namespace.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/config.h>
  11. #include <linux/syscalls.h>
  12. #include <linux/slab.h>
  13. #include <linux/sched.h>
  14. #include <linux/smp_lock.h>
  15. #include <linux/init.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/module.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/namespace.h>
  22. #include <linux/namei.h>
  23. #include <linux/security.h>
  24. #include <linux/mount.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/unistd.h>
  27. #include "pnode.h"
  28. extern int __init init_rootfs(void);
  29. #ifdef CONFIG_SYSFS
  30. extern int __init sysfs_init(void);
  31. #else
  32. static inline int sysfs_init(void)
  33. {
  34. return 0;
  35. }
  36. #endif
  37. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  38. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  39. static int event;
  40. static struct list_head *mount_hashtable __read_mostly;
  41. static int hash_mask __read_mostly, hash_bits __read_mostly;
  42. static kmem_cache_t *mnt_cache __read_mostly;
  43. static struct rw_semaphore namespace_sem;
  44. /* /sys/fs */
  45. decl_subsys(fs, NULL, NULL);
  46. EXPORT_SYMBOL_GPL(fs_subsys);
  47. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  48. {
  49. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  50. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  51. tmp = tmp + (tmp >> hash_bits);
  52. return tmp & hash_mask;
  53. }
  54. struct vfsmount *alloc_vfsmnt(const char *name)
  55. {
  56. struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
  57. if (mnt) {
  58. memset(mnt, 0, sizeof(struct vfsmount));
  59. atomic_set(&mnt->mnt_count, 1);
  60. INIT_LIST_HEAD(&mnt->mnt_hash);
  61. INIT_LIST_HEAD(&mnt->mnt_child);
  62. INIT_LIST_HEAD(&mnt->mnt_mounts);
  63. INIT_LIST_HEAD(&mnt->mnt_list);
  64. INIT_LIST_HEAD(&mnt->mnt_expire);
  65. INIT_LIST_HEAD(&mnt->mnt_share);
  66. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  67. INIT_LIST_HEAD(&mnt->mnt_slave);
  68. if (name) {
  69. int size = strlen(name) + 1;
  70. char *newname = kmalloc(size, GFP_KERNEL);
  71. if (newname) {
  72. memcpy(newname, name, size);
  73. mnt->mnt_devname = newname;
  74. }
  75. }
  76. }
  77. return mnt;
  78. }
  79. void free_vfsmnt(struct vfsmount *mnt)
  80. {
  81. kfree(mnt->mnt_devname);
  82. kmem_cache_free(mnt_cache, mnt);
  83. }
  84. /*
  85. * find the first or last mount at @dentry on vfsmount @mnt depending on
  86. * @dir. If @dir is set return the first mount else return the last mount.
  87. */
  88. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  89. int dir)
  90. {
  91. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  92. struct list_head *tmp = head;
  93. struct vfsmount *p, *found = NULL;
  94. for (;;) {
  95. tmp = dir ? tmp->next : tmp->prev;
  96. p = NULL;
  97. if (tmp == head)
  98. break;
  99. p = list_entry(tmp, struct vfsmount, mnt_hash);
  100. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  101. found = p;
  102. break;
  103. }
  104. }
  105. return found;
  106. }
  107. /*
  108. * lookup_mnt increments the ref count before returning
  109. * the vfsmount struct.
  110. */
  111. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  112. {
  113. struct vfsmount *child_mnt;
  114. spin_lock(&vfsmount_lock);
  115. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  116. mntget(child_mnt);
  117. spin_unlock(&vfsmount_lock);
  118. return child_mnt;
  119. }
  120. static inline int check_mnt(struct vfsmount *mnt)
  121. {
  122. return mnt->mnt_namespace == current->namespace;
  123. }
  124. static void touch_namespace(struct namespace *ns)
  125. {
  126. if (ns) {
  127. ns->event = ++event;
  128. wake_up_interruptible(&ns->poll);
  129. }
  130. }
  131. static void __touch_namespace(struct namespace *ns)
  132. {
  133. if (ns && ns->event != event) {
  134. ns->event = event;
  135. wake_up_interruptible(&ns->poll);
  136. }
  137. }
  138. static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
  139. {
  140. old_nd->dentry = mnt->mnt_mountpoint;
  141. old_nd->mnt = mnt->mnt_parent;
  142. mnt->mnt_parent = mnt;
  143. mnt->mnt_mountpoint = mnt->mnt_root;
  144. list_del_init(&mnt->mnt_child);
  145. list_del_init(&mnt->mnt_hash);
  146. old_nd->dentry->d_mounted--;
  147. }
  148. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  149. struct vfsmount *child_mnt)
  150. {
  151. child_mnt->mnt_parent = mntget(mnt);
  152. child_mnt->mnt_mountpoint = dget(dentry);
  153. dentry->d_mounted++;
  154. }
  155. static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
  156. {
  157. mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
  158. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  159. hash(nd->mnt, nd->dentry));
  160. list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
  161. }
  162. /*
  163. * the caller must hold vfsmount_lock
  164. */
  165. static void commit_tree(struct vfsmount *mnt)
  166. {
  167. struct vfsmount *parent = mnt->mnt_parent;
  168. struct vfsmount *m;
  169. LIST_HEAD(head);
  170. struct namespace *n = parent->mnt_namespace;
  171. BUG_ON(parent == mnt);
  172. list_add_tail(&head, &mnt->mnt_list);
  173. list_for_each_entry(m, &head, mnt_list)
  174. m->mnt_namespace = n;
  175. list_splice(&head, n->list.prev);
  176. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  177. hash(parent, mnt->mnt_mountpoint));
  178. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  179. touch_namespace(n);
  180. }
  181. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  182. {
  183. struct list_head *next = p->mnt_mounts.next;
  184. if (next == &p->mnt_mounts) {
  185. while (1) {
  186. if (p == root)
  187. return NULL;
  188. next = p->mnt_child.next;
  189. if (next != &p->mnt_parent->mnt_mounts)
  190. break;
  191. p = p->mnt_parent;
  192. }
  193. }
  194. return list_entry(next, struct vfsmount, mnt_child);
  195. }
  196. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  197. {
  198. struct list_head *prev = p->mnt_mounts.prev;
  199. while (prev != &p->mnt_mounts) {
  200. p = list_entry(prev, struct vfsmount, mnt_child);
  201. prev = p->mnt_mounts.prev;
  202. }
  203. return p;
  204. }
  205. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  206. int flag)
  207. {
  208. struct super_block *sb = old->mnt_sb;
  209. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  210. if (mnt) {
  211. mnt->mnt_flags = old->mnt_flags;
  212. atomic_inc(&sb->s_active);
  213. mnt->mnt_sb = sb;
  214. mnt->mnt_root = dget(root);
  215. mnt->mnt_mountpoint = mnt->mnt_root;
