR(root))
  1406. return root;
  1407. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1408. ret = -ENOENT;
  1409. goto fail;
  1410. }
  1411. ret = btrfs_init_fs_root(root);
  1412. if (ret)
  1413. goto fail;
  1414. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1415. if (ret < 0)
  1416. goto fail;
  1417. if (ret == 0)
  1418. root->orphan_item_inserted = 1;
  1419. ret = btrfs_insert_fs_root(fs_info, root);
  1420. if (ret) {
  1421. if (ret == -EEXIST) {
  1422. free_fs_root(root);
  1423. goto again;
  1424. }
  1425. goto fail;
  1426. }
  1427. return root;
  1428. fail:
  1429. free_fs_root(root);
  1430. return ERR_PTR(ret);
  1431. }
  1432. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1433. {
  1434. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1435. int ret = 0;
  1436. struct btrfs_device *device;
  1437. struct backing_dev_info *bdi;
  1438. rcu_read_lock();
  1439. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1440. if (!device->bdev)
  1441. continue;
  1442. bdi = blk_get_backing_dev_info(device->bdev);
  1443. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1444. ret = 1;
  1445. break;
  1446. }
  1447. }
  1448. rcu_read_unlock();
  1449. return ret;
  1450. }
  1451. /*
  1452. * If this fails, caller must call bdi_destroy() to get rid of the
  1453. * bdi again.
  1454. */
  1455. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1456. {
  1457. int err;
  1458. bdi->capabilities = BDI_CAP_MAP_COPY;
  1459. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1460. if (err)
  1461. return err;
  1462. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1463. bdi->congested_fn = btrfs_congested_fn;
  1464. bdi->congested_data = info;
  1465. return 0;
  1466. }
  1467. /*
  1468. * called by the kthread helper functions to finally call the bio end_io
  1469. * functions. This is where read checksum verification actually happens
  1470. */
  1471. static void end_workqueue_fn(struct btrfs_work *work)
  1472. {
  1473. struct bio *bio;
  1474. struct end_io_wq *end_io_wq;
  1475. struct btrfs_fs_info *fs_info;
  1476. int error;
  1477. end_io_wq = container_of(work, struct end_io_wq, work);
  1478. bio = end_io_wq->bio;
  1479. fs_info = end_io_wq->info;
  1480. error = end_io_wq->error;
  1481. bio->bi_private = end_io_wq->private;
  1482. bio->bi_end_io = end_io_wq->end_io;
  1483. kfree(end_io_wq);
  1484. bio_endio(bio, error);
  1485. }
  1486. static int cleaner_kthread(void *arg)
  1487. {
  1488. struct btrfs_root *root = arg;
  1489. int again;
  1490. do {
  1491. again = 0;
  1492. /* Make the cleaner go to sleep early. */
  1493. if (btrfs_need_cleaner_sleep(root))
  1494. goto sleep;
  1495. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1496. goto sleep;
  1497. /*
  1498. * Avoid the problem that we change the status of the fs
  1499. * during the above check and trylock.
  1500. */
  1501. if (btrfs_need_cleaner_sleep(root)) {
  1502. mutex_unlock(&root->fs_info->cleaner_mutex);
  1503. goto sleep;
  1504. }
  1505. btrfs_run_delayed_iputs(root);
  1506. again = btrfs_clean_one_deleted_snapshot(root);
  1507. mutex_unlock(&root->fs_info->cleaner_mutex);
  1508. /*
  1509. * The defragger has dealt with the R/O remount and umount,
  1510. * needn't do anything special here.
  1511. */
  1512. btrfs_run_defrag_inodes(root->fs_info);
  1513. sleep:
  1514. if (!try_to_freeze() && !again) {
  1515. set_current_state(TASK_INTERRUPTIBLE);
  1516. if (!kthread_should_stop())
  1517. schedule();
  1518. __set_current_state(TASK_RUNNING);
  1519. }
  1520. } while (!kthread_should_stop());
  1521. return 0;
  1522. }
  1523. static int transaction_kthread(void *arg)
  1524. {
  1525. struct btrfs_root *root = arg;
  1526. struct btrfs_trans_handle *trans;
  1527. struct btrfs_transaction *cur;
  1528. u64 transid;
  1529. unsigned long now;
  1530. unsigned long delay;
  1531. bool cannot_commit;
  1532. do {
  1533. cannot_commit = false;
  1534. delay = HZ * root->fs_info->commit_interval;
  1535. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1536. spin_lock(&root->fs_info->trans_lock);
  1537. cur = root->fs_info->running_transaction;
  1538. if (!cur) {
  1539. spin_unlock(&root->fs_info->trans_lock);
  1540. goto sleep;
  1541. }
  1542. now = get_seconds();
  1543. if (cur->state < TRANS_STATE_BLOCKED &&
  1544. (now < cur->start_time ||
  1545. now - cur->start_time < root->fs_info->commit_interval)) {
  1546. spin_unlock(&root->fs_info->trans_lock);
  1547. delay = HZ * 5;
  1548. goto sleep;
  1549. }
  1550. transid = cur->transid;
  1551. spin_unlock(&root->fs_info->trans_lock);
  1552. /* If the file system is aborted, this will always fail. */
  1553. trans = btrfs_attach_transaction(root);
  1554. if (IS_ERR(trans)) {
  1555. if (PTR_ERR(trans) != -ENOENT)
  1556. cannot_commit = true;
  1557. goto sleep;
  1558. }
  1559. if (transid == trans->transid) {
  1560. btrfs_commit_transaction(trans, root);
  1561. } else {
  1562. btrfs_end_transaction(trans, root);
  1563. }
  1564. sleep:
  1565. wake_up_process(root->fs_info->cleaner_kthread);
  1566. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1567. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1568. &root->fs_info->fs_state)))
  1569. btrfs_cleanup_transaction(root);
  1570. if (!try_to_freeze()) {
  1571. set_current_state(TASK_INTERRUPTIBLE);
  1572. if (!kthread_should_stop() &&
  1573. (!btrfs_transaction_blocked(root->fs_info) ||
  1574. cannot_commit))
  1575. schedule_timeout(delay);
  1576. __set_current_state(TASK_RUNNING);
  1577. }
  1578. } while (!kthread_should_stop());
  1579. return 0;
  1580. }
  1581. /*
  1582. * this will find the highest generation in the array of
  1583. * root backups. The index of the highest array is returned,
  1584. * or -1 if we can't find anything.
  1585. *
  1586. * We check to make sure the array is valid by comparing the
  1587. * generation of the latest root in the array with the generation
  1588. * in the super block. If they don't match we pitch it.
  1589. */
  1590. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1591. {
  1592. u64 cur;
  1593. int newest_index = -1;
  1594. struct btrfs_root_backup *root_backup;
  1595. int i;
  1596. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1597. root_backup = info->super_copy->super_roots + i;
  1598. cur = btrfs_backup_tree_root_gen(root_backup);
  1599. if (cur == newest_gen)
  1600. newest_index = i;
  1601. }
  1602. /* check to see if we actually wrapped around */
  1603. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1604. root_backup = info->super_copy->super_roots;
  1605. cur = btrfs_backup_tree_root_gen(root_backup);
  1606. if (cur == newest_gen)
  1607. newest_index = 0;
  1608. }
  1609. return newest_index;
  1610. }
  1611. /*
  1612. * find the oldest backup so we know where to store new entries
  1613. * in the backup array. This will set the backup_root_index
  1614. * field in the fs_info struct
  1615. */
  1616. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1617. u64 newest_gen)
  1618. {
  1619. int newest_index = -1;
  1620. newest_index = find_newest_super_backup(info, newest_gen);
  1621. /* if there was garbage in there, just move along */
  1622. if (newest_index == -1) {
  1623. info->backup_root_index = 0;
  1624. } else {
  1625. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1626. }
  1627. }
  1628. /*
  1629. * copy all the root pointers into the super backup array.
  1630. * this will bump the backup pointer by one when it is
  1631. * done
  1632. */
  1633. static void backup_super_roots(struct btrfs_fs_info *info)
  1634. {
  1635. int next_backup;
  1636. struct btrfs_root_backup *root_backup;
  1637. int last_backup;
  1638. next_backup = info->backup_root_index;
  1639. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1640. BTRFS_NUM_BACKUP_ROOTS;
  1641. /*
  1642. * just overwrite the last backup if we're at the same generation
  1643. * this happens only at umount
  1644. */
  1645. root_backup = info->super_for_commit->super_roots + last_backup;
  1646. if (btrfs_backup_tree_root_gen(root_backup) ==
  1647. btrfs_header_generation(info->tree_root->node))
  1648. next_backup = last_backup;
  1649. root_backup = info->super_for_commit->super_roots + next_backup;
  1650. /*
  1651. * make sure all of our padding and empty slots get zero filled
  1652. * regardless of which ones we use today
  1653. */
  1654. memset(root_backup, 0, sizeof(*root_backup));
  1655. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1656. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1657. btrfs_set_backup_tree_root_gen(root_backup,
  1658. btrfs_header_generation(info->tree_root->node));
  1659. btrfs_set_backup_tree_root_level(root_backup,
  1660. btrfs_header_level(info->tree_root->node));
  1661. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1662. btrfs_set_backup_chunk_root_gen(root_backup,
  1663. btrfs_header_generation(info->chunk_root->node));
  1664. btrfs_set_backup_chunk_root_level(root_backup,
  1665. btrfs_header_level(info->chunk_root->node));
  1666. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1667. btrfs_set_backup_extent_root_gen(root_backup,
  1668. btrfs_header_generation(info->extent_root->node));
  1669. btrfs_set_backup_extent_root_level(root_backup,
  1670. btrfs_header_level(info->extent_root->node));
  1671. /*
  1672. * we might commit during log recovery, which happens before we set
  1673. * the fs_root. Make sure it is valid before we fill it in.