  216. mnt->mnt_parent = mnt;
  217. if (flag & CL_SLAVE) {
  218. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  219. mnt->mnt_master = old;
  220. CLEAR_MNT_SHARED(mnt);
  221. } else {
  222. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  223. list_add(&mnt->mnt_share, &old->mnt_share);
  224. if (IS_MNT_SLAVE(old))
  225. list_add(&mnt->mnt_slave, &old->mnt_slave);
  226. mnt->mnt_master = old->mnt_master;
  227. }
  228. if (flag & CL_MAKE_SHARED)
  229. set_mnt_shared(mnt);
  230. /* stick the duplicate mount on the same expiry list
  231. * as the original if that was on one */
  232. if (flag & CL_EXPIRE) {
  233. spin_lock(&vfsmount_lock);
  234. if (!list_empty(&old->mnt_expire))
  235. list_add(&mnt->mnt_expire, &old->mnt_expire);
  236. spin_unlock(&vfsmount_lock);
  237. }
  238. }
  239. return mnt;
  240. }
  241. static inline void __mntput(struct vfsmount *mnt)
  242. {
  243. struct super_block *sb = mnt->mnt_sb;
  244. dput(mnt->mnt_root);
  245. free_vfsmnt(mnt);
  246. deactivate_super(sb);
  247. }
  248. void mntput_no_expire(struct vfsmount *mnt)
  249. {
  250. repeat:
  251. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  252. if (likely(!mnt->mnt_pinned)) {
  253. spin_unlock(&vfsmount_lock);
  254. __mntput(mnt);
  255. return;
  256. }
  257. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  258. mnt->mnt_pinned = 0;
  259. spin_unlock(&vfsmount_lock);
  260. acct_auto_close_mnt(mnt);
  261. security_sb_umount_close(mnt);
  262. goto repeat;
  263. }
  264. }
  265. EXPORT_SYMBOL(mntput_no_expire);
  266. void mnt_pin(struct vfsmount *mnt)
  267. {
  268. spin_lock(&vfsmount_lock);
  269. mnt->mnt_pinned++;
  270. spin_unlock(&vfsmount_lock);
  271. }
  272. EXPORT_SYMBOL(mnt_pin);
  273. void mnt_unpin(struct vfsmount *mnt)
  274. {
  275. spin_lock(&vfsmount_lock);
  276. if (mnt->mnt_pinned) {
  277. atomic_inc(&mnt->mnt_count);
  278. mnt->mnt_pinned--;
  279. }
  280. spin_unlock(&vfsmount_lock);
  281. }
  282. EXPORT_SYMBOL(mnt_unpin);
  283. /* iterator */
  284. static void *m_start(struct seq_file *m, loff_t *pos)
  285. {
  286. struct namespace *n = m->private;
  287. struct list_head *p;
  288. loff_t l = *pos;
  289. down_read(&namespace_sem);
  290. list_for_each(p, &n->list)
  291. if (!l--)
  292. return list_entry(p, struct vfsmount, mnt_list);
  293. return NULL;
  294. }
  295. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  296. {
  297. struct namespace *n = m->private;
  298. struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
  299. (*pos)++;
  300. return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
  301. }
  302. static void m_stop(struct seq_file *m, void *v)
  303. {
  304. up_read(&namespace_sem);
  305. }
  306. static inline void mangle(struct seq_file *m, const char *s)
  307. {
  308. seq_escape(m, s, " \t\n\\");
  309. }
  310. static int show_vfsmnt(struct seq_file *m, void *v)
  311. {
  312. struct vfsmount *mnt = v;
  313. int err = 0;
  314. static struct proc_fs_info {
  315. int flag;
  316. char *str;
  317. } fs_info[] = {
  318. { MS_SYNCHRONOUS, ",sync" },
  319. { MS_DIRSYNC, ",dirsync" },
  320. { MS_MANDLOCK, ",mand" },
  321. { 0, NULL }
  322. };
  323. static struct proc_fs_info mnt_info[] = {
  324. { MNT_NOSUID, ",nosuid" },
  325. { MNT_NODEV, ",nodev" },
  326. { MNT_NOEXEC, ",noexec" },
  327. { MNT_NOATIME, ",noatime" },
  328. { MNT_NODIRATIME, ",nodiratime" },
  329. { 0, NULL }
  330. };
  331. struct proc_fs_info *fs_infop;
  332. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  333. seq_putc(m, ' ');
  334. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  335. seq_putc(m, ' ');
  336. mangle(m, mnt->mnt_sb->s_type->name);
  337. seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
  338. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  339. if (mnt->mnt_sb->s_flags & fs_infop->flag)
  340. seq_puts(m, fs_infop->str);
  341. }
  342. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  343. if (mnt->mnt_flags & fs_infop->flag)
  344. seq_puts(m, fs_infop->str);
  345. }
  346. if (mnt->mnt_sb->s_op->show_options)
  347. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  348. seq_puts(m, " 0 0\n");
  349. return err;
  350. }
  351. struct seq_operations mounts_op = {
  352. .start = m_start,
  353. .next = m_next,
  354. .stop = m_stop,
  355. .show = show_vfsmnt
  356. };
  357. static int show_vfsstat(struct seq_file *m, void *v)
  358. {
  359. struct vfsmount *mnt = v;
  360. int err = 0;
  361. /* device */
  362. if (mnt->mnt_devname) {
  363. seq_puts(m, "device ");
  364. mangle(m, mnt->mnt_devname);
  365. } else
  366. seq_puts(m, "no device");
  367. /* mount point */
  368. seq_puts(m, " mounted on ");
  369. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  370. seq_putc(m, ' ');
  371. /* file system type */
  372. seq_puts(m, "with fstype ");
  373. mangle(m, mnt->mnt_sb->s_type->name);
  374. /* optional statistics */
  375. if (mnt->mnt_sb->s_op->show_stats) {
  376. seq_putc(m, ' ');
  377. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  378. }
  379. seq_putc(m, '\n');
  380. return err;
  381. }
  382. struct seq_operations mountstats_op = {
  383. .start = m_start,
  384. .next = m_next,
  385. .stop = m_stop,
  386. .show = show_vfsstat,
  387. };
  388. /**
  389. * may_umount_tree - check if a mount tree is busy
  390. * @mnt: root of mount tree
  391. *
  392. * This is called to check if a tree of mounts has any
  393. * open files, pwds, chroots or sub mounts that are
  394. * busy.
  395. */
  396. int may_umount_tree(struct vfsmount *mnt)
  397. {
  398. int actual_refs = 0;
  399. int minimum_refs = 0;
  400. struct vfsmount *p;
  401. spin_lock(&vfsmount_lock);
  402. for (p = mnt; p; p = next_mnt(p, mnt)) {
  403. actual_refs += atomic_read(&p->mnt_count);
  404. minimum_refs += 2;
  405. }
  406. spin_unlock(&vfsmount_lock);
  407. if (actual_refs > minimum_refs)
  408. return 0;
  409. return 1;
  410. }
  411. EXPORT_SYMBOL(may_umount_tree);
  412. /**
  413. * may_umount - check if a mount point is busy
  414. * @mnt: root of mount
  415. *
  416. * This is called to check if a mount point has any
  417. * open files, pwds, chroots or sub mounts. If the
  418. * mount has sub mounts this will return busy
  419. * regardless of whether the sub mounts are busy.
  420. *
  421. * Doesn't take quota and stuff into account. IOW, in some cases it will
  422. * give false negatives. The main reason why it's here is that we need
  423. * a non-destructive way to look for easily umountable filesystems.