  1674. */
  1675. if (info->fs_root && info->fs_root->node) {
  1676. btrfs_set_backup_fs_root(root_backup,
  1677. info->fs_root->node->start);
  1678. btrfs_set_backup_fs_root_gen(root_backup,
  1679. btrfs_header_generation(info->fs_root->node));
  1680. btrfs_set_backup_fs_root_level(root_backup,
  1681. btrfs_header_level(info->fs_root->node));
  1682. }
  1683. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1684. btrfs_set_backup_dev_root_gen(root_backup,
  1685. btrfs_header_generation(info->dev_root->node));
  1686. btrfs_set_backup_dev_root_level(root_backup,
  1687. btrfs_header_level(info->dev_root->node));
  1688. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1689. btrfs_set_backup_csum_root_gen(root_backup,
  1690. btrfs_header_generation(info->csum_root->node));
  1691. btrfs_set_backup_csum_root_level(root_backup,
  1692. btrfs_header_level(info->csum_root->node));
  1693. btrfs_set_backup_total_bytes(root_backup,
  1694. btrfs_super_total_bytes(info->super_copy));
  1695. btrfs_set_backup_bytes_used(root_backup,
  1696. btrfs_super_bytes_used(info->super_copy));
  1697. btrfs_set_backup_num_devices(root_backup,
  1698. btrfs_super_num_devices(info->super_copy));
  1699. /*
  1700. * if we don't copy this out to the super_copy, it won't get remembered
  1701. * for the next commit
  1702. */
  1703. memcpy(&info->super_copy->super_roots,
  1704. &info->super_for_commit->super_roots,
  1705. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1706. }
  1707. /*
  1708. * this copies info out of the root backup array and back into
  1709. * the in-memory super block. It is meant to help iterate through
  1710. * the array, so you send it the number of backups you've already
  1711. * tried and the last backup index you used.
  1712. *
  1713. * this returns -1 when it has tried all the backups
  1714. */
  1715. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1716. struct btrfs_super_block *super,
  1717. int *num_backups_tried, int *backup_index)
  1718. {
  1719. struct btrfs_root_backup *root_backup;
  1720. int newest = *backup_index;
  1721. if (*num_backups_tried == 0) {
  1722. u64 gen = btrfs_super_generation(super);
  1723. newest = find_newest_super_backup(info, gen);
  1724. if (newest == -1)
  1725. return -1;
  1726. *backup_index = newest;
  1727. *num_backups_tried = 1;
  1728. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1729. /* we've tried all the backups, all done */
  1730. return -1;
  1731. } else {
  1732. /* jump to the next oldest backup */
  1733. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1734. BTRFS_NUM_BACKUP_ROOTS;
  1735. *backup_index = newest;
  1736. *num_backups_tried += 1;
  1737. }
  1738. root_backup = super->super_roots + newest;
  1739. btrfs_set_super_generation(super,
  1740. btrfs_backup_tree_root_gen(root_backup));
  1741. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1742. btrfs_set_super_root_level(super,
  1743. btrfs_backup_tree_root_level(root_backup));
  1744. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1745. /*
  1746. * fixme: the total bytes and num_devices need to match or we should
  1747. * need a fsck
  1748. */
  1749. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1750. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1751. return 0;
  1752. }
  1753. /* helper to cleanup workers */
  1754. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1755. {
  1756. btrfs_stop_workers(&fs_info->generic_worker);
  1757. btrfs_stop_workers(&fs_info->fixup_workers);
  1758. btrfs_stop_workers(&fs_info->delalloc_workers);
  1759. btrfs_stop_workers(&fs_info->workers);
  1760. btrfs_stop_workers(&fs_info->endio_workers);
  1761. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1762. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1763. btrfs_stop_workers(&fs_info->rmw_workers);
  1764. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1765. btrfs_stop_workers(&fs_info->endio_write_workers);
  1766. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1767. btrfs_stop_workers(&fs_info->submit_workers);
  1768. btrfs_stop_workers(&fs_info->delayed_workers);
  1769. btrfs_stop_workers(&fs_info->caching_workers);
  1770. btrfs_stop_workers(&fs_info->readahead_workers);
  1771. btrfs_stop_workers(&fs_info->flush_workers);
  1772. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1773. }
  1774. /* helper to cleanup tree roots */
  1775. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1776. {
  1777. free_extent_buffer(info->tree_root->node);
  1778. free_extent_buffer(info->tree_root->commit_root);
  1779. info->tree_root->node = NULL;
  1780. info->tree_root->commit_root = NULL;
  1781. if (info->dev_root) {
  1782. free_extent_buffer(info->dev_root->node);
  1783. free_extent_buffer(info->dev_root->commit_root);
  1784. info->dev_root->node = NULL;
  1785. info->dev_root->commit_root = NULL;
  1786. }
  1787. if (info->extent_root) {
  1788. free_extent_buffer(info->extent_root->node);
  1789. free_extent_buffer(info->extent_root->commit_root);
  1790. info->extent_root->node = NULL;
  1791. info->extent_root->commit_root = NULL;
  1792. }
  1793. if (info->csum_root) {
  1794. free_extent_buffer(info->csum_root->node);
  1795. free_extent_buffer(info->csum_root->commit_root);
  1796. info->csum_root->node = NULL;
  1797. info->csum_root->commit_root = NULL;
  1798. }
  1799. if (info->quota_root) {
  1800. free_extent_buffer(info->quota_root->node);
  1801. free_extent_buffer(info->quota_root->commit_root);
  1802. info->quota_root->node = NULL;
  1803. info->quota_root->commit_root = NULL;
  1804. }
  1805. if (info->uuid_root) {
  1806. free_extent_buffer(info->uuid_root->node);
  1807. free_extent_buffer(info->uuid_root->commit_root);
  1808. info->uuid_root->node = NULL;
  1809. info->uuid_root->commit_root = NULL;
  1810. }
  1811. if (chunk_root) {
  1812. free_extent_buffer(info->chunk_root->node);
  1813. free_extent_buffer(info->chunk_root->commit_root);
  1814. info->chunk_root->node = NULL;
  1815. info->chunk_root->commit_root = NULL;
  1816. }
  1817. }
  1818. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1819. {
  1820. int ret;
  1821. struct btrfs_root *gang[8];
  1822. int i;
  1823. while (!list_empty(&fs_info->dead_roots)) {
  1824. gang[0] = list_entry(fs_info->dead_roots.next,
  1825. struct btrfs_root, root_list);
  1826. list_del(&gang[0]->root_list);
  1827. if (gang[0]->in_radix) {
  1828. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1829. } else {
  1830. free_extent_buffer(gang[0]->node);
  1831. free_extent_buffer(gang[0]->commit_root);
  1832. btrfs_put_fs_root(gang[0]);
  1833. }
  1834. }
  1835. while (1) {
  1836. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1837. (void **)gang, 0,
  1838. ARRAY_SIZE(gang));
  1839. if (!ret)
  1840. break;
  1841. for (i = 0; i < ret; i++)
  1842. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1843. }
  1844. }
  1845. int open_ctree(struct super_block *sb,
  1846. struct btrfs_fs_devices *fs_devices,
  1847. char *options)
  1848. {
  1849. u32 sectorsize;
  1850. u32 nodesize;
  1851. u32 leafsize;
  1852. u32 blocksize;
  1853. u32 stripesize;
  1854. u64 generation;
  1855. u64 features;
  1856. struct btrfs_key location;
  1857. struct buffer_head *bh;
  1858. struct btrfs_super_block *disk_super;
  1859. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1860. struct btrfs_root *tree_root;
  1861. struct btrfs_root *extent_root;
  1862. struct btrfs_root *csum_root;
  1863. struct btrfs_root *chunk_root;
  1864. struct btrfs_root *dev_root;
  1865. struct btrfs_root *quota_root;
  1866. struct btrfs_root *uuid_root;
  1867. struct btrfs_root *log_tree_root;
  1868. int ret;
  1869. int err = -EINVAL;
  1870. int num_backups_tried = 0;
  1871. int backup_index = 0;
  1872. bool create_uuid_tree;
  1873. bool check_uuid_tree;
  1874. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1875. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1876. if (!tree_root || !chunk_root) {
  1877. err = -ENOMEM;
  1878. goto fail;
  1879. }
  1880. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1881. if (ret) {
  1882. err = ret;
  1883. goto fail;
  1884. }
  1885. ret = setup_bdi(fs_info, &fs_info->bdi);
  1886. if (ret) {
  1887. err = ret;
  1888. goto fail_srcu;
  1889. }
  1890. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1891. if (ret) {
  1892. err = ret;
  1893. goto fail_bdi;
  1894. }
  1895. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1896. (1 + ilog2(nr_cpu_ids));
  1897. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1898. if (ret) {
  1899. err = ret;
  1900. goto fail_dirty_metadata_bytes;
  1901. }
  1902. fs_info->btree_inode = new_inode(sb);
  1903. if (!fs_info->btree_inode) {
  1904. err = -ENOMEM;
  1905. goto fail_delalloc_bytes;
  1906. }
  1907. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1908. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1909. INIT_LIST_HEAD(&fs_info->trans_list);
  1910. INIT_LIST_HEAD(&fs_info->dead_roots);
  1911. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1912. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1913. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1914. spin_lock_init(&fs_info->delalloc_root_lock);
  1915. spin_lock_init(&fs_info->trans_lock);
  1916. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1917. spin_lock_init(&fs_info->delayed_iput_lock);
  1918. spin_lock_init(&fs_info->defrag_inodes_lock);
  1919. spin_lock_init(&fs_info->free_chunk_lock);
  1920. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1921. spin_lock_init(&fs_info->super_lock);
  1922. rwlock_init(&fs_info->tree_mod_log_lock);
  1923. mutex_init(&fs_info->reloc_mutex);
  1924. seqlock_init(&fs_info->profiles_lock);
  1925. init_completion(&fs_info->kobj_unregister);
  1926. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1927. INIT_LIST_HEAD(&fs_info->space_info);
  1928. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1929. btrfs_mapping_init(&fs_info->mapping_tree);
  1930. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1931. BTRFS_BLOCK_RSV_GLOBAL);
  1932. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1933. BTRFS_BLOCK_RSV_DELALLOC);
  1934. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1935. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1936. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1937. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1938. BTRFS_BLOCK_RSV_DELOPS);
  1939. atomic_set(&fs_info->nr_async_submits, 0);
  1940. atomic_set(&fs_info->async_delalloc_pages, 0);
  1941. atomic_set(&fs_info->async_submit_draining, 0);
  1942. atomic_set(&fs_info->nr_async_bios, 0);
  1943. atomic_set(&fs_info->defrag_running, 0);
  1944. atomic64_set(&fs_info->tree_mod_seq, 0);
  1945. fs_info->sb = sb;
  1946. fs_info->max_inline = 8192 * 1024;
  1947. fs_info->metadata_ratio = 0;
  1948. fs_info->defrag_inodes = RB_ROOT;
  1949. fs_info->free_chunk_space = 0;
  1950. fs_info->tree_mod_log = RB_ROOT;
  1951. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1952. /* readahead state */
  1953. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1954. spin_lock_init(&fs_info->reada_lock);
  1955. fs_info->thread_pool_size = min_t(unsigned long,
  1956. num_online_cpus() + 2, 8);
  1957. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1958. spin_lock_init(&fs_info->ordered_root_lock);
  1959. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1960. GFP_NOFS);
  1961. if (!fs_info->delayed_root) {
  1962. err = -ENOMEM;
  1963. goto fail_iput;
  1964. }
  1965. btrfs_init_delayed_root(fs_info->delayed_root);
  1966. mutex_init(&fs_info->scrub_lock);
  1967. atomic_set(&fs_info->scrubs_running, 0);
  1968. atomic_set(&fs_info->scrub_pause_req, 0);
  1969. atomic_set(&fs_info->scrubs_paused, 0);
  1970. atomic_set(&fs_info->scrub_cancel_req, 0);
  1971. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1972. init_rwsem(&fs_info->scrub_super_lock);
  1973. fs_info->scrub_workers_refcnt = 0;
  1974. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1975. fs_info->check_integrity_print_mask = 0;
  1976. #endif
  1977. spin_lock_init(&fs_info->balance_lock);
  1978. mutex_init(&fs_info->balance_mutex);
  1979. atomic_set(&fs_info->balance_running, 0);
  1980. atomic_set(&fs_info->balance_pause_req, 0);
  1981. atomic_set(&fs_info->balance_cancel_req, 0);
  1982. fs_info->balance_ctl = NULL;
  1983. init_waitqueue_head(&fs_info->balance_wait_q);
  1984. sb->s_blocksize = 4096;
  1985. sb->s_blocksize_bits = blksize_bits(4096);
  1986. sb->s_bdi = &fs_info->bdi;
  1987. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1988. set_nlink(fs_info->btree_inode, 1);
  1989. /*
  1990. * we set the i_size on the btree inode to the max possible int.
  1991. * the real end of the address space is determined by all of
  1992. * the devices in the system
  1993. */
  1994. fs_info->btree_inode->i_size = OFFSET_MAX;
  1995. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1996. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1997. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1998. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1999. fs_info->btree_inode->i_mapping);
  2000. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2001. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2002. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2003. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2004. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2005. sizeof(struct btrfs_key));
  2006. set_bit(BTRFS_INODE_DUMMY,
  2007. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2008. btrfs_insert_inode_hash(fs_info->btree_inode);
  2009. spin_lock_init(&fs_info->block_group_cache_lock);
  2010. fs_info->block_group_cache_tree = RB_ROOT;
  2011. fs_info->first_logical_byte = (u64)-1;
  2012. extent_io_tree_init(&fs_info->freed_extents[0],
  2013. fs_info->btree_inode->i_mapping);
  2014. extent_io_tree_init(&fs_info->freed_extents[1],
  2015. fs_info->btree_inode->i_mapping);
  2016. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2017. fs_info->do_barriers = 1;
  2018. mutex_init(&fs_info->ordered_operations_mutex);
  2019. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2020. mutex_init(&fs_info->tree_log_mutex);
  2021. mutex_init(&fs_info->chunk_mutex);
  2022. mutex_init(&fs_info->transaction_kthread_mutex);
  2023. mutex_init(&fs_info->cleaner_mutex);
  2024. mutex_init(&fs_info->volume_mutex);
  2025. init_rwsem(&fs_info->extent_commit_sem);
  2026. init_rwsem(&fs_info->cleanup_work_sem);
  2027. init_rwsem(&fs_info->subvol_sem);
  2028. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2029. fs_info->dev_replace.lock_owner = 0;
  2030. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2031. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2032. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2033. mutex_init(&fs_info->dev_replace.lock);
  2034. spin_lock_init(&fs_info->qgroup_lock);
  2035. mutex_init(&fs_info->qgroup_ioctl_lock);
  2036. fs_info->qgroup_tree = RB_ROOT;
  2037. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2038. fs_info->qgroup_seq = 1;
  2039. fs_info->quota_enabled = 0;
  2040. fs_info->pending_quota_state = 0;
  2041. fs_info->qgroup_ulist = NULL;
  2042. mutex_init(&fs_info->qgroup_rescan_lock);
  2043. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2044. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2045. init_waitqueue_head(&fs_info->transaction_throttle);
  2046. init_waitqueue_head(&fs_info->transaction_wait);
  2047. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2048. init_waitqueue_head(&fs_info->async_submit_wait);
  2049. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2050. if (ret) {
  2051. err = ret;
  2052. goto fail_alloc;
  2053. }
  2054. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2055. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2056. invalidate_bdev(fs_devices->latest_bdev);
  2057. /*
  2058. * Read super block and check the signature bytes only
  2059. */
  2060. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2061. if (!bh) {
  2062. err = -EINVAL;
  2063. goto fail_alloc;
  2064. }
  2065. /*
  2066. * We want to check superblock checksum, the type is stored inside.
  2067. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2068. */
  2069. if (btrfs_check_super_csum(bh->b_data)) {
  2070. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2071. err = -EINVAL;
  2072. goto fail_alloc;
  2073. }
  2074. /*
  2075. * super_copy is zeroed at allocation time and we never touch the
  2076. * following bytes up to INFO_SIZE, the checksum is calculated from
  2077. * the whole block of INFO_SIZE
  2078. */
  2079. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2080. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2081. sizeof(*fs_info->super_for_commit));
  2082. brelse(bh);
  2083. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2084. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2085. if (ret) {
  2086. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2087. err = -EINVAL;
  2088. goto fail_alloc;
  2089. }
  2090. disk_super = fs_info->super_copy;
  2091. if (!btrfs_super_root(disk_super))
  2092. goto fail_alloc;
  2093. /* check FS state, whether FS is broken. */
  2094. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2095. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2096. /*
  2097. * run through our array of backup supers and setup
  2098. * our ring pointer to the oldest one
  2099. */
  2100. generation = btrfs_super_generation(disk_super);
  2101. find_oldest_super_backup(fs_info, generation);
  2102. /*
  2103. * In the long term, we'll store the compression type in the super
  2104. * block, and it'll be used for per file compression control.
  2105. */
  2106. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2107. ret = btrfs_parse_options(tree_root, options);
  2108. if (ret) {
  2109. err = ret;
  2110. goto fail_alloc;
  2111. }
  2112. features = btrfs_super_incompat_flags(disk_super) &
  2113. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2114. if (features) {
  2115. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2116. "unsupported optional features (%Lx).\n",
  2117. features);
  2118. err = -EINVAL;
  2119. goto fail_alloc;
  2120. }
  2121. if (btrfs_super_leafsize(disk_super) !=
  2122. btrfs_super_nodesize(disk_super)) {
  2123. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2124. "blocksizes don't match. node %d leaf %d\n",
  2125. btrfs_super_nodesize(disk_super),
  2126. btrfs_super_leafsize(disk_super));
  2127. err = -EINVAL;
  2128. goto fail_alloc;
  2129. }
  2130. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2131. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2132. "blocksize (%d) was too large\n",
  2133. btrfs_super_leafsize(disk_super));
  2134. err = -EINVAL;
  2135. goto fail_alloc;
  2136. }
  2137. features = btrfs_super_incompat_flags(disk_super);
  2138. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2139. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2140. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2141. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2142. printk(KERN_ERR "btrfs: has skinny extents\n");
  2143. /*
  2144. * flag our filesystem as having big metadata blocks if
  2145. * they are bigger than the page size
  2146. */
  2147. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2148. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2149. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2150. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2151. }
  2152. nodesize = btrfs_super_nodesize(disk_super);
  2153. leafsize = btrfs_super_leafsize(disk_super);
  2154. sectorsize = btrfs_super_sectorsize(disk_super);
  2155. stripesize = btrfs_super_stripesize(disk_super);
  2156. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2157. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2158. /*
  2159. * mixed block groups end up with duplicate but slightly offset
  2160. * extent buffers for the same range. It leads to corruptions
  2161. */
  2162. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2163. (sectorsize != leafsize)) {
  2164. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2165. "are not allowed for mixed block groups on %s\n",
  2166. sb->s_id);
  2167. goto fail_alloc;
  2168. }
  2169. /*
  2170. * Needn't use the lock because there is no other task which will
  2171. * update the flag.