  424. */
  425. int may_umount(struct vfsmount *mnt)
  426. {
  427. int ret = 1;
  428. spin_lock(&vfsmount_lock);
  429. if (propagate_mount_busy(mnt, 2))
  430. ret = 0;
  431. spin_unlock(&vfsmount_lock);
  432. return ret;
  433. }
  434. EXPORT_SYMBOL(may_umount);
  435. void release_mounts(struct list_head *head)
  436. {
  437. struct vfsmount *mnt;
  438. while (!list_empty(head)) {
  439. mnt = list_entry(head->next, struct vfsmount, mnt_hash);
  440. list_del_init(&mnt->mnt_hash);
  441. if (mnt->mnt_parent != mnt) {
  442. struct dentry *dentry;
  443. struct vfsmount *m;
  444. spin_lock(&vfsmount_lock);
  445. dentry = mnt->mnt_mountpoint;
  446. m = mnt->mnt_parent;
  447. mnt->mnt_mountpoint = mnt->mnt_root;
  448. mnt->mnt_parent = mnt;
  449. spin_unlock(&vfsmount_lock);
  450. dput(dentry);
  451. mntput(m);
  452. }
  453. mntput(mnt);
  454. }
  455. }
  456. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  457. {
  458. struct vfsmount *p;
  459. for (p = mnt; p; p = next_mnt(p, mnt)) {
  460. list_del(&p->mnt_hash);
  461. list_add(&p->mnt_hash, kill);
  462. }
  463. if (propagate)
  464. propagate_umount(kill);
  465. list_for_each_entry(p, kill, mnt_hash) {
  466. list_del_init(&p->mnt_expire);
  467. list_del_init(&p->mnt_list);
  468. __touch_namespace(p->mnt_namespace);
  469. p->mnt_namespace = NULL;
  470. list_del_init(&p->mnt_child);
  471. if (p->mnt_parent != p)
  472. p->mnt_mountpoint->d_mounted--;
  473. change_mnt_propagation(p, MS_PRIVATE);
  474. }
  475. }
  476. static int do_umount(struct vfsmount *mnt, int flags)
  477. {
  478. struct super_block *sb = mnt->mnt_sb;
  479. int retval;
  480. LIST_HEAD(umount_list);
  481. retval = security_sb_umount(mnt, flags);
  482. if (retval)
  483. return retval;
  484. /*
  485. * Allow userspace to request a mountpoint be expired rather than
  486. * unmounting unconditionally. Unmount only happens if:
  487. * (1) the mark is already set (the mark is cleared by mntput())
  488. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  489. */
  490. if (flags & MNT_EXPIRE) {
  491. if (mnt == current->fs->rootmnt ||
  492. flags & (MNT_FORCE | MNT_DETACH))
  493. return -EINVAL;
  494. if (atomic_read(&mnt->mnt_count) != 2)
  495. return -EBUSY;
  496. if (!xchg(&mnt->mnt_expiry_mark, 1))
  497. return -EAGAIN;
  498. }
  499. /*
  500. * If we may have to abort operations to get out of this
  501. * mount, and they will themselves hold resources we must
  502. * allow the fs to do things. In the Unix tradition of
  503. * 'Gee thats tricky lets do it in userspace' the umount_begin
  504. * might fail to complete on the first run through as other tasks
  505. * must return, and the like. Thats for the mount program to worry
  506. * about for the moment.
  507. */
  508. lock_kernel();
  509. if (sb->s_op->umount_begin)
  510. sb->s_op->umount_begin(mnt, flags);
  511. unlock_kernel();
  512. /*
  513. * No sense to grab the lock for this test, but test itself looks
  514. * somewhat bogus. Suggestions for better replacement?
  515. * Ho-hum... In principle, we might treat that as umount + switch
  516. * to rootfs. GC would eventually take care of the old vfsmount.
  517. * Actually it makes sense, especially if rootfs would contain a
  518. * /reboot - static binary that would close all descriptors and
  519. * call reboot(9). Then init(8) could umount root and exec /reboot.
  520. */
  521. if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
  522. /*
  523. * Special case for "unmounting" root ...
  524. * we just try to remount it readonly.
  525. */
  526. down_write(&sb->s_umount);
  527. if (!(sb->s_flags & MS_RDONLY)) {
  528. lock_kernel();
  529. DQUOT_OFF(sb);
  530. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  531. unlock_kernel();
  532. }
  533. up_write(&sb->s_umount);
  534. return retval;
  535. }
  536. down_write(&namespace_sem);
  537. spin_lock(&vfsmount_lock);
  538. event++;
  539. retval = -EBUSY;
  540. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  541. if (!list_empty(&mnt->mnt_list))
  542. umount_tree(mnt, 1, &umount_list);
  543. retval = 0;
  544. }
  545. spin_unlock(&vfsmount_lock);
  546. if (retval)
  547. security_sb_umount_busy(mnt);
  548. up_write(&namespace_sem);
  549. release_mounts(&umount_list);
  550. return retval;
  551. }
  552. /*
  553. * Now umount can handle mount points as well as block devices.
  554. * This is important for filesystems which use unnamed block devices.
  555. *
  556. * We now support a flag for forced unmount like the other 'big iron'
  557. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  558. */
  559. asmlinkage long sys_umount(char __user * name, int flags)
  560. {
  561. struct nameidata nd;
  562. int retval;
  563. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  564. if (retval)
  565. goto out;
  566. retval = -EINVAL;
  567. if (nd.dentry != nd.mnt->mnt_root)
  568. goto dput_and_out;
  569. if (!check_mnt(nd.mnt))
  570. goto dput_and_out;
  571. retval = -EPERM;
  572. if (!capable(CAP_SYS_ADMIN))
  573. goto dput_and_out;
  574. retval = do_umount(nd.mnt, flags);
  575. dput_and_out:
  576. path_release_on_umount(&nd);
  577. out:
  578. return retval;
  579. }
  580. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  581. /*
  582. * The 2.0 compatible umount. No flags.
  583. */
  584. asmlinkage long sys_oldumount(char __user * name)
  585. {
  586. return sys_umount(name, 0);
  587. }
  588. #endif
  589. static int mount_is_safe(struct nameidata *nd)
  590. {
  591. if (capable(CAP_SYS_ADMIN))
  592. return 0;
  593. return -EPERM;
  594. #ifdef notyet
  595. if (S_ISLNK(nd->dentry->d_inode->i_mode))
  596. return -EPERM;
  597. if (nd->dentry->d_inode->i_mode & S_ISVTX) {
  598. if (current->uid != nd->dentry->d_inode->i_uid)
  599. return -EPERM;
  600. }
  601. if (vfs_permission(nd, MAY_WRITE))
  602. return -EPERM;
  603. return 0;
  604. #endif
  605. }
  606. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  607. {
  608. while (1) {
  609. if (d == dentry)
  610. return 1;
  611. if (d == NULL || d == d->d_parent)
  612. return 0;
  613. d = d->d_parent;
  614. }
  615. }
  616. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  617. int flag)
  618. {
  619. struct vfsmount *res, *p, *q, *r, *s;
  620. struct nameidata nd;
  621. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  622. return NULL;
  623. res = q = clone_mnt(mnt, dentry, flag);
  624. if (!q)
  625. goto Enomem;
  626. q->mnt_mountpoint = mnt->mnt_mountpoint;
  627. p = mnt;
  628. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  629. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  630. continue;
  631. for (s = r; s; s = next_mnt(s, r)) {
  632. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  633. s = skip_mnt_tree(s);
  634. continue;
  635. }
  636. while (p != s->mnt_parent) {
  637. p = p->mnt_parent;
  638. q = q->mnt_parent;
  639. }
  640. p = s;
  641. nd.mnt = q;
  642. nd.dentry = p->mnt_mountpoint;
  643. q = clone_mnt(p, p->mnt_root, flag);
  644. if (!q)
  645. goto Enomem;
  646. spin_lock(&vfsmount_lock);
  647. list_add_tail(&q->mnt_list, &res->mnt_list);
  648. attach_mnt(q, &nd);
  649. spin_unlock(&vfsmount_lock);
  650. }
  651. }
  652. return res;
  653. Enomem:
  654. if (res) {
  655. LIST_HEAD(umount_list);
  656. spin_lock(&vfsmount_lock);
  657. umount_tree(res, 0, &umount_list);
  658. spin_unlock(&vfsmount_lock);
  659. release_mounts(&umount_list);
  660. }
  661. return NULL;
  662. }
  663. /*
  664. * @source_mnt : mount tree to be attached
  665. * @nd : place the mount tree @source_mnt is attached
  666. * @parent_nd : if non-null, detach the source_mnt from its parent and
  667. * store the parent mount and mountpoint dentry.
  668. * (done when source_mnt is moved)
  669. *
  670. * NOTE: in the table below explains the semantics when a source mount
  671. * of a given type is attached to a destination mount of a given type.
  672. * ---------------------------------------------------------------------------
  673. * | BIND MOUNT OPERATION |
  674. * |**************************************************************************
  675. * | source-->| shared | private | slave | unbindable |
  676. * | dest | | | | |
  677. * | | | | | | |
  678. * | v | | | | |
  679. * |**************************************************************************
  680. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  681. * | | | | | |
  682. * |non-shared| shared (+) | private | slave (*) | invalid |
  683. * ***************************************************************************
  684. * A bind operation clones the source mount and mounts the clone on the
  685. * destination mount.
  686. *
  687. * (++) the cloned mount is propagated to all the mounts in the propagation
  688. * tree of the destination mount and the cloned mount is added to
  689. * the peer group of the source mount.
  690. * (+) the cloned mount is created under the destination mount and is marked
  691. * as shared. The cloned mount is added to the peer group of the source
  692. * mount.
  693. * (+++) the mount is propagated to all the mounts in the propagation tree
  694. * of the destination mount and the cloned mount is made slave
  695. * of the same master as that of the source mount. The cloned mount
  696. * is marked as 'shared and slave'.
  697. * (*) the cloned mount is made a slave of the same master as that of the
  698. * source mount.
  699. *
  700. * ---------------------------------------------------------------------------
  701. * | MOVE MOUNT OPERATION |
  702. * |**************************************************************************
  703. * | source-->| shared | private | slave | unbindable |
  704. * | dest | | | | |
  705. * | | | | | | |
  706. * | v | | | | |
  707. * |**************************************************************************
  708. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  709. * | | | | | |
  710. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  711. * ***************************************************************************
  712. *
  713. * (+) the mount is moved to the destination. And is then propagated to
  714. * all the mounts in the propagation tree of the destination mount.
  715. * (+*) the mount is moved to the destination.
  716. * (+++) the mount is moved to the destination and is then propagated to
  717. * all the mounts belonging to the destination mount's propagation tree.
  718. * the mount is marked as 'shared and slave'.
  719. * (*) the mount continues to be a slave at the new location.
  720. *
  721. * if the source mount is a tree, the operations explained above is
  722. * applied to each mount in the tree.
  723. * Must be called without spinlocks held, since this function can sleep
  724. * in allocations.
  725. */
  726. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  727. struct nameidata *nd, struct nameidata *parent_nd)
  728. {
  729. LIST_HEAD(tree_list);
  730. struct vfsmount *dest_mnt = nd->mnt;
  731. struct dentry *dest_dentry = nd->dentry;
  732. struct vfsmount *child, *p;
  733. if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
  734. return -EINVAL;
  735. if (IS_MNT_SHARED(dest_mnt)) {
  736. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  737. set_mnt_shared(p);
  738. }
  739. spin_lock(&vfsmount_lock);
  740. if (parent_nd) {
  741. detach_mnt(source_mnt, parent_nd);
  742. attach_mnt(source_mnt, nd);
  743. touch_namespace(current->namespace);
  744. } else {
  745. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  746. commit_tree(source_mnt);
  747. }
  748. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  749. list_del_init(&child->mnt_hash);
  750. commit_tree(child);
  751. }
  752. spin_unlock(&vfsmount_lock);
  753. return 0;
  754. }
  755. static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
  756. {
  757. int err;
  758. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  759. return -EINVAL;
  760. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  761. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  762. return -ENOTDIR;
  763. err = -ENOENT;
  764. mutex_lock(&nd->dentry->d_inode->i_mutex);
  765. if (IS_DEADDIR(nd->dentry->d_inode))
  766. goto out_unlock;
  767. err = security_sb_check_sb(mnt, nd);
  768. if (err)
  769. goto out_unlock;
  770. err = -ENOENT;
  771. if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
  772. err = attach_recursive_mnt(mnt, nd, NULL);
  773. out_unlock:
  774. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  775. if (!err)
  776. security_sb_post_addmount(mnt, nd);
  777. return err;
  778. }
  779. /*
  780. * recursively change the type of the mountpoint.
  781. */
  782. static int do_change_type(struct nameidata *nd, int flag)
  783. {
  784. struct vfsmount *m, *mnt = nd->mnt;
  785. int recurse = flag & MS_REC;
  786. int type = flag & ~MS_REC;
  787. if (nd->dentry != nd->mnt->mnt_root)
  788. return -EINVAL;
  789. down_write(&namespace_sem);
  790. spin_lock(&vfsmount_lock);
  791. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  792. change_mnt_propagation(m, type);
  793. spin_unlock(&vfsmount_lock);
  794. up_write(&namespace_sem);
  795. return 0;
  796. }
  797. /*
  798. * do loopback mount.
  799. */
  800. static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
  801. {
  802. struct nameidata old_nd;
  803. struct vfsmount *mnt = NULL;
  804. int err = mount_is_safe(nd);
  805. if (err)
  806. return err;
  807. if (!old_name || !*old_name)
  808. return -EINVAL;
  809. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  810. if (err)
  811. return err;
  812. down_write(&namespace_sem);
  813. err = -EINVAL;
  814. if (IS_MNT_UNBINDABLE(old_nd.mnt))
  815. goto out;
  816. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  817. goto out;
  818. err = -ENOMEM;
  819. if (recurse)
  820. mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
  821. else
  822. mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
  823. if (!mnt)
  824. goto out;
  825. err = graft_tree(mnt, nd);
  826. if (err) {
  827. LIST_HEAD(umount_list);
  828. spin_lock(&vfsmount_lock);
  829. umount_tree(mnt, 0, &umount_list);
  830. spin_unlock(&vfsmount_lock);
  831. release_mounts(&umount_list);
  832. }
  833. out:
  834. up_write(&namespace_sem);
  835. path_release(&old_nd);
  836. return err;
  837. }
  838. /*
  839. * change filesystem flags. dir should be a physical root of filesystem.