  2172. */
  2173. btrfs_set_super_incompat_flags(disk_super, features);
  2174. features = btrfs_super_compat_ro_flags(disk_super) &
  2175. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2176. if (!(sb->s_flags & MS_RDONLY) && features) {
  2177. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2178. "unsupported option features (%Lx).\n",
  2179. features);
  2180. err = -EINVAL;
  2181. goto fail_alloc;
  2182. }
  2183. btrfs_init_workers(&fs_info->generic_worker,
  2184. "genwork", 1, NULL);
  2185. btrfs_init_workers(&fs_info->workers, "worker",
  2186. fs_info->thread_pool_size,
  2187. &fs_info->generic_worker);
  2188. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2189. fs_info->thread_pool_size, NULL);
  2190. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2191. fs_info->thread_pool_size, NULL);
  2192. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2193. min_t(u64, fs_devices->num_devices,
  2194. fs_info->thread_pool_size), NULL);
  2195. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2196. fs_info->thread_pool_size, NULL);
  2197. /* a higher idle thresh on the submit workers makes it much more
  2198. * likely that bios will be send down in a sane order to the
  2199. * devices
  2200. */
  2201. fs_info->submit_workers.idle_thresh = 64;
  2202. fs_info->workers.idle_thresh = 16;
  2203. fs_info->workers.ordered = 1;
  2204. fs_info->delalloc_workers.idle_thresh = 2;
  2205. fs_info->delalloc_workers.ordered = 1;
  2206. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2207. &fs_info->generic_worker);
  2208. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2209. fs_info->thread_pool_size,
  2210. &fs_info->generic_worker);
  2211. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2212. fs_info->thread_pool_size,
  2213. &fs_info->generic_worker);
  2214. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2215. "endio-meta-write", fs_info->thread_pool_size,
  2216. &fs_info->generic_worker);
  2217. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2218. "endio-raid56", fs_info->thread_pool_size,
  2219. &fs_info->generic_worker);
  2220. btrfs_init_workers(&fs_info->rmw_workers,
  2221. "rmw", fs_info->thread_pool_size,
  2222. &fs_info->generic_worker);
  2223. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2224. fs_info->thread_pool_size,
  2225. &fs_info->generic_worker);
  2226. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2227. 1, &fs_info->generic_worker);
  2228. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2229. fs_info->thread_pool_size,
  2230. &fs_info->generic_worker);
  2231. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2232. fs_info->thread_pool_size,
  2233. &fs_info->generic_worker);
  2234. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2235. &fs_info->generic_worker);
  2236. /*
  2237. * endios are largely parallel and should have a very
  2238. * low idle thresh
  2239. */
  2240. fs_info->endio_workers.idle_thresh = 4;
  2241. fs_info->endio_meta_workers.idle_thresh = 4;
  2242. fs_info->endio_raid56_workers.idle_thresh = 4;
  2243. fs_info->rmw_workers.idle_thresh = 2;
  2244. fs_info->endio_write_workers.idle_thresh = 2;
  2245. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2246. fs_info->readahead_workers.idle_thresh = 2;
  2247. /*
  2248. * btrfs_start_workers can really only fail because of ENOMEM so just
  2249. * return -ENOMEM if any of these fail.
  2250. */
  2251. ret = btrfs_start_workers(&fs_info->workers);
  2252. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2253. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2254. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2255. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2256. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2257. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2258. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2259. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2260. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2261. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2262. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2263. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2264. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2265. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2266. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2267. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2268. if (ret) {
  2269. err = -ENOMEM;
  2270. goto fail_sb_buffer;
  2271. }
  2272. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2273. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2274. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2275. tree_root->nodesize = nodesize;
  2276. tree_root->leafsize = leafsize;
  2277. tree_root->sectorsize = sectorsize;
  2278. tree_root->stripesize = stripesize;
  2279. sb->s_blocksize = sectorsize;
  2280. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2281. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2282. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2283. goto fail_sb_buffer;
  2284. }
  2285. if (sectorsize != PAGE_SIZE) {
  2286. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2287. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2288. goto fail_sb_buffer;
  2289. }
  2290. mutex_lock(&fs_info->chunk_mutex);
  2291. ret = btrfs_read_sys_array(tree_root);
  2292. mutex_unlock(&fs_info->chunk_mutex);
  2293. if (ret) {
  2294. printk(KERN_WARNING "btrfs: failed to read the system "
  2295. "array on %s\n", sb->s_id);
  2296. goto fail_sb_buffer;
  2297. }
  2298. blocksize = btrfs_level_size(tree_root,
  2299. btrfs_super_chunk_root_level(disk_super));
  2300. generation = btrfs_super_chunk_root_generation(disk_super);
  2301. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2302. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2303. chunk_root->node = read_tree_block(chunk_root,
  2304. btrfs_super_chunk_root(disk_super),
  2305. blocksize, generation);
  2306. if (!chunk_root->node ||
  2307. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2308. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2309. sb->s_id);
  2310. goto fail_tree_roots;
  2311. }
  2312. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2313. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2314. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2315. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2316. ret = btrfs_read_chunk_tree(chunk_root);
  2317. if (ret) {
  2318. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2319. sb->s_id);
  2320. goto fail_tree_roots;
  2321. }
  2322. /*
  2323. * keep the device that is marked to be the target device for the
  2324. * dev_replace procedure
  2325. */
  2326. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2327. if (!fs_devices->latest_bdev) {
  2328. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2329. sb->s_id);
  2330. goto fail_tree_roots;
  2331. }
  2332. retry_root_backup:
  2333. blocksize = btrfs_level_size(tree_root,
  2334. btrfs_super_root_level(disk_super));
  2335. generation = btrfs_super_generation(disk_super);
  2336. tree_root->node = read_tree_block(tree_root,
  2337. btrfs_super_root(disk_super),
  2338. blocksize, generation);
  2339. if (!tree_root->node ||
  2340. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2341. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2342. sb->s_id);
  2343. goto recovery_tree_root;
  2344. }
  2345. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2346. tree_root->commit_root = btrfs_root_node(tree_root);
  2347. btrfs_set_root_refs(&tree_root->root_item, 1);
  2348. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2349. location.type = BTRFS_ROOT_ITEM_KEY;
  2350. location.offset = 0;
  2351. extent_root = btrfs_read_tree_root(tree_root, &location);
  2352. if (IS_ERR(extent_root)) {
  2353. ret = PTR_ERR(extent_root);
  2354. goto recovery_tree_root;
  2355. }
  2356. extent_root->track_dirty = 1;
  2357. fs_info->extent_root = extent_root;
  2358. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2359. dev_root = btrfs_read_tree_root(tree_root, &location);
  2360. if (IS_ERR(dev_root)) {
  2361. ret = PTR_ERR(dev_root);
  2362. goto recovery_tree_root;
  2363. }
  2364. dev_root->track_dirty = 1;
  2365. fs_info->dev_root = dev_root;
  2366. btrfs_init_devices_late(fs_info);
  2367. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2368. csum_root = btrfs_read_tree_root(tree_root, &location);
  2369. if (IS_ERR(csum_root)) {
  2370. ret = PTR_ERR(csum_root);
  2371. goto recovery_tree_root;
  2372. }
  2373. csum_root->track_dirty = 1;
  2374. fs_info->csum_root = csum_root;
  2375. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2376. quota_root = btrfs_read_tree_root(tree_root, &location);
  2377. if (!IS_ERR(quota_root)) {
  2378. quota_root->track_dirty = 1;
  2379. fs_info->quota_enabled = 1;
  2380. fs_info->pending_quota_state = 1;
  2381. fs_info->quota_root = quota_root;
  2382. }
  2383. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2384. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2385. if (IS_ERR(uuid_root)) {
  2386. ret = PTR_ERR(uuid_root);
  2387. if (ret != -ENOENT)
  2388. goto recovery_tree_root;
  2389. create_uuid_tree = true;
  2390. check_uuid_tree = false;
  2391. } else {
  2392. uuid_root->track_dirty = 1;
  2393. fs_info->uuid_root = uuid_root;
  2394. create_uuid_tree = false;
  2395. check_uuid_tree =
  2396. generation != btrfs_super_uuid_tree_generation(disk_super);
  2397. }
  2398. fs_info->generation = generation;
  2399. fs_info->last_trans_committed = generation;
  2400. ret = btrfs_recover_balance(fs_info);
  2401. if (ret) {
  2402. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2403. goto fail_block_groups;
  2404. }
  2405. ret = btrfs_init_dev_stats(fs_info);
  2406. if (ret) {
  2407. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2408. ret);
  2409. goto fail_block_groups;
  2410. }
  2411. ret = btrfs_init_dev_replace(fs_info);
  2412. if (ret) {
  2413. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2414. goto fail_block_groups;
  2415. }
  2416. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2417. ret = btrfs_init_space_info(fs_info);
  2418. if (ret) {
  2419. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2420. goto fail_block_groups;
  2421. }
  2422. ret = btrfs_read_block_groups(extent_root);
  2423. if (ret) {
  2424. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2425. goto fail_block_groups;
  2426. }
  2427. fs_info->num_tolerated_disk_barrier_failures =
  2428. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2429. if (fs_info->fs_devices->missing_devices >
  2430. fs_info->num_tolerated_disk_barrier_failures &&
  2431. !(sb->s_flags & MS_RDONLY)) {
  2432. printk(KERN_WARNING
  2433. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2434. goto fail_block_groups;
  2435. }
  2436. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2437. "btrfs-cleaner");
  2438. if (IS_ERR(fs_info->cleaner_kthread))
  2439. goto fail_block_groups;
  2440. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2441. tree_root,
  2442. "btrfs-transaction");
  2443. if (IS_ERR(fs_info->transaction_kthread))
  2444. goto fail_cleaner;
  2445. if (!btrfs_test_opt(tree_root, SSD) &&
  2446. !btrfs_test_opt(tree_root, NOSSD) &&
  2447. !fs_info->fs_devices->rotating) {
  2448. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2449. "mode\n");
  2450. btrfs_set_opt(fs_info->mount_opt, SSD);
  2451. }
  2452. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2453. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2454. ret = btrfsic_mount(tree_root, fs_devices,
  2455. btrfs_test_opt(tree_root,
  2456. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2457. 1 : 0,
  2458. fs_info->check_integrity_print_mask);
  2459. if (ret)
  2460. printk(KERN_WARNING "btrfs: failed to initialize"
  2461. " integrity check module %s\n", sb->s_id);
  2462. }
  2463. #endif
  2464. ret = btrfs_read_qgroup_config(fs_info);
  2465. if (ret)
  2466. goto fail_trans_kthread;
  2467. /* do not make disk changes in broken FS */
  2468. if (btrfs_super_log_root(disk_super) != 0) {
  2469. u64 bytenr = btrfs_super_log_root(disk_super);
  2470. if (fs_devices->rw_devices == 0) {
  2471. printk(KERN_WARNING "Btrfs log replay required "
  2472. "on RO media\n");
  2473. err = -EIO;
  2474. goto fail_qgroup;
  2475. }
  2476. blocksize =
  2477. btrfs_level_size(tree_root,
  2478. btrfs_super_log_root_level(disk_super));
  2479. log_tree_root = btrfs_alloc_root(fs_info);
  2480. if (!log_tree_root) {
  2481. err = -ENOMEM;
  2482. goto fail_qgroup;
  2483. }
  2484. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2485. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2486. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2487. blocksize,
  2488. generation + 1);
  2489. if (!log_tree_root->node ||
  2490. !extent_buffer_uptodate(log_tree_root->node)) {
  2491. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2492. free_extent_buffer(log_tree_root->node);
  2493. kfree(log_tree_root);
  2494. goto fail_trans_kthread;
  2495. }
  2496. /* returns with log_tree_root freed on success */
  2497. ret = btrfs_recover_log_trees(log_tree_root);
  2498. if (ret) {
  2499. btrfs_error(tree_root->fs_info, ret,
  2500. "Failed to recover log tree");
  2501. free_extent_buffer(log_tree_root->node);
  2502. kfree(log_tree_root);
  2503. goto fail_trans_kthread;
  2504. }
  2505. if (sb->s_flags & MS_RDONLY) {
  2506. ret = btrfs_commit_super(tree_root);
  2507. if (ret)
  2508. goto fail_trans_kthread;
  2509. }
  2510. }
  2511. ret = btrfs_find_orphan_roots(tree_root);
  2512. if (ret)
  2513. goto fail_trans_kthread;
  2514. if (!(sb->s_flags & MS_RDONLY)) {
  2515. ret = btrfs_cleanup_fs_roots(fs_info);
  2516. if (ret)
  2517. goto fail_trans_kthread;
  2518. ret = btrfs_recover_relocation(tree_root);
  2519. if (ret < 0) {
  2520. printk(KERN_WARNING
  2521. "btrfs: failed to recover relocation\n");
  2522. err = -EINVAL;
  2523. goto fail_qgroup;
  2524. }
  2525. }
  2526. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2527. location.type = BTRFS_ROOT_ITEM_KEY;
  2528. location.offset = 0;
  2529. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2530. if (IS_ERR(fs_info->fs_root)) {
  2531. err = PTR_ERR(fs_info->fs_root);
  2532. goto fail_qgroup;
  2533. }
  2534. if (sb->s_flags & MS_RDONLY)
  2535. return 0;
  2536. down_read(&fs_info->cleanup_work_sem);
  2537. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2538. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2539. up_read(&fs_info->cleanup_work_sem);
  2540. close_ctree(tree_root);
  2541. return ret;
  2542. }
  2543. up_read(&fs_info->cleanup_work_sem);
  2544. ret = btrfs_resume_balance_async(fs_info);
  2545. if (ret) {
  2546. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2547. close_ctree(tree_root);
  2548. return ret;
  2549. }
  2550. ret = btrfs_resume_dev_replace_async(fs_info);
  2551. if (ret) {
  2552. pr_warn("btrfs: failed to resume dev_replace\n");
  2553. close_ctree(tree_root);
  2554. return ret;
  2555. }
  2556. btrfs_qgroup_rescan_resume(fs_info);
  2557. if (create_uuid_tree) {
  2558. pr_info("btrfs: creating UUID tree\n");
  2559. ret = btrfs_create_uuid_tree(fs_info);
  2560. if (ret) {
  2561. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2562. ret);
  2563. close_ctree(tree_root);
  2564. return ret;
  2565. }
  2566. } else if (check_uuid_tree ||
  2567. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2568. pr_info("btrfs: checking UUID tree\n");
  2569. ret = btrfs_check_uuid_tree(fs_info);
  2570. if (ret) {
  2571. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2572. ret);
  2573. close_ctree(tree_root);
  2574. return ret;
  2575. }
  2576. } else {
  2577. fs_info->update_uuid_tree_gen = 1;
  2578. }
  2579. return 0;
  2580. fail_qgroup:
  2581. btrfs_free_qgroup_config(fs_info);
  2582. fail_trans_kthread:
  2583. kthread_stop(fs_info->transaction_kthread);
  2584. btrfs_cleanup_transaction(fs_info->tree_root);
  2585. del_fs_roots(fs_info);
  2586. fail_cleaner:
  2587. kthread_stop(fs_info->cleaner_kthread);
  2588. /*
  2589. * make sure we're done with the btree inode before we stop our
  2590. * kthreads
  2591. */
  2592. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2593. fail_block_groups:
  2594. btrfs_put_block_group_cache(fs_info);
  2595. btrfs_free_block_groups(fs_info);
  2596. fail_tree_roots:
  2597. free_root_pointers(fs_info, 1);
  2598. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2599. fail_sb_buffer:
  2600. btrfs_stop_all_workers(fs_info);
  2601. fail_alloc:
  2602. fail_iput:
  2603. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2604. iput(fs_info->btree_inode);
  2605. fail_delalloc_bytes:
  2606. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2607. fail_dirty_metadata_bytes:
  2608. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2609. fail_bdi:
  2610. bdi_destroy(&fs_info->bdi);
  2611. fail_srcu:
  2612. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2613. fail:
  2614. btrfs_free_stripe_hash_table(fs_info);
  2615. btrfs_close_devices(fs_info->fs_devices);
  2616. return err;
  2617. recovery_tree_root:
  2618. if (!btrfs_test_opt(tree_root, RECOVERY))
  2619. goto fail_tree_roots;
  2620. free_root_pointers(fs_info, 0);
  2621. /* don't use the log in recovery mode, it won't be valid */
  2622. btrfs_set_super_log_root(disk_super, 0);
  2623. /* we can't trust the free space cache either */
  2624. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2625. ret = next_root_backup(fs_info, fs_info->super_copy,
  2626. &num_backups_tried, &backup_index);
  2627. if (ret == -1)
  2628. goto fail_block_groups;
  2629. goto retry_root_backup;
  2630. }
  2631. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2632. {
  2633. if (uptodate) {
  2634. set_buffer_uptodate(bh);
  2635. } else {
  2636. struct btrfs_device *device = (struct btrfs_device *)
  2637. bh->b_private;
  2638. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2639. "I/O error on %s\n",
  2640. rcu_str_deref(device->name));
  2641. /* note, we dont' set_buffer_write_io_error because we have
  2642. * our own ways of dealing with the IO errors
  2643. */
  2644. clear_buffer_uptodate(bh);
  2645. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2646. }
  2647. unlock_buffer(bh);
  2648. put_bh(bh);
  2649. }
  2650. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2651. {
  2652. struct buffer_head *bh;
  2653. struct buffer_head *latest = NULL;
  2654. struct btrfs_super_block *super;
  2655. int i;
  2656. u64 transid = 0;
  2657. u64 bytenr;
  2658. /* we would like to check all the supers, but that would make
  2659. * a btrfs mount succeed after a mkfs from a different FS.
  2660. * So, we need to add a special mount option to scan for
  2661. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2662. */
  2663. for (i = 0; i < 1; i++) {
  2664. bytenr = btrfs_sb_offset(i);
  2665. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2666. i_size_read(bdev->bd_inode))
  2667. break;
  2668. bh = __bread(bdev, bytenr / 4096,
  2669. BTRFS_SUPER_INFO_SIZE);
  2670. if (!bh)
  2671. continue;
  2672. super = (struct btrfs_super_block *)bh->b_data;
  2673. if (btrfs_super_bytenr(super) != bytenr ||
  2674. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2675. brelse(bh);
  2676. continue;
  2677. }
  2678. if (!latest || btrfs_super_generation(super) > transid) {
  2679. brelse(latest);
  2680. latest = bh;
  2681. transid = btrfs_super_generation(super);
  2682. } else {
  2683. brelse(bh);
  2684. }
  2685. }
  2686. return latest;
  2687. }
  2688. /*
  2689. * this should be called twice, once with wait == 0 and
  2690. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2691. * we write are pinned.
  2692. *
  2693. * They are released when wait == 1 is done.
  2694. * max_mirrors must be the same for both runs, and it indicates how
  2695. * many supers on this one device should be written.
  2696. *
  2697. * max_mirrors == 0 means to write them all.
  2698. */
  2699. static int write_dev_supers(struct btrfs_device *device,
  2700. struct btrfs_super_block *sb,
  2701. int do_barriers, int wait, int max_mirrors)
  2702. {
  2703. struct buffer_head *bh;
  2704. int i;
  2705. int ret;
  2706. int errors = 0;
  2707. u32 crc;
  2708. u64 bytenr;
  2709. if (max_mirrors == 0)
  2710. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2711. for (i = 0; i < max_mirrors; i++) {
  2712. bytenr = btrfs_sb_offset(i);
  2713. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2714. break;
  2715. if (wait) {
  2716. bh = __find_get_block(device->bdev, bytenr / 4096,
  2717. BTRFS_SUPER_INFO_SIZE);
  2718. if (!bh) {
  2719. errors++;
  2720. continue;
  2721. }
  2722. wait_on_buffer(bh);
  2723. if (!buffer_uptodate(bh))
  2724. errors++;
  2725. /* drop our reference */
  2726. brelse(bh);
  2727. /* drop the reference from the wait == 0 run */
  2728. brelse(bh);
  2729. continue;
  2730. } else {
  2731. btrfs_set_super_bytenr(sb, bytenr);
  2732. crc = ~(u32)0;
  2733. crc = btrfs_csum_data((char *)sb +
  2734. BTRFS_CSUM_SIZE, crc,
  2735. BTRFS_SUPER_INFO_SIZE -
  2736. BTRFS_CSUM_SIZE);
  2737. btrfs_csum_final(crc, sb->csum);
  2738. /*
  2739. * one reference for us, and we leave it for the
  2740. * caller
  2741. */
  2742. bh = __getblk(device->bdev, bytenr / 4096,
  2743. BTRFS_SUPER_INFO_SIZE);
  2744. if (!bh) {
  2745. printk(KERN_ERR "btrfs: couldn't get super "
  2746. "buffer head for bytenr %Lu\n", bytenr);
  2747. errors++;
  2748. continue;
  2749. }
  2750. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2751. /* one reference for submit_bh */
  2752. get_bh(bh);
  2753. set_buffer_uptodate(bh);
  2754. lock_buffer(bh);
  2755. bh->b_end_io = btrfs_end_buffer_write_sync;
  2756. bh->b_private = device;
  2757. }
  2758. /*
  2759. * we fua the first super. The others we allow
  2760. * to go down lazy.