  840. * If you've mounted a non-root directory somewhere and want to do remount
  841. * on it - tough luck.
  842. */
  843. static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  844. void *data)
  845. {
  846. int err;
  847. struct super_block *sb = nd->mnt->mnt_sb;
  848. if (!capable(CAP_SYS_ADMIN))
  849. return -EPERM;
  850. if (!check_mnt(nd->mnt))
  851. return -EINVAL;
  852. if (nd->dentry != nd->mnt->mnt_root)
  853. return -EINVAL;
  854. down_write(&sb->s_umount);
  855. err = do_remount_sb(sb, flags, data, 0);
  856. if (!err)
  857. nd->mnt->mnt_flags = mnt_flags;
  858. up_write(&sb->s_umount);
  859. if (!err)
  860. security_sb_post_remount(nd->mnt, flags, data);
  861. return err;
  862. }
  863. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  864. {
  865. struct vfsmount *p;
  866. for (p = mnt; p; p = next_mnt(p, mnt)) {
  867. if (IS_MNT_UNBINDABLE(p))
  868. return 1;
  869. }
  870. return 0;
  871. }
  872. static int do_move_mount(struct nameidata *nd, char *old_name)
  873. {
  874. struct nameidata old_nd, parent_nd;
  875. struct vfsmount *p;
  876. int err = 0;
  877. if (!capable(CAP_SYS_ADMIN))
  878. return -EPERM;
  879. if (!old_name || !*old_name)
  880. return -EINVAL;
  881. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  882. if (err)
  883. return err;
  884. down_write(&namespace_sem);
  885. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  886. ;
  887. err = -EINVAL;
  888. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  889. goto out;
  890. err = -ENOENT;
  891. mutex_lock(&nd->dentry->d_inode->i_mutex);
  892. if (IS_DEADDIR(nd->dentry->d_inode))
  893. goto out1;
  894. if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
  895. goto out1;
  896. err = -EINVAL;
  897. if (old_nd.dentry != old_nd.mnt->mnt_root)
  898. goto out1;
  899. if (old_nd.mnt == old_nd.mnt->mnt_parent)
  900. goto out1;
  901. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  902. S_ISDIR(old_nd.dentry->d_inode->i_mode))
  903. goto out1;
  904. /*
  905. * Don't move a mount residing in a shared parent.
  906. */
  907. if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
  908. goto out1;
  909. /*
  910. * Don't move a mount tree containing unbindable mounts to a destination
  911. * mount which is shared.
  912. */
  913. if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
  914. goto out1;
  915. err = -ELOOP;
  916. for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
  917. if (p == old_nd.mnt)
  918. goto out1;
  919. if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
  920. goto out1;
  921. spin_lock(&vfsmount_lock);
  922. /* if the mount is moved, it should no longer be expire
  923. * automatically */
  924. list_del_init(&old_nd.mnt->mnt_expire);
  925. spin_unlock(&vfsmount_lock);
  926. out1:
  927. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  928. out:
  929. up_write(&namespace_sem);
  930. if (!err)
  931. path_release(&parent_nd);
  932. path_release(&old_nd);
  933. return err;
  934. }
  935. /*
  936. * create a new mount for userspace and request it to be added into the
  937. * namespace's tree
  938. */
  939. static int do_new_mount(struct nameidata *nd, char *type, int flags,
  940. int mnt_flags, char *name, void *data)
  941. {
  942. struct vfsmount *mnt;
  943. if (!type || !memchr(type, 0, PAGE_SIZE))
  944. return -EINVAL;
  945. /* we need capabilities... */
  946. if (!capable(CAP_SYS_ADMIN))
  947. return -EPERM;
  948. mnt = do_kern_mount(type, flags, name, data);
  949. if (IS_ERR(mnt))
  950. return PTR_ERR(mnt);
  951. return do_add_mount(mnt, nd, mnt_flags, NULL);
  952. }
  953. /*
  954. * add a mount into a namespace's mount tree
  955. * - provide the option of adding the new mount to an expiration list
  956. */
  957. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  958. int mnt_flags, struct list_head *fslist)
  959. {
  960. int err;
  961. down_write(&namespace_sem);
  962. /* Something was mounted here while we slept */
  963. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  964. ;
  965. err = -EINVAL;
  966. if (!check_mnt(nd->mnt))
  967. goto unlock;
  968. /* Refuse the same filesystem on the same mount point */
  969. err = -EBUSY;
  970. if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
  971. nd->mnt->mnt_root == nd->dentry)
  972. goto unlock;
  973. err = -EINVAL;
  974. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  975. goto unlock;
  976. newmnt->mnt_flags = mnt_flags;
  977. if ((err = graft_tree(newmnt, nd)))
  978. goto unlock;
  979. if (fslist) {
  980. /* add to the specified expiration list */
  981. spin_lock(&vfsmount_lock);
  982. list_add_tail(&newmnt->mnt_expire, fslist);
  983. spin_unlock(&vfsmount_lock);
  984. }
  985. up_write(&namespace_sem);
  986. return 0;
  987. unlock:
  988. up_write(&namespace_sem);
  989. mntput(newmnt);
  990. return err;
  991. }
  992. EXPORT_SYMBOL_GPL(do_add_mount);
  993. static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
  994. struct list_head *umounts)
  995. {
  996. spin_lock(&vfsmount_lock);
  997. /*
  998. * Check if mount is still attached, if not, let whoever holds it deal
  999. * with the sucker
  1000. */
  1001. if (mnt->mnt_parent == mnt) {
  1002. spin_unlock(&vfsmount_lock);
  1003. return;
  1004. }
  1005. /*
  1006. * Check that it is still dead: the count should now be 2 - as
  1007. * contributed by the vfsmount parent and the mntget above
  1008. */
  1009. if (!propagate_mount_busy(mnt, 2)) {
  1010. /* delete from the namespace */
  1011. touch_namespace(mnt->mnt_namespace);
  1012. list_del_init(&mnt->mnt_list);
  1013. mnt->mnt_namespace = NULL;
  1014. umount_tree(mnt, 1, umounts);
  1015. spin_unlock(&vfsmount_lock);
  1016. } else {
  1017. /*
  1018. * Someone brought it back to life whilst we didn't have any
  1019. * locks held so return it to the expiration list
  1020. */
  1021. list_add_tail(&mnt->mnt_expire, mounts);
  1022. spin_unlock(&vfsmount_lock);
  1023. }
  1024. }
  1025. /*
  1026. * go through the vfsmounts we've just consigned to the graveyard to
  1027. * - check that they're still dead
  1028. * - delete the vfsmount from the appropriate namespace under lock
  1029. * - dispose of the corpse
  1030. */
  1031. static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
  1032. {
  1033. struct namespace *namespace;
  1034. struct vfsmount *mnt;
  1035. while (!list_empty(graveyard)) {
  1036. LIST_HEAD(umounts);
  1037. mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
  1038. list_del_init(&mnt->mnt_expire);
  1039. /* don't do anything if the namespace is dead - all the
  1040. * vfsmounts from it are going away anyway */
  1041. namespace = mnt->mnt_namespace;
  1042. if (!namespace || !namespace->root)
  1043. continue;
  1044. get_namespace(namespace);
  1045. spin_unlock(&vfsmount_lock);
  1046. down_write(&namespace_sem);
  1047. expire_mount(mnt, mounts, &umounts);
  1048. up_write(&namespace_sem);
  1049. release_mounts(&umounts);
  1050. mntput(mnt);
  1051. put_namespace(namespace);
  1052. spin_lock(&vfsmount_lock);
  1053. }
  1054. }
  1055. /*
  1056. * process a list of expirable mountpoints with the intent of discarding any
  1057. * mountpoints that aren't in use and haven't been touched since last we came
  1058. * here
  1059. */
  1060. void mark_mounts_for_expiry(struct list_head *mounts)
  1061. {
  1062. struct vfsmount *mnt, *next;
  1063. LIST_HEAD(graveyard);
  1064. if (list_empty(mounts))
  1065. return;
  1066. spin_lock(&vfsmount_lock);
  1067. /* extract from the expiration list every vfsmount that matches the
  1068. * following criteria:
  1069. * - only referenced by its parent vfsmount
  1070. * - still marked for expiry (marked on the last call here; marks are
  1071. * cleared by mntput())
  1072. */
  1073. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1074. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1075. atomic_read(&mnt->mnt_count) != 1)
  1076. continue;
  1077. mntget(mnt);
  1078. list_move(&mnt->mnt_expire, &graveyard);
  1079. }
  1080. expire_mount_list(&graveyard, mounts);
  1081. spin_unlock(&vfsmount_lock);
  1082. }
  1083. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1084. /*
  1085. * Ripoff of 'select_parent()'
  1086. *
  1087. * search the list of submounts for a given mountpoint, and move any
  1088. * shrinkable submounts to the 'graveyard' list.