  2761. */
  2762. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2763. if (ret)
  2764. errors++;
  2765. }
  2766. return errors < i ? 0 : -1;
  2767. }
  2768. /*
  2769. * endio for the write_dev_flush, this will wake anyone waiting
  2770. * for the barrier when it is done
  2771. */
  2772. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2773. {
  2774. if (err) {
  2775. if (err == -EOPNOTSUPP)
  2776. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2777. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2778. }
  2779. if (bio->bi_private)
  2780. complete(bio->bi_private);
  2781. bio_put(bio);
  2782. }
  2783. /*
  2784. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2785. * sent down. With wait == 1, it waits for the previous flush.
  2786. *
  2787. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2788. * capable
  2789. */
  2790. static int write_dev_flush(struct btrfs_device *device, int wait)
  2791. {
  2792. struct bio *bio;
  2793. int ret = 0;
  2794. if (device->nobarriers)
  2795. return 0;
  2796. if (wait) {
  2797. bio = device->flush_bio;
  2798. if (!bio)
  2799. return 0;
  2800. wait_for_completion(&device->flush_wait);
  2801. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2802. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2803. rcu_str_deref(device->name));
  2804. device->nobarriers = 1;
  2805. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2806. ret = -EIO;
  2807. btrfs_dev_stat_inc_and_print(device,
  2808. BTRFS_DEV_STAT_FLUSH_ERRS);
  2809. }
  2810. /* drop the reference from the wait == 0 run */
  2811. bio_put(bio);
  2812. device->flush_bio = NULL;
  2813. return ret;
  2814. }
  2815. /*
  2816. * one reference for us, and we leave it for the
  2817. * caller
  2818. */
  2819. device->flush_bio = NULL;
  2820. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2821. if (!bio)
  2822. return -ENOMEM;
  2823. bio->bi_end_io = btrfs_end_empty_barrier;
  2824. bio->bi_bdev = device->bdev;
  2825. init_completion(&device->flush_wait);
  2826. bio->bi_private = &device->flush_wait;
  2827. device->flush_bio = bio;
  2828. bio_get(bio);
  2829. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2830. return 0;
  2831. }
  2832. /*
  2833. * send an empty flush down to each device in parallel,
  2834. * then wait for them
  2835. */
  2836. static int barrier_all_devices(struct btrfs_fs_info *info)
  2837. {
  2838. struct list_head *head;
  2839. struct btrfs_device *dev;
  2840. int errors_send = 0;
  2841. int errors_wait = 0;
  2842. int ret;
  2843. /* send down all the barriers */
  2844. head = &info->fs_devices->devices;
  2845. list_for_each_entry_rcu(dev, head, dev_list) {
  2846. if (!dev->bdev) {
  2847. errors_send++;
  2848. continue;
  2849. }
  2850. if (!dev->in_fs_metadata || !dev->writeable)
  2851. continue;
  2852. ret = write_dev_flush(dev, 0);
  2853. if (ret)
  2854. errors_send++;
  2855. }
  2856. /* wait for all the barriers */
  2857. list_for_each_entry_rcu(dev, head, dev_list) {
  2858. if (!dev->bdev) {
  2859. errors_wait++;
  2860. continue;
  2861. }
  2862. if (!dev->in_fs_metadata || !dev->writeable)
  2863. continue;
  2864. ret = write_dev_flush(dev, 1);
  2865. if (ret)
  2866. errors_wait++;
  2867. }
  2868. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2869. errors_wait > info->num_tolerated_disk_barrier_failures)
  2870. return -EIO;
  2871. return 0;
  2872. }
  2873. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2874. struct btrfs_fs_info *fs_info)
  2875. {
  2876. struct btrfs_ioctl_space_info space;
  2877. struct btrfs_space_info *sinfo;
  2878. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2879. BTRFS_BLOCK_GROUP_SYSTEM,
  2880. BTRFS_BLOCK_GROUP_METADATA,
  2881. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2882. int num_types = 4;
  2883. int i;
  2884. int c;
  2885. int num_tolerated_disk_barrier_failures =
  2886. (int)fs_info->fs_devices->num_devices;
  2887. for (i = 0; i < num_types; i++) {
  2888. struct btrfs_space_info *tmp;
  2889. sinfo = NULL;
  2890. rcu_read_lock();
  2891. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2892. if (tmp->flags == types[i]) {
  2893. sinfo = tmp;
  2894. break;
  2895. }
  2896. }
  2897. rcu_read_unlock();
  2898. if (!sinfo)
  2899. continue;
  2900. down_read(&sinfo->groups_sem);
  2901. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2902. if (!list_empty(&sinfo->block_groups[c])) {
  2903. u64 flags;
  2904. btrfs_get_block_group_info(
  2905. &sinfo->block_groups[c], &space);
  2906. if (space.total_bytes == 0 ||
  2907. space.used_bytes == 0)
  2908. continue;
  2909. flags = space.flags;
  2910. /*
  2911. * return
  2912. * 0: if dup, single or RAID0 is configured for
  2913. * any of metadata, system or data, else
  2914. * 1: if RAID5 is configured, or if RAID1 or
  2915. * RAID10 is configured and only two mirrors
  2916. * are used, else
  2917. * 2: if RAID6 is configured, else
  2918. * num_mirrors - 1: if RAID1 or RAID10 is
  2919. * configured and more than
  2920. * 2 mirrors are used.
  2921. */
  2922. if (num_tolerated_disk_barrier_failures > 0 &&
  2923. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2924. BTRFS_BLOCK_GROUP_RAID0)) ||
  2925. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2926. == 0)))
  2927. num_tolerated_disk_barrier_failures = 0;
  2928. else if (num_tolerated_disk_barrier_failures > 1) {
  2929. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2930. BTRFS_BLOCK_GROUP_RAID5 |
  2931. BTRFS_BLOCK_GROUP_RAID10)) {
  2932. num_tolerated_disk_barrier_failures = 1;
  2933. } else if (flags &
  2934. BTRFS_BLOCK_GROUP_RAID6) {
  2935. num_tolerated_disk_barrier_failures = 2;
  2936. }
  2937. }
  2938. }
  2939. }
  2940. up_read(&sinfo->groups_sem);
  2941. }
  2942. return num_tolerated_disk_barrier_failures;
  2943. }
  2944. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2945. {
  2946. struct list_head *head;
  2947. struct btrfs_device *dev;
  2948. struct btrfs_super_block *sb;
  2949. struct btrfs_dev_item *dev_item;
  2950. int ret;
  2951. int do_barriers;
  2952. int max_errors;
  2953. int total_errors = 0;
  2954. u64 flags;
  2955. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2956. backup_super_roots(root->fs_info);
  2957. sb = root->fs_info->super_for_commit;
  2958. dev_item = &sb->dev_item;
  2959. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2960. head = &root->fs_info->fs_devices->devices;
  2961. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2962. if (do_barriers) {
  2963. ret = barrier_all_devices(root->fs_info);
  2964. if (ret) {
  2965. mutex_unlock(
  2966. &root->fs_info->fs_devices->device_list_mutex);
  2967. btrfs_error(root->fs_info, ret,
  2968. "errors while submitting device barriers.");
  2969. return ret;
  2970. }
  2971. }
  2972. list_for_each_entry_rcu(dev, head, dev_list) {
  2973. if (!dev->bdev) {
  2974. total_errors++;
  2975. continue;
  2976. }
  2977. if (!dev->in_fs_metadata || !dev->writeable)
  2978. continue;
  2979. btrfs_set_stack_device_generation(dev_item, 0);
  2980. btrfs_set_stack_device_type(dev_item, dev->type);
  2981. btrfs_set_stack_device_id(dev_item, dev->devid);
  2982. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2983. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2984. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2985. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2986. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2987. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2988. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2989. flags = btrfs_super_flags(sb);
  2990. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2991. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2992. if (ret)
  2993. total_errors++;
  2994. }
  2995. if (total_errors > max_errors) {
  2996. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2997. total_errors);
  2998. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2999. /* FUA is masked off if unsupported and can't be the reason */
  3000. btrfs_error(root->fs_info, -EIO,
  3001. "%d errors while writing supers", total_errors);
  3002. return -EIO;
  3003. }
  3004. total_errors = 0;
  3005. list_for_each_entry_rcu(dev, head, dev_list) {
  3006. if (!dev->bdev)
  3007. continue;
  3008. if (!dev->in_fs_metadata || !dev->writeable)
  3009. continue;
  3010. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3011. if (ret)
  3012. total_errors++;
  3013. }
  3014. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3015. if (total_errors > max_errors) {
  3016. btrfs_error(root->fs_info, -EIO,
  3017. "%d errors while writing supers", total_errors);
  3018. return -EIO;
  3019. }
  3020. return 0;
  3021. }
  3022. int write_ctree_super(struct btrfs_trans_handle *trans,
  3023. struct btrfs_root *root, int max_mirrors)
  3024. {
  3025. int ret;
  3026. ret = write_all_supers(root, max_mirrors);
  3027. return ret;
  3028. }
  3029. /* Drop a fs root from the radix tree and free it. */
  3030. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3031. struct btrfs_root *root)
  3032. {
  3033. spin_lock(&fs_info->fs_roots_radix_lock);
  3034. radix_tree_delete(&fs_info->fs_roots_radix,
  3035. (unsigned long)root->root_key.objectid);
  3036. spin_unlock(&fs_info->fs_roots_radix_lock);
  3037. if (btrfs_root_refs(&root->root_item) == 0)
  3038. synchronize_srcu(&fs_info->subvol_srcu);
  3039. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3040. btrfs_free_log(NULL, root);