  1089. */
  1090. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1091. {
  1092. struct vfsmount *this_parent = parent;
  1093. struct list_head *next;
  1094. int found = 0;
  1095. repeat:
  1096. next = this_parent->mnt_mounts.next;
  1097. resume:
  1098. while (next != &this_parent->mnt_mounts) {
  1099. struct list_head *tmp = next;
  1100. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1101. next = tmp->next;
  1102. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1103. continue;
  1104. /*
  1105. * Descend a level if the d_mounts list is non-empty.
  1106. */
  1107. if (!list_empty(&mnt->mnt_mounts)) {
  1108. this_parent = mnt;
  1109. goto repeat;
  1110. }
  1111. if (!propagate_mount_busy(mnt, 1)) {
  1112. mntget(mnt);
  1113. list_move_tail(&mnt->mnt_expire, graveyard);
  1114. found++;
  1115. }
  1116. }
  1117. /*
  1118. * All done at this level ... ascend and resume the search
  1119. */
  1120. if (this_parent != parent) {
  1121. next = this_parent->mnt_child.next;
  1122. this_parent = this_parent->mnt_parent;
  1123. goto resume;
  1124. }
  1125. return found;
  1126. }
  1127. /*
  1128. * process a list of expirable mountpoints with the intent of discarding any
  1129. * submounts of a specific parent mountpoint
  1130. */
  1131. void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
  1132. {
  1133. LIST_HEAD(graveyard);
  1134. int found;
  1135. spin_lock(&vfsmount_lock);
  1136. /* extract submounts of 'mountpoint' from the expiration list */
  1137. while ((found = select_submounts(mountpoint, &graveyard)) != 0)
  1138. expire_mount_list(&graveyard, mounts);
  1139. spin_unlock(&vfsmount_lock);
  1140. }
  1141. EXPORT_SYMBOL_GPL(shrink_submounts);
  1142. /*
  1143. * Some copy_from_user() implementations do not return the exact number of
  1144. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1145. * Note that this function differs from copy_from_user() in that it will oops
  1146. * on bad values of `to', rather than returning a short copy.
  1147. */
  1148. static long exact_copy_from_user(void *to, const void __user * from,
  1149. unsigned long n)
  1150. {
  1151. char *t = to;
  1152. const char __user *f = from;
  1153. char c;
  1154. if (!access_ok(VERIFY_READ, from, n))
  1155. return n;
  1156. while (n) {
  1157. if (__get_user(c, f)) {
  1158. memset(t, 0, n);
  1159. break;
  1160. }
  1161. *t++ = c;
  1162. f++;
  1163. n--;
  1164. }
  1165. return n;
  1166. }
  1167. int copy_mount_options(const void __user * data, unsigned long *where)
  1168. {
  1169. int i;
  1170. unsigned long page;
  1171. unsigned long size;
  1172. *where = 0;
  1173. if (!data)
  1174. return 0;
  1175. if (!(page = __get_free_page(GFP_KERNEL)))
  1176. return -ENOMEM;
  1177. /* We only care that *some* data at the address the user
  1178. * gave us is valid. Just in case, we'll zero
  1179. * the remainder of the page.
  1180. */
  1181. /* copy_from_user cannot cross TASK_SIZE ! */
  1182. size = TASK_SIZE - (unsigned long)data;
  1183. if (size > PAGE_SIZE)
  1184. size = PAGE_SIZE;
  1185. i = size - exact_copy_from_user((void *)page, data, size);
  1186. if (!i) {
  1187. free_page(page);
  1188. return -EFAULT;
  1189. }
  1190. if (i != PAGE_SIZE)
  1191. memset((char *)page + i, 0, PAGE_SIZE - i);
  1192. *where = page;
  1193. return 0;
  1194. }
  1195. /*
  1196. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1197. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1198. *
  1199. * data is a (void *) that can point to any structure up to
  1200. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1201. * information (or be NULL).
  1202. *
  1203. * Pre-0.97 versions of mount() didn't have a flags word.
  1204. * When the flags word was introduced its top half was required
  1205. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1206. * Therefore, if this magic number is present, it carries no information
  1207. * and must be discarded.
  1208. */
  1209. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1210. unsigned long flags, void *data_page)
  1211. {
  1212. struct nameidata nd;
  1213. int retval = 0;
  1214. int mnt_flags = 0;
  1215. /* Discard magic */
  1216. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1217. flags &= ~MS_MGC_MSK;
  1218. /* Basic sanity checks */
  1219. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1220. return -EINVAL;
  1221. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1222. return -EINVAL;
  1223. if (data_page)
  1224. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1225. /* Separate the per-mountpoint flags */
  1226. if (flags & MS_NOSUID)
  1227. mnt_flags |= MNT_NOSUID;
  1228. if (flags & MS_NODEV)
  1229. mnt_flags |= MNT_NODEV;
  1230. if (flags & MS_NOEXEC)
  1231. mnt_flags |= MNT_NOEXEC;
  1232. if (flags & MS_NOATIME)
  1233. mnt_flags |= MNT_NOATIME;
  1234. if (flags & MS_NODIRATIME)
  1235. mnt_flags |= MNT_NODIRATIME;
  1236. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1237. MS_NOATIME | MS_NODIRATIME);
  1238. /* ... and get the mountpoint */
  1239. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1240. if (retval)
  1241. return retval;
  1242. retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
  1243. if (retval)
  1244. goto dput_out;
  1245. if (flags & MS_REMOUNT)
  1246. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1247. data_page);
  1248. else if (flags & MS_BIND)
  1249. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1250. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1251. retval = do_change_type(&nd, flags);
  1252. else if (flags & MS_MOVE)
  1253. retval = do_move_mount(&nd, dev_name);
  1254. else
  1255. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1256. dev_name, data_page);
  1257. dput_out:
  1258. path_release(&nd);
  1259. return retval;
  1260. }
  1261. /*
  1262. * Allocate a new namespace structure and populate it with contents
  1263. * copied from the namespace of the passed in task structure.