  3041. btrfs_free_log_root_tree(NULL, fs_info);
  3042. }
  3043. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3044. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3045. free_fs_root(root);
  3046. }
  3047. static void free_fs_root(struct btrfs_root *root)
  3048. {
  3049. iput(root->cache_inode);
  3050. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3051. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3052. root->orphan_block_rsv = NULL;
  3053. if (root->anon_dev)
  3054. free_anon_bdev(root->anon_dev);
  3055. free_extent_buffer(root->node);
  3056. free_extent_buffer(root->commit_root);
  3057. kfree(root->free_ino_ctl);
  3058. kfree(root->free_ino_pinned);
  3059. kfree(root->name);
  3060. btrfs_put_fs_root(root);
  3061. }
  3062. void btrfs_free_fs_root(struct btrfs_root *root)
  3063. {
  3064. free_fs_root(root);
  3065. }
  3066. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3067. {
  3068. u64 root_objectid = 0;
  3069. struct btrfs_root *gang[8];
  3070. int i;
  3071. int ret;
  3072. while (1) {
  3073. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3074. (void **)gang, root_objectid,
  3075. ARRAY_SIZE(gang));
  3076. if (!ret)
  3077. break;
  3078. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3079. for (i = 0; i < ret; i++) {
  3080. int err;
  3081. root_objectid = gang[i]->root_key.objectid;
  3082. err = btrfs_orphan_cleanup(gang[i]);
  3083. if (err)
  3084. return err;
  3085. }
  3086. root_objectid++;
  3087. }
  3088. return 0;
  3089. }
  3090. int btrfs_commit_super(struct btrfs_root *root)
  3091. {
  3092. struct btrfs_trans_handle *trans;
  3093. int ret;
  3094. mutex_lock(&root->fs_info->cleaner_mutex);
  3095. btrfs_run_delayed_iputs(root);
  3096. mutex_unlock(&root->fs_info->cleaner_mutex);
  3097. wake_up_process(root->fs_info->cleaner_kthread);
  3098. /* wait until ongoing cleanup work done */
  3099. down_write(&root->fs_info->cleanup_work_sem);
  3100. up_write(&root->fs_info->cleanup_work_sem);
  3101. trans = btrfs_join_transaction(root);
  3102. if (IS_ERR(trans))
  3103. return PTR_ERR(trans);
  3104. ret = btrfs_commit_transaction(trans, root);
  3105. if (ret)
  3106. return ret;
  3107. /* run commit again to drop the original snapshot */
  3108. trans = btrfs_join_transaction(root);
  3109. if (IS_ERR(trans))
  3110. return PTR_ERR(trans);
  3111. ret = btrfs_commit_transaction(trans, root);
  3112. if (ret)
  3113. return ret;
  3114. ret = btrfs_write_and_wait_transaction(NULL, root);
  3115. if (ret) {
  3116. btrfs_error(root->fs_info, ret,
  3117. "Failed to sync btree inode to disk.");
  3118. return ret;
  3119. }
  3120. ret = write_ctree_super(NULL, root, 0);
  3121. return ret;
  3122. }
  3123. int close_ctree(struct btrfs_root *root)
  3124. {
  3125. struct btrfs_fs_info *fs_info = root->fs_info;
  3126. int ret;
  3127. fs_info->closing = 1;
  3128. smp_mb();
  3129. /* wait for the uuid_scan task to finish */
  3130. down(&fs_info->uuid_tree_rescan_sem);
  3131. /* avoid complains from lockdep et al., set sem back to initial state */
  3132. up(&fs_info->uuid_tree_rescan_sem);
  3133. /* pause restriper - we want to resume on mount */
  3134. btrfs_pause_balance(fs_info);
  3135. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3136. btrfs_scrub_cancel(fs_info);
  3137. /* wait for any defraggers to finish */
  3138. wait_event(fs_info->transaction_wait,
  3139. (atomic_read(&fs_info->defrag_running) == 0));
  3140. /* clear out the rbtree of defraggable inodes */
  3141. btrfs_cleanup_defrag_inodes(fs_info);
  3142. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3143. ret = btrfs_commit_super(root);
  3144. if (ret)
  3145. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3146. }
  3147. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3148. btrfs_error_commit_super(root);
  3149. btrfs_put_block_group_cache(fs_info);
  3150. kthread_stop(fs_info->transaction_kthread);
  3151. kthread_stop(fs_info->cleaner_kthread);
  3152. fs_info->closing = 2;
  3153. smp_mb();
  3154. btrfs_free_qgroup_config(root->fs_info);
  3155. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3156. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3157. percpu_counter_sum(&fs_info->delalloc_bytes));
  3158. }
  3159. del_fs_roots(fs_info);
  3160. btrfs_free_block_groups(fs_info);
  3161. btrfs_stop_all_workers(fs_info);
  3162. free_root_pointers(fs_info, 1);
  3163. iput(fs_info->btree_inode);
  3164. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3165. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3166. btrfsic_unmount(root, fs_info->fs_devices);
  3167. #endif
  3168. btrfs_close_devices(fs_info->fs_devices);
  3169. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3170. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3171. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3172. bdi_destroy(&fs_info->bdi);
  3173. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3174. btrfs_free_stripe_hash_table(fs_info);
  3175. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3176. root->orphan_block_rsv = NULL;
  3177. return 0;
  3178. }
  3179. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3180. int atomic)
  3181. {
  3182. int ret;
  3183. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3184. ret = extent_buffer_uptodate(buf);
  3185. if (!ret)
  3186. return ret;
  3187. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3188. parent_transid, atomic);
  3189. if (ret == -EAGAIN)
  3190. return ret;
  3191. return !ret;
  3192. }
  3193. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3194. {
  3195. return set_extent_buffer_uptodate(buf);
  3196. }
  3197. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3198. {
  3199. struct btrfs_root *root;
  3200. u64 transid = btrfs_header_generation(buf);
  3201. int was_dirty;
  3202. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3203. /*
  3204. * This is a fast path so only do this check if we have sanity tests
  3205. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3206. * outside of the sanity tests.
  3207. */
  3208. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3209. return;
  3210. #endif
  3211. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3212. btrfs_assert_tree_locked(buf);
  3213. if (transid != root->fs_info->generation)
  3214. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3215. "found %llu running %llu\n",
  3216. buf->start, transid, root->fs_info->generation);
  3217. was_dirty = set_extent_buffer_dirty(buf);
  3218. if (!was_dirty)
  3219. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3220. buf->len,
  3221. root->fs_info->dirty_metadata_batch);
  3222. }
  3223. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3224. int flush_delayed)
  3225. {
  3226. /*
  3227. * looks as though older kernels can get into trouble with
  3228. * this code, they end up stuck in balance_dirty_pages forever
  3229. */
  3230. int ret;
  3231. if (current->flags & PF_MEMALLOC)
  3232. return;
  3233. if (flush_delayed)
  3234. btrfs_balance_delayed_items(root);
  3235. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3236. BTRFS_DIRTY_METADATA_THRESH);
  3237. if (ret > 0) {
  3238. balance_dirty_pages_ratelimited(
  3239. root->fs_info->btree_inode->i_mapping);
  3240. }
  3241. return;
  3242. }
  3243. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3244. {
  3245. __btrfs_btree_balance_dirty(root, 1);
  3246. }
  3247. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3248. {
  3249. __btrfs_btree_balance_dirty(root, 0);
  3250. }
  3251. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3252. {
  3253. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3254. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3255. }
  3256. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3257. int read_only)
  3258. {
  3259. /*
  3260. * Placeholder for checks
  3261. */
  3262. return 0;
  3263. }
  3264. static void btrfs_error_commit_super(struct btrfs_root *root)
  3265. {
  3266. mutex_lock(&root->fs_info->cleaner_mutex);
  3267. btrfs_run_delayed_iputs(root);
  3268. mutex_unlock(&root->fs_info->cleaner_mutex);
  3269. down_write(&root->fs_info->cleanup_work_sem);
  3270. up_write(&root->fs_info->cleanup_work_sem);
  3271. /* cleanup FS via transaction */
  3272. btrfs_cleanup_transaction(root);
  3273. }
  3274. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3275. struct btrfs_root *root)
  3276. {
  3277. struct btrfs_inode *btrfs_inode;
  3278. struct list_head splice;
  3279. INIT_LIST_HEAD(&splice);
  3280. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3281. spin_lock(&root->fs_info->ordered_root_lock);
  3282. list_splice_init(&t->ordered_operations, &splice);
  3283. while (!list_empty(&splice)) {
  3284. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3285. ordered_operations);
  3286. list_del_init(&btrfs_inode->ordered_operations);
  3287. spin_unlock(&root->fs_info->ordered_root_lock);
  3288. btrfs_invalidate_inodes(btrfs_inode->root);
  3289. spin_lock(&root->fs_info->ordered_root_lock);
  3290. }
  3291. spin_unlock(&root->fs_info->ordered_root_lock);
  3292. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3293. }
  3294. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3295. {
  3296. struct btrfs_ordered_extent *ordered;
  3297. spin_lock(&root->ordered_extent_lock);
  3298. /*
  3299. * This will just short circuit the ordered completion stuff which will
  3300. * make sure the ordered extent gets properly cleaned up.