  1264. */
  1265. struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
  1266. {
  1267. struct namespace *namespace = tsk->namespace;
  1268. struct namespace *new_ns;
  1269. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1270. struct vfsmount *p, *q;
  1271. new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
  1272. if (!new_ns)
  1273. return NULL;
  1274. atomic_set(&new_ns->count, 1);
  1275. INIT_LIST_HEAD(&new_ns->list);
  1276. init_waitqueue_head(&new_ns->poll);
  1277. new_ns->event = 0;
  1278. down_write(&namespace_sem);
  1279. /* First pass: copy the tree topology */
  1280. new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
  1281. CL_COPY_ALL | CL_EXPIRE);
  1282. if (!new_ns->root) {
  1283. up_write(&namespace_sem);
  1284. kfree(new_ns);
  1285. return NULL;
  1286. }
  1287. spin_lock(&vfsmount_lock);
  1288. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1289. spin_unlock(&vfsmount_lock);
  1290. /*
  1291. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1292. * as belonging to new namespace. We have already acquired a private
  1293. * fs_struct, so tsk->fs->lock is not needed.
  1294. */
  1295. p = namespace->root;
  1296. q = new_ns->root;
  1297. while (p) {
  1298. q->mnt_namespace = new_ns;
  1299. if (fs) {
  1300. if (p == fs->rootmnt) {
  1301. rootmnt = p;
  1302. fs->rootmnt = mntget(q);
  1303. }
  1304. if (p == fs->pwdmnt) {
  1305. pwdmnt = p;
  1306. fs->pwdmnt = mntget(q);
  1307. }
  1308. if (p == fs->altrootmnt) {
  1309. altrootmnt = p;
  1310. fs->altrootmnt = mntget(q);
  1311. }
  1312. }
  1313. p = next_mnt(p, namespace->root);
  1314. q = next_mnt(q, new_ns->root);
  1315. }
  1316. up_write(&namespace_sem);
  1317. if (rootmnt)
  1318. mntput(rootmnt);
  1319. if (pwdmnt)
  1320. mntput(pwdmnt);
  1321. if (altrootmnt)
  1322. mntput(altrootmnt);
  1323. return new_ns;
  1324. }
  1325. int copy_namespace(int flags, struct task_struct *tsk)
  1326. {
  1327. struct namespace *namespace = tsk->namespace;
  1328. struct namespace *new_ns;
  1329. int err = 0;
  1330. if (!namespace)
  1331. return 0;
  1332. get_namespace(namespace);
  1333. if (!(flags & CLONE_NEWNS))
  1334. return 0;
  1335. if (!capable(CAP_SYS_ADMIN)) {
  1336. err = -EPERM;
  1337. goto out;
  1338. }
  1339. new_ns = dup_namespace(tsk, tsk->fs);
  1340. if (!new_ns) {
  1341. err = -ENOMEM;
  1342. goto out;
  1343. }
  1344. tsk->namespace = new_ns;
  1345. out:
  1346. put_namespace(namespace);
  1347. return err;
  1348. }
  1349. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1350. char __user * type, unsigned long flags,
  1351. void __user * data)
  1352. {
  1353. int retval;
  1354. unsigned long data_page;
  1355. unsigned long type_page;
  1356. unsigned long dev_page;
  1357. char *dir_page;
  1358. retval = copy_mount_options(type, &type_page);
  1359. if (retval < 0)
  1360. return retval;
  1361. dir_page = getname(dir_name);
  1362. retval = PTR_ERR(dir_page);
  1363. if (IS_ERR(dir_page))
  1364. goto out1;
  1365. retval = copy_mount_options(dev_name, &dev_page);
  1366. if (retval < 0)
  1367. goto out2;
  1368. retval = copy_mount_options(data, &data_page);
  1369. if (retval < 0)
  1370. goto out3;
  1371. lock_kernel();
  1372. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1373. flags, (void *)data_page);
  1374. unlock_kernel();
  1375. free_page(data_page);
  1376. out3:
  1377. free_page(dev_page);
  1378. out2:
  1379. putname(dir_page);
  1380. out1:
  1381. free_page(type_page);
  1382. return retval;
  1383. }
  1384. /*
  1385. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1386. * It can block. Requires the big lock held.
  1387. */
  1388. void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
  1389. struct dentry *dentry)
  1390. {
  1391. struct dentry *old_root;
  1392. struct vfsmount *old_rootmnt;
  1393. write_lock(&fs->lock);
  1394. old_root = fs->root;
  1395. old_rootmnt = fs->rootmnt;
  1396. fs->rootmnt = mntget(mnt);
  1397. fs->root = dget(dentry);
  1398. write_unlock(&fs->lock);
  1399. if (old_root) {
  1400. dput(old_root);
  1401. mntput(old_rootmnt);
  1402. }
  1403. }
  1404. /*
  1405. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1406. * It can block. Requires the big lock held.
  1407. */
  1408. void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
  1409. struct dentry *dentry)
  1410. {
  1411. struct dentry *old_pwd;
  1412. struct vfsmount *old_pwdmnt;
  1413. write_lock(&fs->lock);
  1414. old_pwd = fs->pwd;
  1415. old_pwdmnt = fs->pwdmnt;
  1416. fs->pwdmnt = mntget(mnt);
  1417. fs->pwd = dget(dentry);
  1418. write_unlock(&fs->lock);
  1419. if (old_pwd) {
  1420. dput(old_pwd);
  1421. mntput(old_pwdmnt);
  1422. }
  1423. }
  1424. static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
  1425. {
  1426. struct task_struct *g, *p;
  1427. struct fs_struct *fs;
  1428. read_lock(&tasklist_lock);
  1429. do_each_thread(g, p) {
  1430. task_lock(p);
  1431. fs = p->fs;
  1432. if (fs) {
  1433. atomic_inc(&fs->count);
  1434. task_unlock(p);
  1435. if (fs->root == old_nd->dentry
  1436. && fs->rootmnt == old_nd->mnt)
  1437. set_fs_root(fs, new_nd->mnt, new_nd->dentry);
  1438. if (fs->pwd == old_nd->dentry
  1439. && fs->pwdmnt == old_nd->mnt)
  1440. set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
  1441. put_fs_struct(fs);
  1442. } else
  1443. task_unlock(p);
  1444. } while_each_thread(g, p);
  1445. read_unlock(&tasklist_lock);
  1446. }
  1447. /*
  1448. * pivot_root Semantics:
  1449. * Moves the root file system of the current process to the directory put_old,
  1450. * makes new_root as the new root file system of the current process, and sets
  1451. * root/cwd of all processes which had them on the current root to new_root.
  1452. *
  1453. * Restrictions:
  1454. * The new_root and put_old must be directories, and must not be on the
  1455. * same file system as the current process root. The put_old must be
  1456. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1457. * pointed to by put_old must yield the same directory as new_root. No other
  1458. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1459. *
  1460. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1461. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1462. * in this situation.
  1463. *
  1464. * Notes:
  1465. * - we don't move root/cwd if they are not at the root (reason: if something
  1466. * cared enough to change them, it's probably wrong to force them elsewhere)
  1467. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1468. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1469. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1470. * first.
  1471. */
  1472. asmlinkage long sys_pivot_root(const char __user * new_root,
  1473. const char __user * put_old)
  1474. {
  1475. struct vfsmount *tmp;
  1476. struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
  1477. int error;
  1478. if (!capable(CAP_SYS_ADMIN))
  1479. return -EPERM;
  1480. lock_kernel();
  1481. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1482. &new_nd);
  1483. if (error)
  1484. goto out0;
  1485. error = -EINVAL;
  1486. if (!check_mnt(new_nd.mnt))
  1487. goto out1;
  1488. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1489. if (error)
  1490. goto out1;
  1491. error = security_sb_pivotroot(&old_nd, &new_nd);
  1492. if (error) {
  1493. path_release(&old_nd);
  1494. goto out1;
  1495. }
  1496. read_lock(&current->fs->lock);
  1497. user_nd.mnt = mntget(current->fs->rootmnt);
  1498. user_nd.dentry = dget(current->fs->root);
  1499. read_unlock(&current->fs->lock);
  1500. down_write(&namespace_sem);
  1501. mutex_lock(&old_nd.dentry->d_inode->i_mutex);
  1502. error = -EINVAL;
  1503. if (IS_MNT_SHARED(old_nd.mnt) ||
  1504. IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
  1505. IS_MNT_SHARED(user_nd.mnt->mnt_parent))
  1506. goto out2;
  1507. if (!check_mnt(user_nd.mnt))
  1508. goto out2;
  1509. error = -ENOENT;
  1510. if (IS_DEADDIR(new_nd.dentry->d_inode))
  1511. goto out2;
  1512. if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
  1513. goto out2;
  1514. if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
  1515. goto out2;
  1516. error = -EBUSY;
  1517. if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
  1518. goto out2; /* loop, on the same file system */
  1519. error = -EINVAL;
  1520. if (user_nd.mnt->mnt_root != user_nd.dentry)
  1521. goto out2; /* not a mountpoint */
  1522. if (user_nd.mnt->mnt_parent == user_nd.mnt)
  1523. goto out2; /* not attached */
  1524. if (new_nd.mnt->mnt_root != new_nd.dentry)
  1525. goto out2; /* not a mountpoint */
  1526. if (new_nd.mnt->mnt_parent == new_nd.mnt)
  1527. goto out2; /* not attached */
  1528. tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
  1529. spin_lock(&vfsmount_lock);
  1530. if (tmp != new_nd.mnt) {
  1531. for (;;) {
  1532. if (tmp->mnt_parent == tmp)
  1533. goto out3; /* already mounted on put_old */
  1534. if (tmp->mnt_parent == new_nd.mnt)
  1535. break;
  1536. tmp = tmp->mnt_parent;
  1537. }
  1538. if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
  1539. goto out3;
  1540. } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
  1541. goto out3;
  1542. detach_mnt(new_nd.mnt, &parent_nd);
  1543. detach_mnt(user_nd.mnt, &root_parent);
  1544. attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
  1545. attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
  1546. touch_namespace(current->namespace);
  1547. spin_unlock(&vfsmount_lock);
  1548. chroot_fs_refs(&user_nd, &new_nd);
  1549. security_sb_post_pivotroot(&user_nd, &new_nd);
  1550. error = 0;
  1551. path_release(&root_parent);
  1552. path_release(&parent_nd);
  1553. out2:
  1554. mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
  1555. up_write(&namespace_sem);
  1556. path_release(&user_nd);
  1557. path_release(&old_nd);
  1558. out1:
  1559. path_release(&new_nd);
  1560. out0:
  1561. unlock_kernel();
  1562. return error;
  1563. out3:
  1564. spin_unlock(&vfsmount_lock);
  1565. goto out2;
  1566. }
  1567. static void __init init_mount_tree(void)
  1568. {
  1569. struct vfsmount *mnt;
  1570. struct namespace *namespace;
  1571. struct task_struct *g, *p;
  1572. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1573. if (IS_ERR(mnt))
  1574. panic("Can't create rootfs");
  1575. namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
  1576. if (!namespace)
  1577. panic("Can't allocate initial namespace");
  1578. atomic_set(&namespace->count, 1);
  1579. INIT_LIST_HEAD(&namespace->list);
  1580. init_waitqueue_head(&namespace->poll);
  1581. namespace->event = 0;
  1582. list_add(&mnt->mnt_list, &namespace->list);
  1583. namespace->root = mnt;
  1584. mnt->mnt_namespace = namespace;
  1585. init_task.namespace = namespace;
  1586. read_lock(&tasklist_lock);
  1587. do_each_thread(g, p) {
  1588. get_namespace(namespace);
  1589. p->namespace = namespace;
  1590. } while_each_thread(g, p);
  1591. read_unlock(&tasklist_lock);
  1592. set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
  1593. set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
  1594. }
  1595. void __init mnt_init(unsigned long mempages)
  1596. {
  1597. struct list_head *d;
  1598. unsigned int nr_hash;
  1599. int i;
  1600. init_rwsem(&namespace_sem);
  1601. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  1602. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
  1603. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  1604. if (!mount_hashtable)
  1605. panic("Failed to allocate mount hash table\n");
  1606. /*
  1607. * Find the power-of-two list-heads that can fit into the allocation..
  1608. * We don't guarantee that "sizeof(struct list_head)" is necessarily
  1609. * a power-of-two.
  1610. */
  1611. nr_hash = PAGE_SIZE / sizeof(struct list_head);
  1612. hash_bits = 0;
  1613. do {
  1614. hash_bits++;
  1615. } while ((nr_hash >> hash_bits) != 0);
  1616. hash_bits--;
  1617. /*
  1618. * Re-calculate the actual number of entries and the mask
  1619. * from the number of bits we can fit.
  1620. */
  1621. nr_hash = 1UL << hash_bits;
  1622. hash_mask = nr_hash - 1;
  1623. printk("Mount-cache hash table entries: %d\n", nr_hash);
  1624. /* And initialize the newly allocated array */
  1625. d = mount_hashtable;
  1626. i = nr_hash;
  1627. do {
  1628. INIT_LIST_HEAD(d);
  1629. d++;
  1630. i--;
  1631. } while (i);
  1632. sysfs_init();
  1633. subsystem_register(&fs_subsys);
  1634. init_rootfs();
  1635. init_mount_tree();
  1636. }
  1637. void __put_namespace(struct namespace *namespace)
  1638. {
  1639. struct vfsmount *root = namespace->root;
  1640. LIST_HEAD(umount_list);
  1641. namespace->root = NULL;
  1642. spin_unlock(&vfsmount_lock);
  1643. down_write(&namespace_sem);
  1644. spin_lock(&vfsmount_lock);
  1645. umount_tree(root, 0, &umount_list);
  1646. spin_unlock(&vfsmount_lock);
  1647. up_write(&namespace_sem);
  1648. release_mounts(&umount_list);
  1649. kfree(namespace);
  1650. }