  3301. */
  3302. list_for_each_entry(ordered, &root->ordered_extents,
  3303. root_extent_list)
  3304. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3305. spin_unlock(&root->ordered_extent_lock);
  3306. }
  3307. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3308. {
  3309. struct btrfs_root *root;
  3310. struct list_head splice;
  3311. INIT_LIST_HEAD(&splice);
  3312. spin_lock(&fs_info->ordered_root_lock);
  3313. list_splice_init(&fs_info->ordered_roots, &splice);
  3314. while (!list_empty(&splice)) {
  3315. root = list_first_entry(&splice, struct btrfs_root,
  3316. ordered_root);
  3317. list_move_tail(&root->ordered_root,
  3318. &fs_info->ordered_roots);
  3319. btrfs_destroy_ordered_extents(root);
  3320. cond_resched_lock(&fs_info->ordered_root_lock);
  3321. }
  3322. spin_unlock(&fs_info->ordered_root_lock);
  3323. }
  3324. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3325. struct btrfs_root *root)
  3326. {
  3327. struct rb_node *node;
  3328. struct btrfs_delayed_ref_root *delayed_refs;
  3329. struct btrfs_delayed_ref_node *ref;
  3330. int ret = 0;
  3331. delayed_refs = &trans->delayed_refs;
  3332. spin_lock(&delayed_refs->lock);
  3333. if (delayed_refs->num_entries == 0) {
  3334. spin_unlock(&delayed_refs->lock);
  3335. printk(KERN_INFO "delayed_refs has NO entry\n");
  3336. return ret;
  3337. }
  3338. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3339. struct btrfs_delayed_ref_head *head = NULL;
  3340. bool pin_bytes = false;
  3341. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3342. atomic_set(&ref->refs, 1);
  3343. if (btrfs_delayed_ref_is_head(ref)) {
  3344. head = btrfs_delayed_node_to_head(ref);
  3345. if (!mutex_trylock(&head->mutex)) {
  3346. atomic_inc(&ref->refs);
  3347. spin_unlock(&delayed_refs->lock);
  3348. /* Need to wait for the delayed ref to run */
  3349. mutex_lock(&head->mutex);
  3350. mutex_unlock(&head->mutex);
  3351. btrfs_put_delayed_ref(ref);
  3352. spin_lock(&delayed_refs->lock);
  3353. continue;
  3354. }
  3355. if (head->must_insert_reserved)
  3356. pin_bytes = true;
  3357. btrfs_free_delayed_extent_op(head->extent_op);
  3358. delayed_refs->num_heads--;
  3359. if (list_empty(&head->cluster))
  3360. delayed_refs->num_heads_ready--;
  3361. list_del_init(&head->cluster);
  3362. }
  3363. ref->in_tree = 0;
  3364. rb_erase(&ref->rb_node, &delayed_refs->root);
  3365. delayed_refs->num_entries--;
  3366. spin_unlock(&delayed_refs->lock);
  3367. if (head) {
  3368. if (pin_bytes)
  3369. btrfs_pin_extent(root, ref->bytenr,
  3370. ref->num_bytes, 1);
  3371. mutex_unlock(&head->mutex);
  3372. }
  3373. btrfs_put_delayed_ref(ref);
  3374. cond_resched();
  3375. spin_lock(&delayed_refs->lock);
  3376. }
  3377. spin_unlock(&delayed_refs->lock);
  3378. return ret;
  3379. }
  3380. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3381. {
  3382. struct btrfs_inode *btrfs_inode;
  3383. struct list_head splice;
  3384. INIT_LIST_HEAD(&splice);
  3385. spin_lock(&root->delalloc_lock);
  3386. list_splice_init(&root->delalloc_inodes, &splice);
  3387. while (!list_empty(&splice)) {
  3388. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3389. delalloc_inodes);
  3390. list_del_init(&btrfs_inode->delalloc_inodes);
  3391. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3392. &btrfs_inode->runtime_flags);
  3393. spin_unlock(&root->delalloc_lock);
  3394. btrfs_invalidate_inodes(btrfs_inode->root);
  3395. spin_lock(&root->delalloc_lock);
  3396. }
  3397. spin_unlock(&root->delalloc_lock);
  3398. }
  3399. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3400. {
  3401. struct btrfs_root *root;
  3402. struct list_head splice;
  3403. INIT_LIST_HEAD(&splice);
  3404. spin_lock(&fs_info->delalloc_root_lock);
  3405. list_splice_init(&fs_info->delalloc_roots, &splice);
  3406. while (!list_empty(&splice)) {
  3407. root = list_first_entry(&splice, struct btrfs_root,
  3408. delalloc_root);
  3409. list_del_init(&root->delalloc_root);
  3410. root = btrfs_grab_fs_root(root);
  3411. BUG_ON(!root);
  3412. spin_unlock(&fs_info->delalloc_root_lock);
  3413. btrfs_destroy_delalloc_inodes(root);
  3414. btrfs_put_fs_root(root);
  3415. spin_lock(&fs_info->delalloc_root_lock);
  3416. }
  3417. spin_unlock(&fs_info->delalloc_root_lock);
  3418. }
  3419. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3420. struct extent_io_tree *dirty_pages,
  3421. int mark)
  3422. {
  3423. int ret;
  3424. struct extent_buffer *eb;
  3425. u64 start = 0;
  3426. u64 end;
  3427. while (1) {
  3428. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3429. mark, NULL);
  3430. if (ret)
  3431. break;
  3432. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3433. while (start <= end) {
  3434. eb = btrfs_find_tree_block(root, start,
  3435. root->leafsize);
  3436. start += root->leafsize;
  3437. if (!eb)
  3438. continue;
  3439. wait_on_extent_buffer_writeback(eb);
  3440. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3441. &eb->bflags))
  3442. clear_extent_buffer_dirty(eb);
  3443. free_extent_buffer_stale(eb);
  3444. }
  3445. }
  3446. return ret;
  3447. }
  3448. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3449. struct extent_io_tree *pinned_extents)
  3450. {
  3451. struct extent_io_tree *unpin;
  3452. u64 start;
  3453. u64 end;
  3454. int ret;
  3455. bool loop = true;
  3456. unpin = pinned_extents;
  3457. again:
  3458. while (1) {
  3459. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3460. EXTENT_DIRTY, NULL);
  3461. if (ret)
  3462. break;
  3463. /* opt_discard */
  3464. if (btrfs_test_opt(root, DISCARD))
  3465. ret = btrfs_error_discard_extent(root, start,
  3466. end + 1 - start,
  3467. NULL);
  3468. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3469. btrfs_error_unpin_extent_range(root, start, end);
  3470. cond_resched();
  3471. }
  3472. if (loop) {
  3473. if (unpin == &root->fs_info->freed_extents[0])
  3474. unpin = &root->fs_info->freed_extents[1];
  3475. else
  3476. unpin = &root->fs_info->freed_extents[0];
  3477. loop = false;
  3478. goto again;
  3479. }
  3480. return 0;
  3481. }
  3482. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3483. struct btrfs_root *root)
  3484. {
  3485. btrfs_destroy_ordered_operations(cur_trans, root);
  3486. btrfs_destroy_delayed_refs(cur_trans, root);
  3487. cur_trans->state = TRANS_STATE_COMMIT_START;
  3488. wake_up(&root->fs_info->transaction_blocked_wait);
  3489. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3490. wake_up(&root->fs_info->transaction_wait);
  3491. btrfs_destroy_delayed_inodes(root);
  3492. btrfs_assert_delayed_root_empty(root);
  3493. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3494. EXTENT_DIRTY);
  3495. btrfs_destroy_pinned_extent(root,
  3496. root->fs_info->pinned_extents);
  3497. cur_trans->state =TRANS_STATE_COMPLETED;
  3498. wake_up(&cur_trans->commit_wait);
  3499. /*
  3500. memset(cur_trans, 0, sizeof(*cur_trans));
  3501. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3502. */
  3503. }
  3504. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3505. {
  3506. struct btrfs_transaction *t;
  3507. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3508. spin_lock(&root->fs_info->trans_lock);
  3509. while (!list_empty(&root->fs_info->trans_list)) {
  3510. t = list_first_entry(&root->fs_info->trans_list,
  3511. struct btrfs_transaction, list);
  3512. if (t->state >= TRANS_STATE_COMMIT_START) {
  3513. atomic_inc(&t->use_count);
  3514. spin_unlock(&root->fs_info->trans_lock);
  3515. btrfs_wait_for_commit(root, t->transid);
  3516. btrfs_put_transaction(t);
  3517. spin_lock(&root->fs_info->trans_lock);
  3518. continue;
  3519. }
  3520. if (t == root->fs_info->running_transaction) {
  3521. t->state = TRANS_STATE_COMMIT_DOING;
  3522. spin_unlock(&root->fs_info->trans_lock);
  3523. /*
  3524. * We wait for 0 num_writers since we don't hold a trans
  3525. * handle open currently for this transaction.
  3526. */
  3527. wait_event(t->writer_wait,
  3528. atomic_read(&t->num_writers) == 0);
  3529. } else {
  3530. spin_unlock(&root->fs_info->trans_lock);
  3531. }
  3532. btrfs_cleanup_one_transaction(t, root);
  3533. spin_lock(&root->fs_info->trans_lock);
  3534. if (t == root->fs_info->running_transaction)
  3535. root->fs_info->running_transaction = NULL;
  3536. list_del_init(&t->list);
  3537. spin_unlock(&root->fs_info->trans_lock);
  3538. btrfs_put_transaction(t);
  3539. trace_btrfs_transaction_commit(root);
  3540. spin_lock(&root->fs_info->trans_lock);
  3541. }
  3542. spin_unlock(&root->fs_info->trans_lock);
  3543. btrfs_destroy_all_ordered_extents(root->fs_info);
  3544. btrfs_destroy_delayed_inodes(root);
  3545. btrfs_assert_delayed_root_empty(root);
  3546. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3547. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3548. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3549. return 0;
  3550. }
  3551. static struct extent_io_ops btree_extent_io_ops = {
  3552. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3553. .readpage_io_failed_hook = btree_io_failed_hook,
  3554. .submit_bio_hook = btree_submit_bio_hook,
  3555. /* note we're sharing with inode.c for the merge bio hook */
  3556. .merge_bio_hook = btrfs_merge_bio_hook,
  3557. };